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Timely detection and treatment of possible incipient faults in satellites will effectively reduce the damage and harm they could
cause. Although much work has been done concerning fault detection problems, the related questions about satellite incipient
faults are little addressed. In this paper, a new satellite incipient fault detection method was proposed by combining the ideas of
deviation in unsupervised fault detection methods and classification in supervised fault detection methods. First, the proposed
method uses dynamic linear discriminant analysis (LDA) to find an optimal projection vector that separates the in-orbit data from
the normal historical data as much as possible. Second, under the assumption that the parameters obey a multidimensional
Gaussian distribution, it applies the normal historical data and the optimal projection vector to build a normal model. Finally, it
employs the noncentral F-distribution to test whether a fault has occurred.(e proposed method was validated using a numerical
simulation case and a real satellite fault case.(e results show that the method proposed in this paper is more effective at detecting
incipient faults than traditional methods.

1. Introduction

With the reduction in the costs of launching rockets and
manufacturing satellites, the number of satellites operating
in orbit increases annually, bringing large economic benefits
to society [1–3]. However, due to the harsh operating en-
vironment of satellites and human error, key modules or
components of satellites in orbit may have abnormalities or
experience failures [4]. If incipient faults can be detected and
dealt with promptly in their early stages, the damage and
harm they cause will be effectively reduced [5]. (erefore,
the detection of incipient faults in satellites is receiving an
increasing amount of attention because it is one of the key
technologies that ensures the normal operation of satellites
[6, 7].

(e current common method used to detect faults in
satellites is to compare telemetry parameters with preset
thresholds directly [8, 9]. (is fault detection method is
suitable for detecting abrupt and large faults. However, it

may be less effective at detecting incipient faults because the
telemetry parameters with an incipient fault may not change
significantly from their normal condition [10]. If the fault
detection threshold was set too low, the fault detection
method would be sensitive to noise and cause frequent false
alarms; whereas if the threshold was set too high, some early
symptoms of the fault might be missed. In addition, as the
production batches, processes, and operating environments
of different satellites are not identical, different fault de-
tection thresholds may need to be determined for different
satellites, and it is inefficient to manually set the appropriate
threshold for each telemetry parameter.

Model-based satellite fault detection methods are more
intelligent than threshold comparison methods and often
combine fault detection, isolation, and recovery functions
[11–13]. However, with the rapid development of science
and technology, a variety of new technologies, materials, and
highly integrated devices are being used in satellites. (e
complex coupling relationships between the various
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components of a satellite and the lack of familiarity of
various faults can make it difficult to build accurate and
comprehensive fault detection models, thus limiting the
application of model-based satellite fault detection methods.

In recent years, data-driven fault detectionmethods have
become a popular research topic due to the advantages of
low expert involvement, high modeling efficiency, and high
scalability [14–16]. At present, data-driven fault detection
methods are mainly divided into two categories: unsuper-
vised fault detection methods and supervised fault detection
methods. (e core idea of unsupervised fault detection
methods is deviation. (ese methods use the normal his-
torical data to automatically build a model that characterizes
the normal condition of the satellite. It assumes that a fault
has occurred when the actual in-orbit data deviates signif-
icantly from the model characterizing the normal data. Since
the ground test data and the in-orbit data of satellites contain
mostly fault-free data, fault detection methods based on
unsupervised learning have been widely researched and
applied. Representative unsupervised fault detection
methods are one-class support vector machine (OCSVM)
[17], inductive monitoring system (IMS) [18], principal
component analysis (PCA) [19], Gaussian process regression
(GPR) [20], long short-term memory (LSTM) [21], and so
on. Although these methods use different principles to build
normal models, they all have one thing in common—all
normal models used to detect faults are obtained by learning
from the normal historical data. Once the learning process is
complete, each method will use a fixed and invariable model
to detect faults, regardless of the variation of the actual in-
orbit data, with no optimization or adjustment for the actual
faults that may occur.

(e core idea of supervised fault detection methods is
classification. (ese methods learn and build a classifier
from the normal historical data and various real or simulated
fault data. If the in-orbit data were classified as a normal class
by the classifier, the in-orbit data would be free of faults.
Conversely, if the in-orbit data were classified as a fault class
by the classifier, the in-orbit data would be deemed to be
faulty in some way. Representative supervised fault detection
methods are linear discriminant analysis (LDA) [22], sup-
port vector machine (SVM) [23], neural networks [24],
random forest [25], and so on. However, due to the high
reliability of satellites, most of the samples collected by
satellite operation and maintenance systems are normal, and
fault samples are exceedingly rare. In addition, the classi-
fication models built using the fault samples from different
satellites may not be generalized, thus hindering the ap-
plication of supervised fault detection methods in the sat-
ellite domain.

Based on the existing research, this paper proposes a new
satellite incipient fault detection method that combines the
ideas of deviation in unsupervised fault detection methods
and classification in supervised fault detection methods. (e
main contributions of our work are summarized as follows:

(1) (is paper first uses the idea of classification to find
an optimal projection vector separating the in-orbit
data from the normal historical data. Specifically, this

paper considers the fault detection problem as a
binary classification problem and uses LDA to find
the optimal projection vector where the in-orbit
telemetry data can be distinguished from the normal
historical data to the greatest extent.

(2) (is paper then uses the idea of deviation to test
whether a fault has occurred in the in-orbit data.
Specifically, a normal model is built using the normal
historical data and the optimal projection vector, and
the fault is determined by testing whether the de-
viation of the in-orbit data from the normal model
exceeds the threshold.

(is paper is organized as follows: A brief introduction
about LDA is given in Section 2. (e fault detection method
based on dynamic LDA is presented in detail in Section 3.
(en, the proposed method is illustrated and analysed using
a numerical simulation case and a real satellite fault case in
Section 4. Finally, conclusions are given in Section 5.

2. Linear Discriminant Analysis

Linear discriminant analysis, also known as Fisher dis-
criminant analysis [26], is a supervised dimensionality
reduction and classification method which is widely used
in the field of pattern recognition and machine learning
[27–29]. Taking the binary classification as an example,
given a data set D � (xi, zi)􏼈 􏼉

n

i�1, where xi ∈ Rm is a column
vector of multidimensional telemetry parameters, zi ∈ R

is the corresponding class label, m is the number of
variables need be monitored, and n is the is the number of
samples. (ere are only two values of zi, zi ∈ 0, 1{ }. Let
nj ∈ R, Xj ∈ Rnj×m, μj ∈ Rm, and Σj ∈ Rm×m, respectively,
represent the number of samples, the set of samples, the
mean vector, and the covariance matrix of the class j,
j ∈ 0, 1{ }.

We assume that the projection vector isw ∈ Rm. For each
sample xi, the projection of xi onto the vector w is wTxi.
Moreover, the projections of μ0 and μ1 onto the vector w are
wTμ0 and wTμ1, respectively. (e scatter of each class after
projection onto the vector w is S2j , as shown in

S
2
j � 􏽘

x∈Xj

w
T
x − w

Tμj􏼐 􏼑
2
, j ∈ 0, 1{ }. (1)

We expect that the samples of the same class are clus-
tered together as much as possible after projection onto the
vector w, while the samples of different classes to be more
dispersed [30].(us, we can construct the objective function
of LDA J(w), as shown in

J(w) �
w

Tμ0 − w
Tμ1

����
����
2
2

S
2
1 + S

2
2

�
w

T
Sbw

w
T
Sww

. (2)

In equation (2), Sb � (μ0 − μ1)(μ0 − μ1)
T and

Sw � Σ0 + Σ1. (e objective of LDA is to find an optimal
projection vectorw that maximizes J(w). Let wTSbw � 1, the
problem of finding the optimal projection vector w can be
transformed into an optimization problem, as shown in
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max w
T
Sbw,

s.t. w
T
Sww � 1.

⎧⎨

⎩ (3)

(e optimization problem in equation (3) can be solved
by Lagrange multiplier method and then we obtain

S
−1
w Sbw � λw. (4)

From equation (4) and the relationship between ei-
genvalues and eigenvectors [30], we can know that the
projection vector w is an eigenvector of the matrix S−1

w Sb.
Furthermore, the optimal projection vector w is the ei-
genvector corresponding to the largest eigenvalue of the
matrix S−1

w Sb.

3. Incipient Fault Detection Method Based on
Dynamic LDA

3.1. Dynamic LDA. (e training data of traditional LDA
contain both normal (class 0) and fault (class 1) samples.
However, in the field of satellite fault detection, majority of
samples available for training are normal samples.
(erefore, this paper proposes a new method that treats the
normal historical samples as normal (class 0) samples and
treats the in-orbit samples which need to be tested as fault
(class 1) samples. (e traditional use of LDA and the new
use of LDA in this paper are shown in Figures 1(a) and 1(b),
respectively.

(is article intends to use sliding windows and hy-
pothesis testing methods to test whether a fault has occurred
in the in-orbit data. (e general idea of fault detection is as
follows:

(1) Sliding windows with the length of n1 are used to
extract the in-orbit data in real time. Let the in-orbit
data in the kth sliding window be Xk ∈ Rn1×m. We
assume that a fault has occurred in Xk, and Xk

belongs to a different class from the normal historical
data X0 ∈ Rn0×m.

(2) LDA is used to find an optimal projection vector
wk ∈ R that separates the normal historical data X0
from the in-orbit fault data Xk as much as possible.

(3) A normal model is built using the normal historical
data X0 and the optimal projection vector wk.

(4) Whether the in-orbit data Xk deviates significantly
from the normal model is tested. If there was a
significant deviation, then the original hypothesis
that Xk and X0 belong to different classes is valid,
and a fault has occurred in Xk. If there was no
significant deviation, then the original hypothesis is
not valid, and there is no fault in Xk.

As can be seen earlier, the traditional use of LDA is static.
(e optimal projection vector will be fixed once the training
data are determined. (e new use of LDA in this paper is
dynamic. For each sliding window of the in-orbit data Xk, an
optimal projection vector wk is obtained using dynamic
LDA. As the in-orbit data Xk may vary from different
windows, the optimal projection vector wk may not be the

same for each LDA process. Due to the use of dynamic LDA,
the optimal projection vectors can adjust the in-orbit data in
real time, making the proposed method more adaptable to
potential faults.

3.2. Construction of the Normal Model. After the optimal
projection vector wk is obtained, we need to verify whether
there is a significant deviation between Xk and X0.
However, how large of the deviation is the significant
deviation? (erefore, we need to determine the normal
fluctuation range of deviation between Xk and X0 when the
in-orbit data Xk is normal, and then use the normal
fluctuation range to build a normal model. A fault is
considered to have occurred when the deviation is outside
the acceptable range.

In this paper, the objective function of LDA J(w) is used
as the measure of deviation. We assume that the normal
historical data X0 ∈ Rn0×m and the in-orbit data Xk ∈ Rn1×m

obey two m-dimensional joint Gaussian distributions
X0 ∼ N(μ0,Σ0) and Xk ∼ N(μk,Σk), respectively. (e pro-
jections of X0 and Xk onto the vector wk are f ∈ Rn0 and
g ∈ Rn1 , respectively. Based on the property of the m-di-
mensional joint Gaussian distribution [31], it is clear that f

and g obey one-dimensional Gaussian distributions
f ∼ N(wT

kμ0, wT
kΣ0wk) and g ∼ N(wT

kμk, wT
kΣkwk), respec-

tively. (e relationship of J(wk), f, and g is shown in

J wk( 􏼁 �
w

T
kμ0 − w

T
kμk

����
����
2
2

w
T
k Σ0 + Σk( 􏼁wk

. (5)

Since X0 and wk have been obtained after using LDA,
it can be considered that the mean vector μ0, the co-
variance matrix Σ0, and the optimal projection vector wk

in equation (5) are known and fixed, while the mean
vector μk and covariance matrix Σk associated with Xk are
unknown and variable. As μ0, Σ0, and wk are all known,
we can assume that wT

kμ0 � c1 and wT
kΣ0wk � c2, where c1

and c2 are two constants. (en, equation (5) can be
reduced to

J wk( 􏼁 �
G1 wk( 􏼁

G2 wk( 􏼁
�

w
T
kμk − c1

����
����
2
2

c2 + w
T
kΣkwk

. (6)

For the purpose of obtaining the normal fluctuation
range of J(wk), we assume that Xk and X0 belong to the
same class and Xk is obtained by sampling the joint Gaussian
distribution which X0 obeys. Since f and g obey one-di-
mensional Gaussian distributions and are the projections of
Xk and X0 onto the vector wk, respectively, we can consider
that g is obtained by sampling the one-dimensional
Gaussian distribution which f obeys. Based on the property
of the one-dimensional Gaussian distribution [32, 33], the
sample mean value wT

kμk of g obeys a one-dimensional
Gaussian distribution, as shown in equation (7).
(n1 − 1)wT

kΣkwk/wT
kΣ0wk obeys the chi-square distribution

with degrees of freedom of n1 − 1 [32, 33], as shown in the
following equations:
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T
kμk ∼ N w

T
kμ0,

w
T
kΣ0wk

n1
􏼠 􏼡, (7)

n1 − 1( 􏼁w
T
kΣkwk

w
T
kΣ0wk

∼ χ2 n1 − 1( 􏼁. (8)

Since wT
kμk obeys a one-dimensional Gaussian distri-

bution and c1 is a constant, wT
kμk − c1 also obeys a one-

dimensional normal distribution, as shown in

w
T
kμk − c1 ∼ N w

T
kμ0 − c1,

w
T
kΣ0wk

n1
􏼠 􏼡. (9)

As wT
kμ0 � c1 and wT

kΣ0wk � c2, we can obtain

w
T
kμk − c1 ∼ N 0,

c2

n1
􏼠 􏼡. (10)

After normalizing wT
kμk − c1, we can obtain

��
n1

c2

􏽲

w
T
kμk − c1􏼐 􏼑 ∼ N(0, 1). (11)

Furthermore, we can get equation (12) from the rela-
tionship between the standard normal distribution and the
chi-square distribution:

n1

c2
w

T
kμk − c1

����
����
2
2 ∼ χ2(1). (12)

(us, the numerator of J(wk) satisfies

n1

c2
G1 wk( 􏼁 ∼ χ2(1). (13)

Using wT
kΣ0wk � c2 to simplify equation (8), we can get

n1 − 1( 􏼁w
T
kΣkwk

c2
∼ χ2 n1 − 1( 􏼁. (14)

(erefore, the denominator of J(wk) satisfies

n1 − 1( 􏼁

c2
G2 wk( 􏼁 − c2( 􏼁 ∼ χ2 n1 − 1( 􏼁. (15)

In summary, the numerator of J(wk) multiplied by a
constant n1/c2 obeys a chi-square distribution with a 1
degree of freedom. (e denominator of J(wk) minus a
constant c2 and then multiplied by a constant (n1 − 1)/c2
obeys a chi-square distribution with n1 − 1 degrees of
freedom. (erefore, the denominator of J(wk) obeys a
noncentral chi-square distribution. In addition, G1(wk)

and G2(wk) are independent of each other. (e rela-
tionship between the chi-square distribution and the F-
distribution and equations (13), (15) show that 1/n1J(wk)

obeys a noncentral F-distribution with degrees of free-
dom of n1 − 1 and 1 and a noncentral parameter c2, as
shown in
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Figure 1: Comparison of the uses of LDA: (a) traditional use of LDA and (b) the use of proposed LDA in this paper.
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1
n1J wk( 􏼁

�
G2 wk( 􏼁

n1G1 wk( 􏼁
�

n1 − 1/c2 ∗G2 wk( 􏼁/n1 − 1
n1/c2 ∗G1 wk( 􏼁/1

∼ F n1 − 1, 1, c2( 􏼁. (16)

(erefore, we can use the noncentral F-distribution to test
whether there is a fault in Xk [33]. Given a significance level α,
the detection threshold εk ∈ R of 1/n1J(wk) can be obtained
from the noncentral F-distribution test. If the value of
1/n1J(wk) was greater than or equal to εk, we consider that Xk

and X0 belong to the same class, and there is no fault in Xk. If
the value of 1/n1J(wk) was less than εk, we consider that Xk

and X0 belong to different classes and a fault has occurred in
Xk. Taking the reciprocal of 1/n1J(wk), we can obtain

H0: J wk( 􏼁≤
1

n1εk

, fault − free,

H1: J wk( 􏼁>
1

n1εk

, faulty.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(17)

3.3. Overall Fault Detection Process. (e pseudocode for the
overall fault detection method based on dynamic LDA is as
follows:

(1) Each parameter of the normal historical samples X0
is normalized by Z-score to obtain X0

(2) A sliding window with the length of n1 is used to
extract the in-orbit data and Xk is obtained

(3) (e in-orbit data Xk is normalized by Z-score to
obtain Xk

(4) LDA is used to find the optimal projection vector wk

between X0 and Xk

(5) A normal model is built using X0 and the optimal
projection vector wk, and the detection threshold εk

is obtained with the significance level α
(6) (e value of LDA objective function J(wk) is cal-

culated according to equation (5)
(7) Determine whether J(wk) is greater than 1/n1εk ?. If

J(wk)> 1/n1εk was, the in-orbit data Xk is faulty;
otherwise, Xk is normal. Let k � k + 1, the in-orbit
data Xk+1 of next sliding window will be tested from
Steps 3 to 7.

(e computation cost of finding the optimum projection
vector for each window mainly consists of matrix inversion,
matrix multiplication, and solving eigenvalue problem.(e time
complexities of these three parts are O(n3), where n is the
number of monitored variables. Considering all the aforemen-
tioned computation cost parts, the computation cost of finding
the optimum projection vector for each window is O(n3).

4. Case Studies and Analysis

4.1. Numerical Case

4.1.1. Experiment with the Fixed Fault Magnitude. A nu-
merical simulation experiment which includes three faults

was conducted to verify the effectiveness of the method
proposed in this paper.(e system was modeled as shown in

x1 � s1 + s2 + f1 + e1,

x2 � s1 − s3 + f1 + e2,

x3 � s1 − s4 + f1 + e3,

x4 � s2 + s3 + e4,

x5 � s2 − s4 + e5,

x6 � s2 + s4 + s5 + f2 + e6,

x7 � s3 − s4 + f3 + e7,

x8 � s3 − s5 + e8.

(18)

In equation (18), [s1, s2, s3, s4, s5]
T and

[e1, e2, e3, e4, e5, e6, e7, e8]
T are independent Gaussian-dis-

tributed source signals and noises, respectively. All the
source signals obey the standard normal distribution
N(0, 1). f1, f2, and f3 are three incipient faults and do not
occur simultaneously. X � [x1, x2, x3, x4, x5, x6, x7, x8]

T are
the eight telemetry parameters that need to be monitored.
All the fault types of f1, f2, and f3 are offset faults, as these
faults occur more frequently in satellites. (e three faults
were inserted as shown in

f1 �
0 1st–30, 100th,

0.25 30, 101st–60, 200th,
􏼨

f2 �
0 1st–30, 100th,

0.03 30, 101st–60, 200th,
􏼨

f3 �
0 1st–30, 100th,

0.03 30, 101st–60, 200th.
􏼨

(19)

In this paper, four evaluation indexes: fault detection rate
(FDR), false alarm rate (FAR), F1 value, and AUC value were
chosen as the indexes for evaluating the fault detection
results:

FDR � prob J wk( 􏼁>
1

n1εk

|H1􏼨 􏼩, (20)

FAR � prob J wk( 􏼁>
1

n1εk

|H0􏼨 􏼩, (21)

FPR � prob H1|J wk( 􏼁>
1

n1εk

􏼨 􏼩, (22)

F1 �
2∗ FPR∗ FDR
FPR + FDR

. (23)

(e other parameters of the numerical case were set as
follows. (e total number of samples was 120,400 of which
60,200 were normal historical samples and 60,200 were in-
orbit samples for testing.(e sliding window length was 300,

Computational Intelligence and Neuroscience 5



and the sliding window interval was 100 for both the normal
historical data and the in-orbit data in the experiment. After
using sliding windows, both 600 windows were obtained
from the normal historical data and the in-orbit data. (e
first 300 windows of the 600 windows of the in-orbit data
were normal windows, while the last 300 windows were fault
windows. (e signal-to-noise ratio (SNR) was set to 30 dB
[34].

In this paper, eight common fault detection methods
were chosen as comparison methods, namely isolation forest
(IForest) [35], OCSVM [36], kth nearest neighbor (KNN)
[37], local outlier factor (LOF) [38], histogram-based outlier
score (HBOS) [39], PCA with T2 statistic (PCA + T2) [19],
PCA with squared prediction error statistic (PCA+ SPE)
[19], and PCA with combined index (PCA+CI) [40]. For
comparison purposes, the parameters monitored by these
eight methods were the mean values of each sliding window
samples instead of the original values. IForest, OCSVM,
KNN, LOF, and HBOS were implemented using the open-
source program PyOD [41]. (e parameters of PyOD are
shown in Table 1. (e significance of the parameters were
detailed in Appendix (if there were no special explanations,
other parameters were default values). For the three PCA-
based fault detection methods, the cumulative variance
contribution rate was 90%, and the confidence level of the
statistic was set to 95%.(e significance level of the proposed
method was set to 0.005.

(e detection results of nine fault detection methods for
the fault f1 are shown in Figure 2. As can be seen from
Figure 2, seven methods such as IForest, KNN, LOF, HBOS,
PCA + T2, PCA+CI and the proposed method have satis-
factory detection results for the fault f1, while the other two
methods (OCSVM and PCA+ SPE) have slightly poor de-
tection results for the fault f1.

(e detection results of nine fault detection methods for
the fault f2 are shown in Figure 3. As is shown in Figure 3,
the results of the first seven fault detection methods are not
satisfactory for the fault f2. (e fault or anomaly scores of
these methods except OCSVM did not change significantly
before and after insertion of the fault f2. Although the
detection result of OCSVM is better, there are still a large
number of fault windows below the threshold. It can be seen
from Figure 3(i) that the proposed method has a good
detection result for the fault f2.

As can be seen from Figure 4, except OCSVM and the
proposed method, the other seven fault detection methods
have poor performance in the detection of the fault f3.
However, the detection result of OCSVM is not stable. In
other words, due to randomly generated signal sources and
noise sources, OCSVM may obtain good or poor results.

(e three faults were simulated randomly 100 times in
this paper [42], and then the average values of the fault
detection results were calculated and are shown in Table 2.

As can be seen from Table 2, all the false alarm rate of the
nine fault detection methods were concentrated in the vi-
cinity of 5% ∼ 7%. Consequently, it could be considered that
the results in Table 2 are comparative results under similar
false alarm rate condition. In terms of fault detection rate,
the fault detection rate of the proposed method for the faults

f1, f2, and f3 ranked 5th, 1st, and 1st, respectively. As for
the fault f1, the proposed method ranked 5th but only 3.19%
lower than the 1st method. In terms of F1 value, the F1
values of the proposed method for the faults f1, f2, and f3
ranked 5th, 1st, and 1st, respectively. In terms of AUC value,
the AUC values of the proposed method for the faults f1, f2,
and f3 ranked 3rd, 1st, and 1st, respectively.

Figure 5 shows the AUC value of 100 simulation results
using OCSVM and proposed method to detect the fault f3.
As can be seen from Figure 5, the detection results of
OCSVM are unstable. (erefore, the evaluation index of
OCSVM is not very high after averaging. On the contrary,
the detection results of the proposed method are stable and
satisfactory.

4.1.2. Experiment with Different Fault Magnitudes. It is
evident from Figure 4(i) that the proposed method has large
allowances for the faults f2 and f3. In other words, it seems
that the proposed method can also detect the smaller
magnitude of the faults f3. To test the ability of detecting
smaller faults of the proposed method, another experiment
was conducted and the fault f3 was taken as an example. All
the simulation environment and experimental parameters
were retained, but the fault magnitude of f3 in equation (19)
was varied. (e fault magnitude of f3 was increased from
0.001 to 0.08, and the increase interval was 0.001. Each fault
magnitude was simulated 30 times and the average value was
used as the result. (e F1 and AUC values of the detection
results of nine methods with different fault magnitudes are
shown in Figure 6.

As shown in Figures 6(a) and 6(b), the F1 and AUC
values of the aforementioned nine methods show an
increasing trend as the fault magnitude of f3 increases
gradually, but the rate of increase varies among the nine
methods. (e F1 and AUC values of the proposed method
increased rapidly with the increase of the fault magnitude
and remained finally near the highest value. (e optimal
fault detection method of the other eight methods for the
fault f3 was the OCSVM method, but it was slower than
the method proposed in this paper. Due to the influence
of noise, the detection result of OCSVM fluctuated
greatly. As can be seen from Figure 6, the detection result
of the proposed method may not be advantageous for
large magnitude faults. However, in the case of incipient
faults, the proposed method has an obvious advantage
over the other eight fault detection methods. (erefore,
the method proposed in this paper is more compre-
hensive in its ability to detect the different magnitudes of
the fault f3.

Table 1: Parameter settings of PyOD.

Method Parameter settings
IForest n_estimators� 100, contamination� 0.05
OCSVM Kernel� ‘linear’, nu� 0.6, contamination� 0.05
KNN n_neighbors� 5, contamination� 0.05
LOF n_neighbors� 20, contamination� 0.05
HBOS n_bins� 10, alpha� 0.1, tol� 0.1, contamination� 0.05
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4.1.3. Analysis and Discussion. Why does the proposed
method differ significantly in the detection of the faults f1,
f2, and f3?. Why is the proposed method more sensitive to
small-magnitude faults than other methods? (is paper
attempted to explain the reasons from the perspective of the
optimal projection vector. For presentation purposes, the
optimal projection vectors for each sliding window were
normalized (the moduli of vector were set to 1) and taken the
absolute value. (e optimal projection vectors obtained by
using dynamic LDA before and after the faults f1,f2, and f3
are shown in Figures 7(a)–7(c), respectively. In Figure 7, the

first 300 windows were the normal windows, while the last
300 windows were the faulty windows.

As can be seen from Figure 7, due to the influence of
noise, the optimal projection vectors obtained by the pro-
posed method were chaotic and had no fixed pattern in the
absence of faults. However, in Figures 7(b) and 7(c), the
optimal projection vectors obtained using dynamic LDA
showed regular patterns after faults f2 and f3 occurred. In
comparison with Figure 7(a), the optimal projection vectors
obtained using dynamic LDA were still chaotic after the
occurrence of the fault f1, and there is no significant
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Figure 2: (e detection results of five fault detection methods for the fault f1: (a) IForest result for f1, (b) OCSVM result for f1, (c) KNN
result for f1, (d) LOF result for f1, (e) HBOS result for f1, (f )PCA + T2 result for f1, (g) PCA+ SPE result for f1, (h) PCA+CI result for f1,
and (i) the proposed method result for f1.
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advantage between the proposed method and traditional
methods:

w
T
X � w1x1 + w2x2 + · · · + w8x8. (24)

(e size of each component of the optimal projection
vector determines the degree of scaling of different pa-
rameters in X. Taking Figure 7(b) as an example, the weight
of the parameter x6 was up to about 0.6 after the fault f2
occurred, while the weights of the parameters x4 and x8 were
about 0.45, and the weights of the remaining parameters

were below 0.3. It can be seen from equation (20) that the
fault f2 was added to the parameter x6. It can be concluded
that the optimal projection vector enlarged the weights of
fault parameters and suppressed the weights of the other
parameters. (e enlargement of the fault parameters im-
proves the ability of the proposed method to detect small-
magnitude faults, while the suppression of the other pa-
rameters reduces the effect of noise from the other
parameters.

As can be seen from Figure 7(c), the weights of x3 and x7
were significantly higher than the weights of the other
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Figure 3: (e detection results of five fault detection methods for the fault f2: (a) IForest result for f2, (b) OCSVM result for f2, (c) KNN
result for f2, (d) LOF result for f2, (e) HBOS result for f2, (f )PCA + T2 result for f2, (g) PCA+ SPE result for f2, (h) PCA+CI result for f2,
and (i) the proposed method result for f2.
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parameters after the fault f3 occurred. It can be seen from
equation (20) that the fault f3 was added to the parameter
x7. It can be concluded that the optimal projection vectors
also enlarged the weights of fault parameters and suppressed
the weights of other parameters after the fault f3 occurred.

(e traditional fault detection methods, such as
OCSVM, IForest, and PCA, are static methods. Once the
learning process is complete, they will use a fixed and in-
variable model to detect faults. Although the KNNmethod is
dynamic, it treats each parameter equally. (ey did not have
the aforementioned dynamic process of enlarging the

weights of fault parameters and suppressing the weights of
irrelevant parameters. Consequently, the other eight
methods were not effective for the faults f2 and f3. Al-
though OCSVM can obtain significant results sometimes,
the detection results are not stable. After analysis, we
consider that the instability of OCSVMmay be caused by the
selection of noise as the support vectors. In addition,
comparing Figures 7(b) and 7(c), the optimal projection
vectors were not the same for different faults. (e optimal
projection vectors obtained using the method proposed in
this paper can be automatically adjusted according to the
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Figure 4: (e detection results of five fault detection methods for the fault f3: (a) IForest result for f3, (b) OCSVM result for f3, (c) KNN
result for f3, (d) LOF result for f3, (e) HBOS result for f3, (f )PCA + T2 result for f3, (g) PCA+ SPE result for f3, (h) PCA+CI result for f3,
and (i) the proposed method result for f3.
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actual fault, and there is no need to manually set the pa-
rameter weights in advance.

4.2. Real Satellite Fault Case. On 28 June 2020, a fault oc-
curred in a key component of a satellite payload. (e
postfailure analysis showed that the fault had been generated
and developed over a long period of time. However, due to
the first occurrence of the fault and the small magnitude of
the initial failure, the fault was not detected and dealt with
promptly. Finally, the status of the key component became
unavailable. In this paper, a total of 1,315,515 samples of five
telemetry parameters related to the faulty component were
collected from satellite measurements and control systems
from 12:15:04 on 10 November 2018 to 19:59:39 on 2 De-
cember 2019, as shown in Figure 8. For reasons of confi-
dentiality, the true telemetry parameter names were hidden.

(e first 266,540 samples of the total samples were se-
lected as normal historical data, while the next 197,000
samples were selected as test data.(e sliding window length
was still set to 300 for both the test data and the normal

historical data, but the sliding window interval was set to
100. After the sliding window extraction, a total of 2663
windows were obtained from the normal historical data, and
a total of 1968 windows were obtained from the test data.
(e first 324 windows of the 1968 test windows were normal
windows, while the subsequent windows were fault win-
dows. (e significance level of the proposed method was set
to 0.0001, while the rest of the experimental parameters were
the same as those presented in Section 4.1.1. (e evaluation
indexes and detection results of the nine fault detection
methods for the real satellite fault are shown in Table 3 and
Figure 9, respectively.

It can be summarized from Figure 9 that the four
methods, which including OCSVM, KNN, LOF, and the
proposed method, have better detection results for the real
satellite fault. In terms of four evaluation indexes, the
proposed method all obtained satisfactory results. Although
the proposedmethod has little advantage over the other fault
detection methods, it still ranked as the best that can be seen
from Table 3. (e effectiveness of the proposed method is
further verified by the real satellite case.

Table 2: Comparison of fault detection performance for three faults.

Evaluation index IForest OCSVM KNN LOF HBOS PCA + T2 PCA+ SPE PCA+CI Proposed method
FDR for f1 (%) 85.75 41.61 91.57 91.8 83.63 90.27 45.39 90.00 88.66
FAR for f1 (%) 5.37 5.31 6.07 6.49 5.96 5.68 5.61 5.64 4.95
F1 for f1 0.896 0.517 0.926 0.926 0.881 0.921 0.589 0.920 0.916
AUC for f1 0.964 0.791 0.977 0.976 0.957 0.978 0.804 0.978 0.976
FDR for f2 (%) 5.80 45.07 6.49 6.76 6.19 5.65 6.11 5.94 99.47
FAR for f2 (%) 5.37 5.13 5.85 6.34 5.71 5.10 5.87 5.75 4.86
F1 for f2 0.103 0.533 0.115 0.118 0.110 0.101 0.108 0.106 0.973
AUC for f2 0.511 0.794 0.522 0.516 0.509 0.507 0.537 0.517 0.998
FDR for f3 (%) 5.42 59.44 6.40 6.74 5.81 5.53 6.90 6.84 99.96
FAR for f3 (%) 5.48 5.37 5.92 6.14 5.79 5.40 5.70 5.54 5.07
F1 for f3 0.097 0.659 0.113 0.118 0.103 0.099 0.121 0.121 0.975
AUC for f3 0.506 0.856 0.522 0.514 0.503 0.500 0.560 0.523 1.000
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10 Computational Intelligence and Neuroscience



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F1

0.02 0.04 0.06 0.080
Fault magnitude

IForest
KNN
HBOS
PCA+SPE
DDLA

OCSVM
LOF
PCA+T2

PCA+CI

(a)

A
U

C

0.5

0.6

0.7

0.8

0.9

0.4

1

0.02 0.04 0.06 0.080
Fault magnitude

IForest
KNN
HBOS
PCA+SPE
DDLA

OCSVM
LOF
PCA+T2

PCA+CI

(b)

Figure 6: Comparison of fault detection results with different fault magnitudes: (a) F1 value for different fault magnitudes and (b) AUC
value for different fault magnitudes.

w1w2w3w4w5w6w7w8

W

0.6

0.4

0.2

Window number

(a)

Window number

w1w2w3w4w5w6w7w8

W

0.6

0.4

0.2

(b)

Window number

w1w2w3w4w5w6w7w8

W

0.6

0.4

0.2

(c)

Figure 7: Variation of optimal projection vectors for the different faults: (a) optimal projection vectors of f1, (b) optimal projection vectors
of f2, and (c) optimal projection vectors of f3. From the perspective of projection, the projection process can be considered as a weighted
sum process.

Computational Intelligence and Neuroscience 11



×105
2 4 6 8 10 12 140

Samples

2

2.5

3

3.5

4

4.5

Te
le

m
et

ry
 p

ar
am

et
er

 v
al

ue

Telemetry parameter 1
Telemetry parameter 2
Telemetry parameter 3

Telemetry parameter 4
Telemetry parameter 5

Figure 8: Raw telemetry data for fault-related parameters.

Table 3: Comparison of fault detection performance for the real satellite fault.

Evaluation index IForest OCSVM KNN LOF HBOS PCA + T2 PCA+ SPE PCA+CI Proposed method
FDR (%) 22.57 88.19 95.82 97.54 29.46 81.80 59.78 85.79 99.94
FAR (%) 2.05 7.60 9.65 12.28 2.63 3.22 2.34 1.75 1.17
F1 0.367 0.929 0.969 0.975 0.453 0.897 0.746 0.922 0.999
AUC 0.899 0.960 0.990 0.992 0.888 0.971 0.934 0.988 1
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Figure 9: Continued.
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5. Conclusions

Based on the analysis and comparison of existing satellite
fault detection methods, this paper proposes a new incipient
fault detection method that combines the core ideas of
unsupervised learning and supervised learning. (en, the
effectiveness and superiority of the proposed method were
verified through a numerical simulation case and a real fault
case. (is paper only studies linear Gaussian system. If the
system did not meet the assumptions of joint Gaussian
distribution and linearity, the detection effect of the pro-
posed method might decrease. Due to the insensitivity of
LDA to variance, the proposed method is suitable for
detecting the slight abnormal change of mean instead of the
slight abnormal change of variance.

Appendix

(e website of PyOD is https://github.com/yzhao062/Pyod.

IForest n_estimators: the number of base estimators in
the ensemble. contamination: the amount of contam-
ination of the data set, that is, the proportion of outliers
in the data set.
OCSVM kernel: it specifies the kernel type to be used in
the algorithm. nu: an upper bound on the fraction of

training errors and a lower bound of the fraction of
support vectors. contamination: the amount of con-
tamination of the data set, i.e., the proportion of
outliers in the data set.
KNN n_neighbors: the number of neighbors to use by
default for k neighbors queries. contamination: the
amount of contamination of the data set, i.e., the
proportion of outliers in the data set.
LOF n_neighbors: the number of neighbors to use by
default for k neighbors queries. contamination: the
amount of contamination of the data set, i.e., the
proportion of outliers in the data set.
HBOS n_bins: the number of bins. alpha: the regu-
larizer for preventing overflow. tol: the parameter to
decide the flexibility while dealing the samples falling
outside the bins. contamination: the amount of con-
tamination of the data set, i.e., the proportion of
outliers in the data set.

Data Availability

(e numerical case data used to support this study are
included within the article. (e real satellite fault data used
to support the findings of this study are available from the
corresponding author upon request.
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Figure 9: (e detection results of five fault detection methods for the real satellite fault: (a) IForest method, (b) OCSVMmethod, (c) KNN
method, (d) LOF method, (e) HBOS method, (f )PCA + T2 method, (g) PCA+ SPE method, (h) PCA+CI method, and (i) the proposed
method.
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