
Aging Brain 5 (2024) 100105

2589-9589/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Age-related differences in structural and resting-state functional 
brain network organization across the adult lifespan: A 
cross-sectional study 

Maedeh Khalilian a, Monica N. Toba a,b, Martine Roussel a, Sophie Tasseel-Ponche a,c, 
Olivier Godefroy a,b,d, Ardalan Aarabi a,b,* 

a Laboratory of Functional Neuroscience and Pathologies (UR UPJV 4559), University Research Center (CURS), University of Picardy Jules Verne, 
Amiens, France 
b Faculty of Medicine, University of Picardy Jules Verne, Amiens, France 
c Neurological Physical Medicine and Rehabilitation Department, Amiens University Hospital, University of Picardy Jules Verne, Amiens, France 
d Neurology Department, Amiens University Hospital, Amiens, France   

A R T I C L E  I N F O   

Keywords: 
Brain structural connectivity 
Brain functional connectivity 
Rich-club organization 
Structure–function coupling 
Vulnerability analysis 
Aging 

A B S T R A C T   

We investigated age-related trends in the topology and hierarchical organization of brain struc-
tural and functional networks using diffusion-weighted imaging and resting-state fMRI data from 
a large cohort of healthy aging adults. At the cross-modal level, we explored age-related patterns 
in the RC involvement of different functional subsystems using a high-resolution functional 
parcellation. We further assessed age-related differences in the structure–function coupling as 
well as the network vulnerability to damage to rich club connectivity. 

Regardless of age, the structural and functional brain networks exhibited a rich club organi-
zation and small-world topology. In older individuals, we observed reduced integration and 
segregation within the frontal-occipital regions and the cerebellum along the brain’s medial axis. 
Additionally, functional brain networks displayed decreased integration and increased segrega-
tion in the prefrontal, centrotemporal, and occipital regions, and the cerebellum. In older sub-
jects, structural networks also exhibited decreased within-network and increased between- 
network RC connectivity. Furthermore, both within-network and between-network RC connec-
tivity decreased in functional networks with age. An age-related decline in structure–function 
coupling was observed within sensory-motor, cognitive, and subcortical networks. The structural 
network exhibited greater vulnerability to damage to RC connectivity within the language- 
auditory, visual, and subcortical networks. Similarly, for functional networks, increased vulner-
ability was observed with damage to RC connectivity in the cerebellum, language-auditory, and 
sensory-motor networks. Overall, the network vulnerability decreased significantly in subjects 
older than 70 in both networks. Our findings underscore significant age-related differences in 
both brain functional and structural RC connectivity, with distinct patterns observed across the 
adult lifespan.   
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Introduction 

Advances in brain imaging techniques have allowed assessments of age-related patterns in brain structure and function during 
normal aging [6,15,85,88]. Morphometric MRI studies have demonstrated reductions in grey/white matter (GM/WM) volumes and 
GM thickness mainly in prefrontal, parietal and temporal cortices and deep structures [41,64,76,88,97]. Growing evidence, however, 
suggests that local age-related variations in brain morphology are highly related to gradual alterations in the brain’s structural and 
functional organization. 

The emergence of network neuroscience has allowed scientists to better study the topology of whole-brain networks [19,90]. Over 
the past decade, network-based studies have substantially advanced our understanding of age-related trends in the brain’s structural 
and functional connectivity [13,63,84,114]. For structural connectivity (SC) analysis, a structural network is derived from diffusion 
magnetic resonance imaging data by fiber tracking or tractography to infer white matter fiber connectivity patterns between brain 
regions. For functional connectivity (FC) analysis, a functional network is usually derived from resting-state functional MRI (rsfMRI) 
by inferring statistical independence between brain regions through correlation analysis. The whole-brain functional connectivity 
network can be decomposed into so-called resting-state networks (RSN) including default mode (DMN), executive control, attention 
(ATN), salience, sensorimotor and visual networks. The RSNs are shown to be composed of brain regions involved in the sensory, motor 
or higher-order cognitive systems that exhibit correlated intrinsic activity with consistent spatial topographic patterns [32,52,98]. 

At the mesoscopic level, several network studies have explored age-related patterns in the topological properties of the brain 
structural and functional networks from regional and global perspectives using graph theoretical metrics of segregation and inte-
gration [13,21,42,63,65,84,114]. Overall, previous studies have reported a decline in the connectivity, efficiency and robustness of 
structural brain networks, suggested to be due to the loss of white matter integrity, neuronal shrinkage, loss of small axon fibers and 
WM degeneration during aging [13,27,32,114,108]. However, the main brain structural organization has been found to remain 
relatively intact in healthy aging [114]. 

Functional network studies have reported more heterogeneous results demonstrating age-related decreases/increases in global and 
local functional connectivity strength, network segregation, and modularity in healthy aging adults [21–22,43,13,116,11,55,33]. 
Some discrepancies have been reported between the findings concerning functional connectivity within and between different RSNs in 
aging studies [32]. Lower age-related connectivity has been consistently found within DMN, frontoparietal control network, dorsal 
attention network (DAN) and salience networks [6,13,21–22,43]. Reductions in within-network connectivity have also been reported 
in visual and somatomotor networks associated with aging [13]. In some studies, however, increased age-related within-network 
connectivity has been found within motor, and subcortical networks, suggested to reflect the compensatory responses to the decreased 
strength of FC during aging [16,35,99]. In addition, higher between-network connectivity has been found between DMN and DAN in 
older adults compared to younger individuals [44,91]. Betzel et al. [13] have also found increases in FC among components of dorsal 
attention, saliency/ventral attention and somatomotor networks. The discrepancy between findings concerning functional connec-
tivity especially at the network level is suggested to be more likely related to physiological confounds or indirect functional in-
teractions relying on synaptic pathways and multiple (parallel) white matter connections [13,62,25,42,45,68,114]. 

In recent years, neuroscientists’ interests have shifted towards exploring the hierarchical integrative architecture of the brain’s 
complex networks. At the macroscopic level, network studies have identified a hierarchical brain structure comprising provincial and 
connector hubs shown to significantly enhance communication flow within and between multiple communities across the whole-brain 
network [89,101,54]. In this context, there has been growing interest in identifying densely connected brain hubs forming an 
embedded network so-called “rich club” (RC) that efficiently links multiple communities across the brain. The RC organization is 
known to play a critical role in maintaining efficient brain functioning and a high level of resilience, hierarchical ordering, and 
specialization at the network level [54,21,45]. In healthy adults, the functional and structural rich-club architecture of the brain is 
shown to display similar topological trajectories [13,32,45]. In previous structural network studies, it is found that the rich club of 
cortical brain regions consists of medial frontal, medial parietal, insular and subcortical regions [54]. The functional rich club is also 
found to include brain hubs within medial frontal, medial parietal and occipital regions [21]. Overall, the global integration power of 
both structural and functional rich-clubs has been found to decline with age [21,114]. 

A mixture of differences in methodological choices and datasets has led to inconsistency in findings across different studies. The 
majority of network studies have specifically focused on age-related differences in functional and/or structural connectivity in the 
same or different cohort of small sample sizes using low-resolution parcellation scales and a limited set of graph measures of network 
segregation and/or integration [13,114]. The sample size can critically reduce the statistical power especially when one deals with a 
wide range of ages resulting in sparse data sets across the adult lifespan. The heterogeneity in methodological approaches can make it 
difficult to compare findings concerning age-related patterns in network topology across different studies. Several factors can affect the 
reliability of connectivity analysis such as parcellation scales and schemes, type of networks, network normalization and thresholding, 
type of graph metrics, and preprocessing procedures (smoothing, global signal regression, movement regression) [18,96]. In addition 
to technical differences, the aging trajectory of the structural and functional rich club interconnecting resting-state networks [54], as 
well as the brain network vulnerability to perturbations targeting rich club connectivity across the adult lifespan have gained little 
attention in previous studies of brain connectivity and network topology. 

On the basis of these limitations, we performed a comprehensive series of exploratory analyses to investigate age-related trends in 
the structural and functional connectivity of large-scale brain networks across the adult lifespan from local, global and hierarchical 
perspectives. At the local and global (mesoscopic) level, age-related differences in the topology of brain structural and functional 
networks were investigated using graph theoretical metrics of network segregation and integration in a relatively large cohort of 
healthy aging participants. We also investigated associations between age-related functional and structural connectivity patterns and 
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cognitive decline. At the network hierarchy level, age-related shifts in the hierarchical RC organization of the functional and structural 
connectome were explored. At the cross-modal level, we assessed age-related patterns in the RC involvement of sensory-motor and 
higher-order processing RSNs, subcortical regions and cerebellum. Additionally, we explored the coupling between functional and 
structural connectivity within RSNs as well as the whole-brain network across the adult lifespan. Finally, we evaluated the age-related 
vulnerability of both the structural and functional brain networks to damage by selectively removing rich-club nodes and re-assessing 
the network efficiency. 

Materials and methods 

Participants and MR data 

Neuroimaging data from a total of 619 healthy aging individuals aged 18 to 88 years (mean age = 54.5 ± 18.4 years) from the 
Cambridge Centre for Ageing and Neuroscience repository (CamCAN, Stage 2, [83,95] were included in this study after excluding 
participants with poor image quality, excessive head motion or rotation, missing or incomplete data. Ethical approval for the study has 
been obtained from the Cambridgeshire 2 (now East of England-Cambridge Central Research Ethics Committee), and all participants 
gave full informed consent. 

The structural and functional imaging data were acquired from participants in a single 1-hour session at a single site (MRC-CBSU) 
using a 3 T MRI scanner (Siemens TIM Trio) with a 32-channel head coil. T1w images were acquired with a 3D Magnetization- 
Prepared Rapid Acquisition Gradient Echo (MPRAGE) sequence (TR/TE = 2250/2.99 ms; inversion time (TI) = 900 ms; flip angle = 9◦; 
FOV = 256 × 240 × 192 mm3; voxel size = 1 × 1 × 1 mm3; and GRAPPA acceleration factor = 2). DWI data were collected with a 
twice-refocused spin-echo sequence (30 diffusion gradient directions for two b-values: 1000 and 2000 s/mm2, along with three images 
acquired using b-value of zero; TR/TE = 9100/104 ms; voxel size = 2 × 2 × 2 mm3; FOV = 192 × 192 mm2; number of slices = 66). 

For rsfMRI measurements, 261 volumes (lasting 8 min and 40 s) of resting-state functional MR images were acquired from each 
subject with an echo-planar imaging (EPI) sequence. Each volume included 32 axial slices (acquired in descending order), with a slice 
thickness of 3.7 mm and inter-slice gap of 20 % (for full brain coverage including cerebellum), TR/TE = 1970/30 ms; flip angle = 78◦; 
FOV = 192 × 192 mm2; voxel-size = 3 × 3 × 4.44 mm3). During the resting-state scan, all participants were required to lie still while 
keeping their eyes closed. 

To investigate associations between age-related functional and structural connectivity patterns and cognitive decline, we used 
three cognitive (visuospatial, language, and memory) scores obtained using Addenbrooke’s Cognitive Examination (ACE-R) [69], from 
all participants grouped into seven age deciles (Table 1). 

Processing pipeline 

Fig. 1 shows the processing pipeline for multimodal brain network connectivity analysis across the adult lifespan at three levels. 
The first-level (mesoscopic) network analysis focused on exploring age-related differences in the topology of functional and structural 
networks consisting of cortical, subcortical and cerebellar regions across the adult lifespan using graph-theoretical approaches from 
both local and global perspectives. At the network hierarchy level, differences in the hierarchical organization of the functional and 
structural connectome were explored using the rich-club analysis across different age groups. At the cross-modal level, age-related 
differences in the involvement of the rich club interconnecting functional modules (RSNs) were investigated. In addition to the 
main processing steps, the structure–function coupling and the network vulnerability to attack on RC nodes within different functional 

Table 1 
Clinical and demographic data across age deciles used in this study.  

Age 
(years) 

N Gender (M/ 
F) 

Handedness Education Memory 
score 

Language 
score 

Visuo-spatial 
score 

No 
education 

GCSE A- 
levels 

Higher 
education 

18–29 67 (10.8 
%) 

27/40 75 ± 50.4 0 3 18 46 24.6 ± 2.1 25.4 ± 0.9 15.6 ± 0.8 

30–39 93 (15 %) 48/45 79.5 ± 46.7 1 9 12 71 24.7 ± 1.9 25.6 ± 0.8 15.7 ± 0.5 
40–49 103 (16.7 

%) 
50/53 75.1 ± 52 2 19 17 65 24.5 ± 1.9 25.4 ± 0.8 15.7 ± 0.6 

50–59 91 (14.7 
%) 

49/42 70.1 ± 60.7 4 22 20 45 24.3 ± 2.0 25.2 ± 1.15 15.5 ± 0.8 

60–69 101 (16.4 
%) 

47/54 77.3 ± 50.8 13 26 20 42 23.8 ± 2.4 25.2 ± 1.0 15.5 ± 0.7 

70–79 104 (16.8 
%) 

54/50 81.7 ± 46.4 23 19 20 42 23.0 ± 3.5 24.7 ± 2.7 15.0 ± 1.9 

80–89 60 (9.6 %) 33/27 86.8 ± 38.3 18 16 14 12 22.3 ± 3.9 24.8 ± 1.3 15.3 ± 1.0 
Total 619 308/311 77.6 ± 50.2 61 114 121 323 24 ± 2.7 25.2 ± 1.5 15.5 ± 1.0 

GCSE: General Certificate of secondary Education; A-levels: General Certificate of Education Advance Level; Higher education: College, under-
graduate or graduate degree. Handedness measured on a scale from − 100 (strong left-handedness) to 100 (strong right-handedness), with 0 indi-
cating ambidexterity. 
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subsystems (RSNs) were evaluated across the adult lifespan. In what follows, the technical details on the procedures illustrated in Fig. 1 
and the rationale behind them will be elucidated. 

Preprocessing 
T1w preprocessing: The T1w images were aligned and normalized to the Mayo Clinic Adult Lifespan Template (MCALT, https:// 

www.nitrc.org/projects/mcalt/) using the affine registration (FSL-FLIRT) [57] and non-linear registration (FSL-FNIRT) tools [40]. 
Compared to previous network studies on aging that have mostly used MNI templates derived from young healthy subjects, we used the 
MCALT template constructed from T1-weighted scans of 202 subjects evenly selected from male/female young (age 30–49) and older 
individuals (age 50–89) to better characterize structural differences across the adult lifespan especially for older adults often dis-
playing enlarged ventricles and sulci and varying degrees of atrophy in gray and white matter [78]. We then used AFNI’s 3dSkullStrip 
to perform skull stripping followed by an automated tissue-type segmentation using FSL-FAST [113] to yield masks of brain com-
partments including gray matter, white matter and cerebrospinal fluid (CSF). 

FMRI preprocessing: AFNI was used to preprocess the rsfMRI data (https://afni.nimh.nih.gov/). The first four image volumes 
were initially discarded from the resting data of each subject to avoid T1 equilibration effects. Large transient fluctuations were then 
removed based on the median absolute deviation using AFNI’s 3D DESPIKE. Following the slice-timing correction using the middle 
slice of each volume (AFNI’s 3dTshift), a rigid body alignment (AFNI’s 3dvolreg) was carried out to estimate movement parameters for 
each subject using the mean volume. For each subject, frames with excessive head motion (greater than 3.0 mm) and rotation (over 
3.0◦) were excluded from the subject’s time series. Additionally, participants with more than 50 % of frames removed were excluded 
from the functional connectivity analysis (Table S1), following the approach described by Grayson et al. [45]. On average, less than 
0.1 % of frames per subject were excluded from the fMRI data of the remaining subjects. The retained frames exhibited head motion 
and rotation within the median and interquartile range, as detailed in Table S1. The images were then co-registered with the structural 
data and spatially normalized into the MCALT space [40], resliced to 3 mm × 3 mm × 3 mm voxels, and smoothed using a Gaussian 

Fig. 1. Processing pipeline for multimodal brain network connectivity analysis across the adult life span at the mesoscopic (I), network hierarchy 
(II), and cross-modal (III) levels. At each level, associations between structural and functional connectivity patterns as well as structure–function 
coupling and age were investigated using regression analysis. The vulnerability analysis was used to assess the vulnerability of the structural and 
functional brain networks to damage to rich-club nodes. 
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kernel with a Full Width at Half Maximum (FWHM) of 6 mm. 
In the present study, global signal regression was not applied to remove global artifacts driven by motion, respiration and other 

noise signals with non-neural origin, given that the global signal regression analysis can discard globally distributed neural infor-
mation and introduce artificially anti-correlations between certain brain regions, causing increases in specificity and decreases in 
sensitivity of correlation measures or even reducing the reliability of graph metrics [18,96]. Instead, we regressed out the mean WM 
and CSF signals as temporal covariates through multiple linear regression analysis [28]. To this end, lower-resolution masks (3 mm 
isotropic) were generated for WM and CSF from the high-resolution segmented T1w images for each participant to match the rsfMRI 
data. The mean WM and CSF signals were then computed by averaging signals over all voxels within the WM or CSF masks. Nuisance 
noises such as linear trends, 12 head-motion parameters, and individual mean WM and CSF signals were then regressed out using 
multiple linear regression analysis. Finally, the rsfMRI data were temporally band-pass filtered within 0.01 and 0.1 Hz as suggested by 
[28]. 

DWI preprocessing: We first used the quality control procedure described by Yeh et al. [111] to examine the integrity and quality 
of DWI data for each subject. The three-b0 images were then used to estimate the susceptibility field distortion [10] for susceptibility 
distortion and eddy current correction using the non-parametric approach (FSL EDDY) [4,5]. 

The preprocessed DW images were then used to fit the diffusion profile in each voxel in the native space by performing the non- 
parametric generalized q-sampling imaging (GQI) method in DSI-Studio [110]. The deterministic streamline tractography (Euler 
Tracking algorithm) was then employed to generate 1,000,000 streamlines [60] for each subject by performing random seeding within 
the entire white matter volume. The quantitative anisotropy (QA) was calculated for the orientation distribution function peak in each 
voxel. The QA enabled direction-specific thresholding during tractography such that the tracking algorithm terminated if a voxel had a 
low QA value less than Otsu’s threshold of 0.8 [72]. This threshold was used to maximize the variance between background and 
foreground voxels. The angular threshold and step size were set to 45◦ and 0.75 mm, respectively [66]. Tracks shorter than 30 mm or 
longer than 300 mm were then discarded as suggested by Khalilian et al. [60]. Finally, topology-informed pruning [109] was applied in 
two iterations to remove false connections. 

Age-related differences in structural and functional connectivity 
To date, most network studies on age-related changes in both structural and functional connectivity across the human lifespan have 

used anatomical parcellation schemes at coarse to intermediate scales involving less than 400 cortical and subcortical parcels 
[13,45,84,107,112,114]. For graph-based brain network analysis at the macroscale, the node definition (size and number) and par-
cellation scheme should ensure functional homogeneity of brain parcels and spatial continuity (necessary conditions required to 
preserve the interpretability of the connectivity results) all by retaining functional heterogeneity between parcels [37]. While coarse 
representations can reduce conditionality and variability, resulting in computational and statistical benefits due to dimensionality 
reduction [86], the discrepancy between connectivity results obtained using coarse parcellations is more likely caused by nodes that 
combine functionally heterogeneous brain regions into a single entity. Therefore, it is important to use a functional parcellation 
scheme to delineate functionally homogenous parcels using a high-resolution parcellation scheme required to split small brain regions 
like the thalamus comprising many functionally heterogeneous sub-nuclei [50] or cerebellum, within which a structural parcellation 
based on anatomical landmarks is less efficient [24]. Moreover, a high spatial resolution is shown to be more representative of the 
brain and essential to ensure the reproducibility and stability of network topological properties [38,54,60,114]. 

On the basis of these criteria, we used the spatially-constrained normalized-cut spectral clustering algorithm introduced by 
Craddock et al. [29] to derive a whole-brain functional parcellation comprising 1133 parcels within cortical and subcortical regions, 
deep gray matter and cerebellum across the entire aging population in the MCALT template space based on the region homogeneity 
and spatial contiguity conditions. In this method, clustering is first performed based on correlation values between voxels’ time courses 
to generate parcels at the single-subject level. Then, a group-wise clustering is carried out by clustering the average of the individual 
connectivity maps. We used the same parcellation for both structural and functional connectivity analyses. 

For structural connectivity analysis, an N × N weighted connectivity matrix was constructed for each subject, in which N was the 
total number of nodes and edges were the number of streamlines connecting pairs of nodes. To discard spurious connections that were 
potentially influenced by noise, the edges that included less than 10 streamlines were set to zero [60]. For group comparison, a subject- 
wise normalization was performed by multiplying each edge’s weight by its QA value and then normalizing it to the total number of 
streamlines in the corresponding weighted matrix [13]. For group analysis, a group-weighted structural connectivity matrix was 
computed for each age decile by averaging the connections that were present in at least 75 % of the subjects in the group [54]. 

For functional connectivity analysis, a weighted functional connectivity matrix was calculated for each subject, in which 
connection strengths were Pearson’s correlation coefficients between the average time series of all node pairs. Group-average func-
tional connectivity networks were then estimated across subjects in different age deciles. Due to the large number of exploratory 
analyses that required extensive computational demands in this study, we used a single optimal proportional threshold estimated using 
the method introduced by Bassett et al. [8] across different age deciles. In this method, a cost-efficiency curve was first estimated over a 
wide range of thresholds (0.05–0.5) for each age decile by generating sparse and low-cost adjacency matrices (0.05) to densely 
connected or high-cost graphs (0.5). We found an optimal threshold of 0.2 by maximizing global cost-efficiency across all age ranges. 
This threshold was subsequently employed to binarize the group functional connectivity matrices. 

First-level network analysis. The first-level network analysis focused on exploring age-related differences in the topology of functional 
and structural networks across the adult lifespan from both local and global perspectives. 
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To assess differences in the global topological properties of the whole-brain structural and functional brain organization across 
different age ranges, we computed global metrics including mean strength/degree (K), global efficiency (Eg), clustering coefficient (Cc) 
and small-worldness (SW) for each participant. We further computed nodal graph measures including strength/degree, local efficiency 
(EL), and clustering coefficient [39] to examine age-related differences in the topological properties of individual regions. In this study, 
global and nodal metrics were computed for weighted structural graphs and binarized functional graphs (see Section 2.2.2 for more 
details). 

Hierarchy-level network analysis. At the network hierarchy level, age-related differences in the hierarchical (rich club) organization of 
the functional and structural connectome were investigated using the rich-club analysis described in Heuvel and Sporns [54] across 
different age deciles. In this approach, a rich club is determined as a set of nodes with an interconnectivity level exceeding the expected 
level of connectivity in random networks. For each group structural and functional network, a rich club coefficient Φ(k) was computed 
for each degree k varying from 1 to the maximum degree in the network as follows: 

ϕ(k) =
2.E⩾k

N⩾k(N⩾k − 1)
(1)  

where, after removing all N nodes with a degree less than k, E>k and N≥k represented the number of connections between the 
remaining nodes in the network and the total number of possible connections between the remaining nodes if there were fully con-
nected, respectively. For each group network, a normalized rich-club coefficient Φnorm(k) was computed with respect to Φrandom(k), as 
the average rich-club coefficient over m (herein 10,000) random networks of equal size with similar connectivity distribution, 
generated by randomizing the connections of the network while keeping the degree distribution of the matrix intact [54]. The rich club 
range was then defined over k levels whose Φnorm (k) were greater than one. In general, the choice of the k level is arbitrary and study- 
dependent [60]. To compare the spatial rich-club distribution across different age deciles, we selected a k level for each age decile such 
that the top 30 % of high-degree nodes in each group network were in the rich club. This k level was selected based on the trade-off 
between spatial homogeneity and inter-hemispheric symmetry. Moreover, lower or higher thresholds resulted in dense or sparse RC 
maps including RC nodes that exhibited low or very high rich-clubness, respectively. 

To better investigate the hierarchical structure of the brain networks, the group network edges were further into rich-club, feeder 
and local connections, defined as connections linking members of the rich club nodes, rich club to non-rich club nodes, and non-rich 
club nodes, respectively [102]. For each group connectivity matrix, an average physical length (in mm) was also computed for each 
edge by averaging the physical lengths of the streamlines over the subjects in each age group. The physical length was used as a 
measure to further investigate the spatial distribution of short-range (SR) and long-range (LR) rich club, feeder, and local connections 
based on their average physical lengths shorter and longer than the median of all physical lengths (herein 70 mm for structural 
networks and 50 mm for functional networks), respectively [114]. For the group functional networks, the physical length for each edge 
was defined as the distance between the centroids of the parcels connected by the edge. 

In addition to rich-club nodes, as a unique feature of our study, we used the Integrated Value of Influence (IVI) to identify the most 
influential brain hubs also called “spreaders” shown to have higher impacts on the flow of information across the whole-brain network 
[61]. The IVI is an integrative measure of segregation and integration of information, computed based on the local (i.e. degree cen-
trality, ClusterRank, neighborhood connectivity and local H-index) and global (i.e. betweenness centrality and collective influence) 
measures [82]. Numerical calculations were performed using the computational resources of the MATRICS platform at University of 
Picardy Jules Verne, Amiens, France. 

Cross-modal structural–functional analysis. To test the hypothesis that aging could significantly affect the rich-club involvement of 
different functional subsystems (RSNs), we performed a cross-modal structural–functional analysis, in which RSNs were first identified 
by decomposing the preprocessed rsfMRI data using the group spatial independent component analysis (gICA, GIFT toolbox) [20] 
across. In this method, the time point data from each subject were first reduced to 40 directions of maximal variability using the 
principal component analysis (PCA). The group PCA-reduced matrix was then decomposed by the infomax algorithm into 60 principal 
components (PCs) along directions of maximal group variability. A voxelwise variance normalization was performed for the 
decomposition of subcortical and cortical components. The ICA algorithm was repeated 20 times and the resulting independent 
components (ICs) were clustered by the ICASSO software to obtain a set of 60 aggregated spatial maps (SM) and their time courses 
(TCs). The subject-specific SMs (and TCs) were computed using the back reconstruction approach [20], processed using voxelwise one- 
sample t-tests (p < 0.01) across all subjects, and then thresholded to obtain regions of peak activation for each component [3]. We 
empirically determined the optimal number of PCs and ICs employed for the decomposition of the rsfMRI data, guided by the spatial 
and temporal characteristics of the components required to represent meaningful and spatially coherent patterns consistent with 
established resting-state networks. This selection process was performed by the examination of component consistency across different 
age groups through visual inspection. We then performed the group ICA on resting-state fMRI data separately for each age group to 
account for age-related heterogeneity in functional brain connectivity. It allowed for a more detailed and accurate characterization of 
the unique functional connectivity patterns within different age groups, contributing to a better understanding of the dynamic nature 
of the human brain throughout adulthood. 

Among the 60 ICs, an average (across age groups) of 40 (±3) components exhibited peak activations in grey matter and were 
selected and grouped based on their spatial coordinates and prior knowledge from other fMRI studies [3,31] into nine resting-state 
networks (RSNs) including visual network (VIS), default mode network (DMN), cerebellar network (CBN), cognitive control- 
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attention network (CAN), subcortical network (SCN), sensory-motor network (SMN), language-auditory network (LAN), temporal 
network (TMN) and limbic network (LMN). The definition of the RSNs was primarily derived from prior rsfMRI studies [3,31]. In 
summary, the sensory and motor networks (SMN, VIS, and LAN) comprised brain regions engaged in processing visual, auditory, and 
other sensory information, as well as coordinating motor responses. Specifically, LAN also encompassed regions associated with 
language processing. The DMN and CAN comprised regions involved in higher-order information processing, cognitive control, and 
attentional processes. The limbic network (LMN) included brain regions involved in the regulation of emotional responses. For the 
remaining RSNs (CBN, SCN, and TMN), given their extensive involvement in various cognitive, sensory, and motor control functions, 
we grouped ICs whose activation maps overlapped with brain regions located in the respective networks. 

The components showing peak activations in white matter or high spatial overlap with vascular, ventricular, motion and sus-
ceptibility artifacts were discarded from further analysis [2]. For the cross-modal structural–functional analysis, each node (parcel) 
was assigned to a single RSN using the “winner-take-all” strategy [54], such that the minimum overlap between the parcel and the RSN 
was more than 10 %. 

At the macroscopic level, a hierarchical brain structure is shown to comprise provincial and connector hubs as key players in 
enhancing communication flow within and between functional modules across the whole-brain network [54]. To identify these hubs, 
we used the approach employed by Heuvel and Sporns [54]. In this method, nodes were classified based on their within-module degree 
z-score (zs) and participation coefficient (pc) using the functional modules [46] into peripheral nodes (low zs and low pc), non-hub 
connector nodes (low zs and high pc), provincial hubs (high zs and low pc), and connector hubs (high zs and high pc). In our study 
for the group structural networks, the thresholds for “high zs” (zs > 1.25) and “high pc” (pc > 0.3) were determined based on the 
guidelines suggested in the literature [46,89]. For the group functional networks, the estimated thresholds were set to (zs > 1) for “high 
zs” and (pc > 0.7) for “high pc”. 

Based on this classification, we computed the proportion of RC, connector and provincial hubs for each RSN and that of rich-club, 
feeder and local inter-RSN (between-RSN) and intra-RSN (within-RSN) edges for each age decile [54]. 

Finally, high-ranked rich-club AAL regions in the structural and functional brain networks were identified across different age 
deciles using weighted rich-club scores computed for all AAL regions in the MCALT-ADIR122. For this purpose, a normalized rich club 
score was first calculated for each AAL region [100] based on its overlap with all rich club regions [38] for each age group. The average 
rich-club score was then computed over the seven age deciles. The cross-age high-ranked AAL rich-club regions were identified as those 
exhibiting an average rich club score higher than 1 across all the seven age deciles. 

Age-related differences in network topological properties 
To investigate age-related differences in the topological properties of the brain networks across the adult lifespan, a regression 

analysis was performed at the nodal level with age and age2 as predictors: 

Ŷ = β0 + β1 × Age+ β2 × Age2 (2)  

where Ŷ was a vector of estimations of y, i.e. values of nodal graph measures including degree, clustering coefficient, local efficiency, 
IVI and average physical length computed for each subject, β1 and β2 were regression coefficients for the linear and quadratic models, 
and β0 was the intercept term. One-sample t-tests were performed to investigate whether the models exhibited an age effect with a 
significance level of p < 0.01 (FDR-corrected). The regression analysis was also performed at the network level to examine the 
relationship between SW, global efficiency or mean clustering coefficient and age as well as each of the three cognitive scores (vi-
suospatial, language, and memory). 

Age-related differences in structure–function coupling 
The coupling between the functional and structural connectomic strengths has been reported to be heterogeneous across the brain, 

showing a declining trend with age [14,70,32,94]. To investigate age-related differences in the coupling between the structural and 
functional connectome, we first computed Pearson’s correlation coefficients between the connection strengths (constrained by non- 
zero edges) and nodal measures (degree, clustering coefficient and local efficiency) of the structural and functional connectivity 
matrices for each participant. The correlation analysis was then performed to assess linear associations between SFC and age within 
each RSN and at the whole-brain network with p < 0.05. 

Age-related differences in network vulnerability to damage to RC nodes 
It is largely believed that any damage to RC regions can cause widespread disruption across large-scale brain networks with a 

significant impact on cognition and behavior [1,59]. However, the extent to which the whole-brain structural and functional networks 
are vulnerable to the loss of RC nodes within different RSNs is largely unknown at different age deciles. 

To investigate the network vulnerability to damage to rich club nodes in each RSN, each RC node i was removed from the group 
functional and structural networks and the network vulnerability index was calculated as: 

Vi =
EN − Ei

EN
(3)  

where EN and Ei were the global efficiency of the network before and after the attack. The average vulnerability index was then 
computed over all RC nodes within each RSN. Differences in network vulnerability across different aging groups were assessed using 
non-parametric Kruskal-Wallis tests with p < 0.01. 
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Results 

Age-related differences in topological properties 

We conducted nodal and global-level network analyses to investigate disparities in both brain structural and functional connec-
tivity among adults spanning the entire lifespan. This encompassed examinations of localized brain regions as well as an exploration of 
the overall network architecture. 

Nodal metrics 

The nodal-level graph analysis of structural brain networks unveiled distinct age-related patterns of connectivity as illustrated in 
Fig. 2 and Table 2. At all age ranges, the nodes exhibiting higher strength (K), clustering coefficients (CC), and IVI were associated with 
longer mean fiber lengths (Fig. S1), predominantly localized within the bilateral frontal regions (including the superior and middle 
frontal gyri), central and parietal regions, the cerebellum, and subcortical regions, along the anterior-posterior medial axis of the brain. 
In structural networks, many nodes in the medial frontocentral regions, and the cerebellum displayed either linearly declining trends 
(r: − 0.24 ± 0.1, p < 0.01, FDR corrected) or followed inverted-U shaped trajectories for K, CC, and/or IVI with increasing age, all 
associated (r: 0.12 ± 0.01) with declines in cognitive scores, especially the memory score. In contrast, several structural nodes within 
subcortical regions, specifically the thalamus, pons, and putamen, as well as temporal and parieto-occipital regions, exhibited 
increasing linear (r: 0.15 ± 0.05) or inverted U-shaped trends in strength, CC, or IVI with age. 

The analysis of functional networks revealed distinctive age-related patterns in the distribution of network properties across 
various brain regions. Specifically, irrespective of age, functional nodes with higher values of K, CC, along with increased IVI, were 
primarily located in the prefrontal, centrotemporal, and occipital, as well as the cerebellum, predominantly associated with longer 
physical distances, as shown in Fig. S1. Within the centrotemporal and occipital regions, as well as the cerebellum, a few sparsely 
distributed functional nodes exhibited a significant linear decline in degree with age (r: − 0.13 ± 0.02, p < 0.01). In contrast, the 
temporal regions displayed an inverse trend with a positive correlation (r: 0.14 ± 0.02). Compared to degree centrality, age-related 
differences in CC were more pronounced in numerous functional nodes within the bilateral frontal and temporo-parietal regions, as 
well as the cerebellum, demonstrating increases in CC (r: 0.14 ± 0.028) in older individuals (Figs. 2 and S1). 

Among the most influential functional nodes, only those in the temporal regions exhibited a significant increase in IVI with age (see 
Fig. 2). Moreover, a significant association (r: 0.12 ± 0.01) was observed for most of the functional nodes between age-related trends in 
nodal metrics and declines in at least one of the cognitive scores. In the case of the functional networks, no distinct age-related spatial 
patterns were observed in the mean physical distance. 

Fig. 2. Age-related differences in nodal metrics (K: strength/degree, CC: clustering coefficient, IVI: Integrated Value of Influence) in association with 
cognitive scores (visuospatial, language, and memory) for structural and functional brain networks. The nodal color indicates positive (Pink: linear, 
Red: quadratic) or negative associations (Cyan: linear, Blue: quadratic) found using regression analysis (p < 0.01, FDR-corrected) between nodal 
metrics and age. Node size represents linear associations between nodal metrics and cognitive scores, categorized in three sizes, small (correlation 
with only one score), medium (correlation with two scores), and large (correlation with all three scores). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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Global metrics 

The global-level graph analysis revealed a small-world topology in both the structural and functional brain networks, regardless of 
age (Table 2). However, structural brain networks exhibited a declining trend in SW, CC, and Eg as age increased, as shown in Fig. 3. 
Specifically, SW and CC showed linear decreases with age, while global efficiency followed an inverted U-shaped trajectory of decline. 
In contrast, functional networks showed linear increases in SW and CC with age, while Eg exhibited an inverse pattern. Overall, the 
correlation analysis revealed negative associations between cognitive scores (rvisuospatial = − 0.17, rlanguage = − 0.16 and rmemory =

− 0.27 with p < 0.0001) and age (Fig. S3). 

Rich club organization 

We further performed the rich-club analysis to explore differences in the hierarchical organization of the functional and structural 
connectome between different age deciles. Our results revealed a rich-club organization in both the structural and functional brain 
networks in each age group, characterized byφnorm(k) > 1 (p < 0.005, 10,000 permutations), with a range of k values falling within 
[6–114] for the structural networks and [54–117] for the functional networks. The graphical representations of the top 30 % of high- 
degree rich-club nodes (depicted in blue), as well as rich-club nodes (red), feeder connections (orange), and local connections (yellow), 

Table 2 
Global and local graph measures (median ± standard error) of the structural (SN) and functional (FN) brain networks for each age decile.     

18–29 (yrs) 30–39 (yrs) 40–49 (yrs) 50–59 (yrs) 60–69 (yrs) 70–79 (yrs) 80–89 (yrs) 

Global 
measures 

Small-worldness SN 6.72 ± 0.74 6.65 ± 0.70 6.62 ± 0.75 6.56 ± 0.72 6.44 ± 0.77 6.40 ± 0.93 6.26 ± 0.95 
FN 1.78 ± 0.13 1.78 ± 0.13 1.78 ± 0.13 1.80 ± 0.14 1.79 ± 0.13 1.83 ± 0.13 1.84 ± 0.14 

Global efficiency  SN 0.42 ± 0.01 0.42 ± 0.01 0.43 ± 0.01 0.42 ± 0.01 0.42 ± 0.02 0.40 ± 0.03 0.39 ± 0.02 
FN 0.55 ± 0.01 0.55 ± 0.02 0.54 ± 0.03 0.54 ± 0.03 0.54 ± 0.03 0.53 ± 0.04 0.53 ± 0.04 

Clustering 
coefficient 

SN 3.2e-3 ±

5.8e-4 
3.1e-3 ±

5.2e-4 
3e-3 ± 5.2e- 

4 
2.9e-3 ± 
5.2e-4 

2.9e-3 ± 
5.4e-4 

2.7e-3 ± 
4.7e-4 

2.8e-3 ± 
5.9e-4 

FN 0.50 ± 0.04 0.51 ± 0.05 0.52 ± 0.05 0.52 ± 0.05 0.51 ± 0.05 0.53 ± 0.06 0.53 ± 0.06  

Nodal 
measures 

Strength 
Degree 

SN 0.75 ± 0.13 0.74 ± 0.14 0.73 ± 0.14 0.69 ± 0.14 0.70 ± 0.14 0.61 ± 0.12 0.61 ± 0.14 
FN 211.3 ±

15.5 
209.5 ±
18.4 

204.2 ± 
17.1 

205.4 ± 
17.6 

208.3 ± 
17.1 

205.3 ± 
19.1 

203.4 ± 
19.9 

Local efficiency SN 4.6e-3 ±

8.1e-4 
4.4e-3 ±

7.4e-4 
4.3e-3 ± 
7.4e-4 

4.1e-3 ± 
7.4e-4 

4.2e-3 ± 
7.8e-4 

3.8e-3 ± 
6.7e-4 

3.9e-3 ± 
8.5e-4 

FN 0.75 ± 0.02 0.75 ± 0.02 0.75 ± 0.02 0.75 ± 0.02 0.75 ± 0.02 0.76 ± 0.02 0.76 ± 0.03 
Clustering 
coefficient 

SN 5.1e-3 ±

7.5e-4 
4.9e-3 ± 
7.7e-4 

4.6e-3 ± 
7.7e-4 

4.6e-3 ± 
7.1e-4 

4.7e-3 ± 
8.5e-4 

4.3e-3 ± 
6.5e-4 

4.2e-3 ± 
8.9e-4 

FN 0.50 ± 0.04 0.51 ± 0.05 0.52 ± 0.05 0.52 ± 0.05 0.51 ± 0.05 0.54 ± 0.06 0.54 ± 0.06 
Physical length  SN 12.65 ±

2.33 
12.82 ±
2.08 

13.12 ±
2.26 

12.72 ±
2.50 

12.59 ±
2.70 

11.98 ±
3.17 

11.41 ± 
2.47 

FN 74.44 ±
2.00 

74.50 ±
2.22 

74.72 ±
2.19 

75.16 ±
2.73 

75.42 ±
2.40 

75.43 ±
3.58 

74.64 ±
2.71 

Bold values indicate significant group differences (p < 0.05, FDR-corrected) between each age decile and the first age decile (18–29 years). 

Fig. 3. Results of regression (linear and quadratic) and correlation analyses. The figure depicts correlations between network metrics (SW: small- 
worldness, Eg: global efficiency, CC: clustering coefficient) and age for structural (SN) and functional (FN) networks. 
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are presented in Fig. S4 for each age decile. 
Structural rich-club nodes were predominantly distributed along the anterior-posterior axis of the brain, encompassing fronto- 

central, occipital, subcortical regions, and the cerebellum across all age deciles. In older age ranges, a notable reduction in the 
number of structural rich-club nodes was observed in the cerebellum. 

In younger age ranges, functional rich-club nodes were primarily located in the frontal, centrotemporal, parietal, and occipital 
regions, as well as the cerebellum. With increasing age, a significant reduction in the number of functional rich-club nodes was mainly 
observed in the frontal and parietal regions. 

In both the structural and functional networks, rich-club and feeder connections extended between brain regions along the anterior- 
posterior medial axis of the brain throughout all age ranges. It is noteworthy that the majority of local connections were cortico- 
cortical. 

Cross-modal structural–functional analysis 

The cross-modal structural–functional analysis yielded findings that support the notion of the rich club acting as a structural 
backbone connecting functional brain communities (RSNs) across all age groups. However, significant age-related differences in the 
contributions of the rich club to RSNs were observed, particularly in individuals aged over 70 compared to younger age groups. 

Age-related differences in rich-club involvement: Fig. 4 illustrates the rich-club involvement in different RSNs (Fig. S5 and 
Table S2) for both the structural and functional networks. Within the structural networks, TMN displayed the lowest involvement (2.4 
± 0.6 %) in the structural rich club, while the SCN exhibited the highest involvement (18.2 ± 1.1 %) across all age ranges. CAN (17.1 
± 0.4 %), DMN (14.9 ± 1.1 %), SMN (13.4 ± 0.7 %) and CBN (13 ± 3.4 %) also demonstrated relatively high rich-club involvement. 
The rich-club involvement of CBN and DMN showed a decreasing trend with age, while SMN, LAN, and SCN exhibited an opposite 
trend. Other networks displayed only slight age-related differences in rich-club involvement across different age deciles. 

In the functional networks, LMN had the lowest contribution (2.9 ± 1.5 %) to the functional rich club, whereas SMN exhibited the 
highest involvement (24.3 ± 6.2 %). LAN, CAN, VIS, CBN and DMN also showed substantial participation in the functional rich club. 
Overall, rich-club involvement decreased with age in SMN, DMN, and VIS, and increased in TMN. No specific age-related rich-club 
pattern was observed for the other RSNs. 

More than half of the structural nodes in SCN (62.6 ± 3.9 %) exhibited a high degree of rich-clubness across all age groups (Fig. S6), 
with even increased proportions in the last two age deciles. Approximately one-third of the nodes in DMN (45.2 ± 3.4 %), CBN (32.3 ±
8.3 %), and SMN (36.1 ± 2.1 %) were identified as part of the rich club. However, a significant reduction in the number of rich-club 
nodes was observed for DMN and CBN in individuals aged over 70 years. For CAN and VIS, around one-fourth of the nodes exhibited 
rich-club characteristics and remained relatively stable across different age ranges. Decreased proportions were observed in LMN (12.6 
± 3.9 %) and TMN (4.9 ± 1.3 %). Interestingly, the proportion of rich-club nodes in SMN and LMN increased with age. 

In the functional networks, a significant proportion (82.7 ± 21.4 %) of nodes in SMN were part of the rich club across all age ranges, 
with the highest proportion observed in the middle-age groups. Almost half of the nodes in VIS (50.3 ± 9.7 %) and LAN (42.1 ± 4.7 %) 
belonged to the rich club. In the remaining RSNs, less than one-third of the nodes were associated with the rich club. In CAN, LAN, SCN, 
TMN, and LMN, the proportion of rich-club nodes increased in older individuals, while the other RSNs exhibited an inverse trend. 

Age-related differences concerning most influential nodes: Characterized by IVI, the most influential nodes within the 
structural networks were primarily located within SCN and CBN (see Table S3). With the exception of SCN, the mean nodal IVI of RC 
nodes in the other RSNs showed a significant decrease with age, particularly in the last two age groups. In the functional networks, the 
rich club nodes in CBN and SMN exhibited significantly increased IVI values. The age-related changes in IVI followed an inverted U- 

Fig. 4. Overlap between the top 30% of rich-club nodes and RSNs for age deciles 1–7. SN: structural networks, FN: functional networks.  
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shaped pattern, peaking between the ages of 40 and 60 years. 
Age-related differences in proportions of intra-RSN vs inter-RSN connections: In the structural networks, 43 % (±2%) of inter- 

RSN connections were long-range RC connections, while 34 % (±3%) were feeders. These proportions exhibited increasing and 
decreasing trends with age, respectively (see Fig. 5). Irrespective of connection type, the proportion of short-range connections 
increased in older subjects. A similar pattern was observed for intra-RSN connections, albeit with decreased proportions for long-range 
RC connections (30 % ± 2 %) and feeders (27 % ± 2 %). Across all age ranges, the majority of intra- and inter-RSN connections for 
DMN, SCN, and LMN were long-range, exhibiting a decreasing trend with age. Conversely, nearly one-third of intra and inter-RSN 
connections were short-range for other RSNs, following an increasing trend with age. In the functional networks, 22.6 % (±3%) of 
inter-RSN connections were long-range RC connections, while 34.8 % (±2%) were feeders across all age groups. Notably, the pro-
portion of short-range connections contributing significantly to intra-RSN interactions increased in older individuals. In comparison to 
the structural networks, older participants exhibited significant increases in the proportion of long-range inter-RSN RC connections in 
almost all functional networks, except for SCN and CAN, which displayed an inverse trend. 

Age-related differences in proportions of RC connector and provincial hubs: A substantial percentage (92.3 ± 2.4 %) of 
connector hubs were identified as rich club hubs across different age groups in the structural networks (Fig. S7). Among the RSNs, CAN 
and TMN exhibited the highest (17.4 ± 1.3 %) and lowest (3.8 ± 1.8 %) proportion of RC connector hubs, respectively. The proportion 
of structural RC connector hubs in VIS, TMN, CBN, LAN, and LMN showed a slight increase with age. Conversely, SCN displayed a 
significant reduction in the number of RC connector hubs in individuals older than 70 years. When compared to connector hubs, only 
CAN, CBN, SMN, LAN, and SCN contained nodes with characteristics of provincial hubs. On average, 49.8 % (±8.5 %) of the provincial 
hubs in CAN were part of the rich club across different age deciles. The proportion of RC provincial hubs increased significantly in SMN 
and LAN for the last two age groups, whereas a reverse trend was observed for CBN with a cutoff at the age of 70 years. In the functional 
networks, the proportion of RC connector hubs exhibited an increasing trend with age for TMN and CAN. However, in DMN and CBN, 
the proportion of RC connector hubs decreased with age. Unlike the structural networks, there was no overlap found between pro-
vincial hubs and rich club nodes in the functional networks. 

Cross-age high-rank RC regions: Fig. 6 illustrates rich-club regions exhibiting relatively high rich-club scores among the top 30 % 
of high-degree nodes across different age groups. In the structural networks, the high rank rich-club regions were identified in deep 
structures (pons, putamen, thalamus, caudate), the cerebellum, frontal regions (superior and middle frontal), precentral gyri (PreCG), 
insula, anterior cingulate gyrus, median cingulate and paracingulate gyri (DCG), supplementary motor area (SMA), paracentral lobule 
(PCL), superior temporal gyrus (STG), parietal regions (precuneus), and occipital regions (superior occipital gyrus, SOG). Notably, the 
superior frontal gyri (SFG) and cerebellum exhibited decreasing rich-club scores with age, while the rich-club scores of PreCG, 
thalamus, STG, and SOG increased with age. The remaining regions showed subtle differences in rich-club characteristics across 
different age ranges. In the functional networks, the rich-club regions with higher RC scores were primarily located within the pre-
central and postcentral gyri, cerebellum, insula, frontal regions, middle and superior temporal gyri, and occipital regions. Most of these 
regions displayed high rich-club scores that decreased with age, especially in individuals older than 60 years. Interestingly, the rich- 
club score of the bilateral middle temporal gyri (MTG) significantly increased in older subjects. 

Age-related differences in structure–function coupling (SFC) 

SFC between connection strengths: Our results indicated positive couplings (r < 0.21) between the structural and functional 
connection strengths, linearly declining (r = − 0.38) with age (Fig. S8) at the whole-brain network. Our results further revealed a 
significant reduction in SFC with age for. 

CBN (r = − 0.45), CAN (r = − 0.29), SMN (r = − 0.25) and SCN (r = − 0.21). We also found a decrease in SFC with age for DMN and 
TMN, however, with a lower declining rate (r = − 0.17) in comparison with sensorimotor cortices. Among all RSNs, no age-related 
differences in SFC between connection strengths were observed in auditory, language, visual and limbic systems. 

Fig. 5. Proportion of intra-RSN and inter-RSN rich club (RC), feeder, and local connections categorized into short-range (SR) and long-range (LR, 
and proportion of intra-RSN and inter-RSN short-range and long-range connections for each age decile. SN: structural networks, FN: func-
tional networks. 
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SFC between nodal measures: At the network level, we observed a mild declining trend (r ≈ − 0.1) in the coupling between nodal 
degree and efficiency for both structural and functional networks with increasing age. Likewise, the coupling between the structural 
and functional degree decreased. 

(r < − 0.17) with age for nodes within the LMN and CBN. Interestingly, within the LAN, the strength of the coupling between nodal 
degree and efficiency increased (r < 0.23) with age. 

Fig. 6. High-rank rich club AAL regions for each age decile. SN: structural networks, FN: functional networks.  

Fig. 7. Quantile box plots of the vulnerability index for structural and functional networks. The network vulnerability was assessed to damage to RC 
nodes within each RSN for each age decile. 
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Age-related differences in network vulnerability to targeted attacks on RC nodes 

Fig. 7 illustrates the network vulnerability to damage to RC nodes within each RSN for both the structural and functional brain 
networks at each age decile. The structural networks, regardless of age, exhibited high vulnerability to attacks on RC nodes within 
LAN, VIS, and SCN, with comparatively lower vulnerability in CBN and TMN. Notably, the overall network vulnerability to attacks on 
RC nodes significantly increased with age in CBN, SCN, and TMN (p < 0.01). In contrast, an inverse trend was observed for DMN. The 
age-related trend in network vulnerability for the remaining RSNs showed no specific pattern. 

For the functional networks, greater vulnerability was observed when RC nodes within CBN, LAN, and SMN were targeted, while 
the networks were more resilient to attacks on RC nodes in DMN and LMN. In older age groups, the vulnerability of the functional 
network to the loss of RC nodes decreased across all RSNs, particularly within CBN, DMN, SCN, and TMN. For VIS and SMN, the 
functional network vulnerability followed an inverted U-shaped trajectory with age. 

Summary of age-related differences in connectivity patterns across multilevel analyses 

Table 3 summarizes the key findings regarding age-related differences in connectivity patterns at various levels of connectivity 
analyses. 

Table 3 
Summary of age-related differences in connectivity patterns at nodal, global, hierarchical, and cross-modal levels.  

Nodal level SN  Regardless of age Nodes with higher K/CC/IVI were located along the anterior-posterior medial axis of the brain 
within  
o Frontal, central and parietal regions  
o Subcortical regions  
o Cerebellum 

Older vs. Younger 
individuals  

• Decrease in K/CC/IVI in medial frontocentral regions and cerebellum  
• Increase in K/CC/IVI in subcortical, temporal and parietal regions 

FN Regardless of age Nodes with higher K/CC/IVI were located in  
o Prefrontal, centrotemporal and occipital regions  
o Cerebellum 

Older vs. Younger 
individuals  

• Decrease in K in few nodes within centrotemporal and occipital regions, and cerebellum  
• Increase in K and IVI in temporal regions  
• Increase in CC in frontal and parietotemporal regions, and cerebellum  

Global level (whole- 
network) 

SN Older vs. Younger 
individuals  

• Decrease in SW, CC and Eg 

FN  • Increase in SW and CC  

• Decrease in Eg  

Hierarchical (rich-club) 
level 

SN Regardless of age Nodes with higher rich-club scores were located along the anterior-posterior medial axis of the 
brain in  
o Fronto-central and occipital region  
o Subcortical region  
o Cerebellum 

Older vs. Younger 
individuals  

• Decrease in rich-club score of nodes in superior frontal gyri and cerebellum  
• Increase in rich-club scores of nodes in precentral gyri, thalamus, superior temporal gyri and 

superior occipital gyri 
FN Regardless of age Nodes with higher rich-club scores were located in  

o Frontal, centrotemporal, parietal and occipital regions  
o Cerebellum  

Older vs. Younger 
individuals  

• Decrease in rich-club score of nodes in the majority of functional rich-club nodes  
• Increase in rich-club score of nodes in middle temporal gyri  

Cross-modal level SN Regardless of age Involvement in the structural rich club  
o High for SCN, CAN, DMN, SMN and CBN  
o Low for TMN 

Older vs. Younger 
individuals  

• Decrease in within-network rich-club connectivity  
• Increase in between-network rich-club connectivity  
• Decrease in rich-club involvement of CBN and DMN  
• Increase in rich-club involvement of SMN, LAN, and SCN 

FN Regardless of age Involvement in the functional rich club  
o High for SMN, LAN, CAN, VIS, CBN and DMN  
o Low for LMN 

Older vs. Younger 
individuals  

• Decrease in within-network rich-club connectivity  
• Decrease in between-network rich-club connectivity  
• Decrease in rich-club involvement of SMN, DMN, and VIS  
• Increase in rich-club involvement of TMN 

SN: structural network; FN: functional network; RC: Rich Club; K: strength/degree; CC: clustering coefficient; IVI: integrated value of influence; SW: 
small-worldness; Eg: global efficiency; Refer to Section 2.2.2.3 for the definition of resting-state networks. 
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Discussion 

In this study, we explored age-related differences in structural and functional rich-club connectivity in a large population of aging 
individuals. We first used graph theoretical measures to investigate age-related trends in the topology of structural and resting-state 
functional brain networks using a high-resolution whole-brain functional parcellation including cortical and subcortical structures and 
cerebellum. We then explored age-related differences in the hierarchical organization of the functional and structural connectome as 
well as in the rich club interconnecting functional subsystems (RSNs). The structure–function coupling was also assessed across the 
adult lifespan. Finally, we assessed the vulnerability of the structural and functional brain networks to damage to rich club nodes in 
different RSNs for each age decile. Our findings indicate age-related differences in the topological properties of the structural brain 
networks along the medial axis of the brain. The resting-state functional brain networks also exhibited significant topological changes 
related to aging in prefrontal, centrotemporal, and occipital regions, and the cerebellum. Across the adult lifespan, our findings 
indicated significant age-related differences in the rich-club contributions of RSNs, especially in individuals older than 70 years. 

Age-related differences in topological properties of brain networks 

Our results demonstrated significant age-related shifts in the integrity of structural brain networks, characterized by decreased 
integration (measured by strength) and decreased segregation (measured by clustering coefficient). These changes were particularly 
prominent in the frontal-occipital regions along the medial axis of the brain and in the cerebellum among older participants. However, 
several subcortical regions (thalamus, pons, and putamen) and parietal areas exhibited increasing integration and segregation with 
age, correlating with memory and cognitive decline. 

Our results align with previous studies [43,65,84,114] that have reported nonlinear trajectories for global efficiency and small- 
worldness across the lifespan (9–85 yrs), peaking in the third decade. Contrary to the U-shaped trajectory observed for the clus-
tering coefficient by Zhao et al. [114], our findings indicate a linear decline in the clustering coefficient with age. We observed 
declining trends for these metrics, with an inverted U-shaped trajectory for global efficiency and a bending point within the fifth 
decade. Our findings align with previous research on the Cam-CAN cohort [118], demonstrating age-related reductions in the clus-
tering coefficient and global efficiency of structural brain networks. 

Age-related differences in local efficiency have been reported in various studies [43,65], revealing higher local efficiency in 
anterior (frontal and temporal) and lower local efficiency in posterior (parietal and occipital) brain areas in older individuals. In 
comparison with these findings, our results indicate a decline in strength, local efficiency, and clustering coefficient with age, 
particularly in frontal-occipital regions along the brain’s medial axis and in the cerebellum. Notably, we observed increased clustering 
coefficient, local efficiency, and/or strength with age in certain subcortical regions (thalamus, pons, and putamen) and parietal regions 
in older subjects, all of which correlated with cognitive decline in memory and visuospatial and language functions. Age-related 
differences in structural connectivity are suggested to be due to GM shrinkage, loss of small axon fibers and WM degeneration with 
aging, leading to a significant reduction in the efficiency of paths between nodes along the anterior-posterior axis of the cortex more 
significantly in frontal areas due to sparsification [13,77,81]. 

For resting-state functional networks, our results revealed decreased integration (measured by degree) and increased segregation 
(measured by clustering coefficient) in the prefrontal, centrotemporal, and occipital regions, as well as the cerebellum among older 
subjects. In contrast, temporal regions exhibited increases in both strength and clustering coefficient with age. Some regions displayed 
significant age-related differences in nodal metrics correlated with cognitive decline, particularly in memory. Our findings also 
indicate an increase in the clustering coefficient of functional networks with age, consistent with other studies [67,80,115]. Our 
findings align closely with those of Sala-Llonch et al. [80], who reported elevated clustering coefficients for nodes in the frontal and 
parietal lobes, correlating with diminished performance in verbal and visual memory functions among older adults. Furthermore, our 
results revealed a substantial increase in clustering coefficients with age, particularly in nodes located in the bilateral frontal, temporal, 
and parietal regions, as well as the cerebellum. These changes were correlated with declines in memory and cognitive functions, 
including visuospatial and language abilities. 

In previous studies, lower local efficiency has been observed in functional networks among older adults compared to their younger 
counterparts, despite similar global efficiency [21,42]. Consistent with findings by Sala-Llonch et al. [80], our study revealed a 
declining trend in global efficiency with age. At the network level, we observed no significant differences in local efficiency between 
younger and older age groups. However, a few bilateral frontal nodes exhibited significant increases in local efficiency with age. 

The partial inconsistencies with other findings [41–43,63,65,80,115] are more likely related to differences in sample size and 
parcellation scales and schemes. The sample size can critically reduce the statistical power, especially in aging studies dealing with a 
wide range of ages. In addition, the parcellation scale and scheme should ensure functional homogeneity of brain parcels and spatial 
continuity [37] as well as the reproducibility and stability of network topological properties [21,38,54,60,114]. To overcome these 
limitations, we used a large sample size (n = 619) uniformly distributed across different age deciles. We also performed high-resolution 
whole-brain functional parcellation to obtain functionally homogeneous parcels (n = 1133) within cortical and subcortical regions, 
deep gray matter and the cerebellum. However, several other factors could potentially account for these inconsistencies. These may 
include population differences in factors such as genetics, cultural background, and lifestyle, variations in data acquisition methods 
(such as imaging equipment, scanning protocols, or data preprocessing steps), and heterogeneity within age groups stemming from 
individual variations in cognitive and neurological function. 
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Age-related differences in the structural and functional rich-club organization 

In line with previous studies [13,54], our findings support the idea that the rich club serves as a structural backbone inter-
connecting functional brain communities, or RSNs. Consistent with adult studies [7,30,54], our results indicate that subcortical, 
cognitive control/attention, and default mode networks prominently participate in the structural rich club, mainly comprising 
connector hubs irrespective of age. Additionally, networks such as sensory-motor, language, auditory, and cerebellar networks also 
exhibit involvement in the structural rich club. 

Our results identified influential nodes [61], known as spreaders, located in the core of structural brain networks along the medial 
frontal-occipital axis and within subcortical regions and the cerebellum. With the exception of subcortical areas, the spreading po-
tential of these nodes significantly decreased, especially in individuals older than 70 years. Additionally, in structural networks, our 
findings indicated a decrease in the involvement of the cerebellum and DMN in the rich club with age. Conversely, sensory-motor, 
language-auditory, and subcortical networks exhibited an opposite trend, reflecting an age-related redistribution of rich-club 
nodes. Notably, our results align with other studies [23,107] demonstrating an age-related increase in the structural connectivity 
of subcortical regions. 

Structural brain networks exhibiting age-related decreases in connectivity are primarily composed of association fibers connecting 
regions within the same hemisphere. Conversely, networks showing age-related increases in connectivity, such as the subcortical 
network, are predominantly composed of commissural fibers connecting the two hemispheres [12,87]. According to the last-in-first- 
out hypothesis, association fibers, which exhibit a later peak of maturation, are suggested to be more susceptible to age-related decline 
compared to commissural fibers [49]. 

Consistent with prior network studies [13,45], our results revealed that the majority of intra-RSN (within) and inter-RSN (between) 
structural rich-club connections—known for efficiently integrating functionally segregated brain regions—were long-distance, 
exceeding 70 mm for structural networks and 50 mm for functional networks, across all age deciles. Notably, the cerebellum 
exhibited persistent segregation across age groups, with nearly 68 % of its connections remaining within-module and short-distance. In 
contrast, the subcortical network demonstrated higher integration potential, with almost 60 % of its inter-RSN connections spanning 
long distances across the entire brain network. 

However, our investigation revealed age-related trends in the proportion of intra- and inter-RSN rich-club connections. We 
observed an increasing trend in intra-RSN connections and a decreasing trend in inter-RSN connections with age. Interestingly, 
irrespective of age, our findings showed that the majority of connections within DMN, SCN, and LMN were long-distance. Conversely, 
for other RSNs, almost one-third of intra- and inter-RSN connections were short-range (RC, feeder, and local). Consistent with prior 
research [21], our results suggest that the proportion of short- and long-distance connections undergoes changes with age, indicative of 
a significant reduction in communication and total network cost associated with the aging process [102]. 

We also examined the age-related redistribution of functional rich club nodes in different RSNs. Our results showed that SMN 
(predominantly) as well as LAN, CAN, VIS, CBN and DMN were largely involved in the functional rich club in older individuals, in line 
with other functional connectivity studies [47,51]. 

In studies conducted using the Cam-CAN cohort [71,106], an age-related decrease in functional connectivity of the default mode 
network and visual network was observed, aligning with our findings. Overall, our results suggest that the age-related redistribution of 
rich-club nodes may differ between structural and functional brain networks. However, consistent age-related decreases in RC 
involvement in the default mode network and cerebellum were observed in both networks. 

Extensive research has investigated age-related changes in brain network segregation and integration, focusing on both structural 
and functional networks (for a review see [33]. Our study contributes to the existing literature by specifically examining rich club 
connectivity within and between networks. In contrast to other studies that have focused on between-network connectivity of specific 
RSN pairs, our emphasis was on age-related changes in rich club connectivity between each RSN and all other RSNs across the entire 
brain. Our analysis revealed that, in structural networks, between-network RC connectivity increased in older subjects, while within- 
network RC connectivity decreased in older age groups. Conversely, in functional networks, both between-network and within- 
network RC connectivity decreased in older subjects. These findings align with existing literature indicating a decline in within- 
network connectivity and an increase in between-network connectivity with age [13,44,56,74,93]. 

Our findings further revealed subtle yet distinct age-related trends. Specifically, we observed a decrease in within-network con-
nectivity and an increase in between-network connectivity for DMN and SMN using structural connectivity analysis. Similarly, this 
trend was noted in CAN, DMN and LAN through functional connectivity analysis. Several studies have reported similar trends in DMN 
and SMN [63,71,93,99,105–106,118], and CAN [21–22,57]. Overall, findings across different functional studies regarding age-related 
changes in within-network connectivity are more heterogeneous for sensory and motor networks in comparison with higher-order 
functional networks such as the default mode, fronto-parietal, executive control, and cingulo-opercular networks. This observed 
pattern aligns with a ’last-in-first-out’ configuration during maturation, suggesting that later-maturing higher-order brain regions are 
more susceptible to earlier age-related decline [63]. 

Cross-age rich club regions 
Largely consistent with other studies [21,45,47,54,114], we found several high-degree structural rich-club regions mostly 

distributed along the medial axis of the brain, in deep structures (pons, putamen, thalamus, caudate), cerebellum, frontal regions 
(superior and middle frontal and precentral gyri), insula, anterior cingulate gyrus, median cingulate and paracingulate gyri, sup-
plementary motor area, paracentral lobule, superior temporal gyrus, parietal regions (precuneus) and occipital regions (superior 
occipital gyrus). Among these regions, the superior frontal gyri and cerebellum exhibited RC scores decreasing with age, especially in 
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individuals older than 70 years. Zhao et al. [114] also reported the loss of frontal hubs and their connections due to the aging process. 
Unique to this sample, we found an age-related decrease in the RC score of the cerebellum along with the aging decline in cognitive 
performance. This may be due to the loss of connections between the cerebellum, motor, and cognitive cortical regions reported in 
other studies [34,92]. Our results also showed that the RC scores of a few brain regions including the precentral gyri, thalamus, su-
perior temporal gyri and superior occipital gyri increased with age, mainly because of the redistribution of the top 30 % of RC nodes 
across different age deciles. 

In functional networks, our results indicated that high-degree RC nodes were primarily situated on the outer surface of the cortex, 
specifically in centrotemporal and occipital areas, encompassing the precentral and postcentral gyri, insula, frontal regions, middle 
and superior temporal gyri, occipital regions, and cerebellum. This distribution is partially consistent with findings from other studies 
[21,45]. We observed a significant age-related reduction in RC scores across nearly all functional RC regions, particularly in in-
dividuals older than 70 years. However, an exception was noted for those located in the bilateral middle temporal gyri, which gained 
priority in the functional rich club due to the functional RC reorganization in older individuals. 

Age-related differences in structure–function coupling 

Several studies have assessed age-related differences in coupling between structural and functional connectivity in healthy pop-
ulations, reporting correlations with varying degrees between 0.3 and 0.7 [94,116]. Our results also showed a structure–function 
correlation lower than 0.21, linearly declining (r = − 0.38) with age, in line with other findings [112,116]. The discordance between 
structural and functional connectivity is shown to be more heterogeneous in RSNs at the macroscopic level, more likely due to 
functional interactions through indirect structural connections resulting in partial correspondence between structural and functional 
connectivity [14,70]. In a few studies [11,73,75,104], higher SFC has been reported in unimodal sensory and motor cortices like 
sensory-motor, visual and auditory networks in comparison with transmodal association cortices like limbic and default mode net-
works. Esfahlani et al. [112] have found a decreasing trend for SFC with age in sensorimotor systems in comparison with higher-order 
cognitive systems exhibiting SFC preserved across the lifespan. Our results also revealed a significant reduction in SFC with age for 
SMN as well as for CBN, CAN, and SCN. In contrast with the findings reported by Zamani Esfahlani et al. [112], we found an age-related 
decline in SFC with age for DMN and TMN, however, with a lower declining rate in comparison with sensorimotor cortices. In our 
results, no age-related differences in SFC were observed in auditory, language, visual and limbic systems. 

We also investigated age-related coupling between nodal measures (degree, clustering coefficient and local efficiency) of the 
structural and functional brain networks. The age-related differences in SFC based on nodal metrics were much less heterogeneous and 
significant than those found between functional and structural connection strengths. Our results indicated rather a weak coupling 
(<0.1) between whole-brain functional/structural nodal degree, local efficiency and clustering coefficient, slightly decreasing with 
age. Among all RSNs, the coupling between the structural and functional degree decreased for nodes within LMN and CBN with age. 
Only within LAN, the SFC between the nodal degree and efficiency increased with age. 

Overall, the imperfect SFC and the heterogeneity of age-related differences in SFC are suggested to be due to regional and inter- 
individual variability, global organizational differences between structural and functional networks, functional interactions 
through indirect structural connections, regional heterogeneity, higher-order interactions among functional regions, and modulating 
structure–function relationships [94,112]. 

Age-related differences in network vulnerability to loss of RC nodes 

In adults, previous studies have demonstrated the vulnerability of structural networks to the loss of rich club nodes, suggested to be 
due to the central role of RC hubs in integrating neural information between brain regions [26,102]. We investigated the effect of 
damage to structural and functional RC nodes within each RSN on the network efficiency in different age deciles. While we observed a 
slight decrease in global efficiency with age, particularly in the last two aging groups (as indicated in Table 2), cross-age differences in 
the vulnerability index—a relative metric reflecting the percentage change in global efficiency of the entire brain’s structural/func-
tional network after the removal of rich club nodes—were found to be specific to RSNs. Our results showed higher structural 
vulnerability to loss of RC nodes within LAN, VIS and SCN, decreasing with age. The network vulnerability to damage to RC nodes in 
CBN, TMN and SCN, however, increased with age more likely due to their increased structural connectivity, especially for SCN [23]. 
For the functional networks, our study indicates higher network vulnerability to attacks on RC nodes in CBN, LAN and SMN. Inter-
estingly, the functional networks showed more resilience to damage to RC nodes in DMN and LMN. The vulnerability analysis also 
showed less vulnerability for functional networks to attack on RC connectivity in CBN, DMN, SCN and TMN at older ages. Previous 
studies have reported both lower and higher vulnerability of brain networks at older ages [9,36]. Overall, our findings support pre-
vious research suggesting that disease-related damage to the structural RC connectivity affecting global communication processes may 
not proportionally affect brain functioning, specifically the higher-order cognitive processes which highly depend on the global 
integration of information [54]. Overall, the vulnerability analysis provided a better understanding of how focal damage could disrupt 
the rich club connectivity in structural and functional brain networks. Further investigation is required to assess the extent to which the 
damage to hub brain regions can result in cognitive impairment in neurological disorders with foal brain lesions. 

Limitations 

Due to the large number of exploratory analyses performed in this study, the effect of some parameters on connectivity results was 
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not investigated. First, the potential effect of gender, brain volume and education should be modeled in the regression analysis as they 
may affect affect derived connectivity measures [32]. Second, there are age-specific parcellation schemes introduced in other studies 
[48]. In comparison to groupwise parcellation schemes, age-specific parcellation schemes are posited to offer a more nuanced rep-
resentation of the aging brain. Thirdly, our selection of a high-resolution parcellation scheme, which subdivides the brain into smaller 
regions, may potentially lead to a reduction in the signal-to-noise ratio (SNR). Thus, it is crucial to thoroughly examine SNRs across 
different parcellation scales and assess their impact on the reliability of connectivity outcomes. Finally, the thresholding approach can 
affect the density of connections and network topology leading to unreliable results. The use of multiple thresholds or fully-weighted 
networks can better illustrate the sensitivity of network topology to the thresholding process [86]. Future investigations are required to 
address these limitations. 

Conclusion 

In this study, we explored age-related differences in structural and functional brain connectivity using the graph theoretical 
analysis from regional and global perspectives. Our findings indicate that the cognitive control/attention, default mode, sensory- 
motor, language-auditory and subcortical networks as well as the cerebellum were involved in both the structural and functional 
rich club. The rich-club involvement of the default mode network and cerebellum decreased significantly in individuals older than 70 
years old. We found reduced integration and segregation within the frontal-occipital regions and the cerebellum along the brain’s 
medial axis in older subjects. Additionally, functional brain networks in older particiapnts exhibited reduced integration and increased 
segregation in the prefrontal, centrotemporal, occipital regions, and cerebellum. Furthermore, we observed a decline in within- 
network RC connectivity and an increase in between-network RC connectivity in structural networks among older individuals. 
Additionally, both within-network and between-network RC connectivity diminished in functional networks with age. A significant 
reduction in structure–function coupling was observed with age within the sensory-motor, cognitive-attention and subcortical net-
works. The structural network vulnerability was higher to the loss of RC nodes within the language-auditory, visual and subcortical 
networks. For the functional networks, our study indicated a greater vulnerability to attacks on RC nodes in the cerebellum, language- 
auditory and sensory-motor networks. Overall, the network vulnerability decreased significantly in subjects aged 70 and older in both 
networks. These findings collectively contribute to a deeper understanding of the impact of age on the integrity of functional and 
structural brain networks, shedding light on vulnerabilities and patterns. This knowledge can inform future research, particularly 
investigations into the effects of local structural damage on RC connectivity between brain networks, especially in aging populations. 
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