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1  |  INTRODUC TION

Smoking, widely acknowledged as an essential trigger of chronic 
obstructive pulmonary disease (COPD), is likely to seriously injure 

mucous membrane of respiratory tract and finally give rise to lung 
malfunction.1 It has been confirmed that smoking-induced COPD 
is tightly linked with inflammatory dysregulation, immunity imbal-
ance, and oxidative stress,2 for instance, inflammation biomarkers, 
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Abstract
Background: Smoking is likely to facilitate airway inflammation and finally contributes 
to chronic obstructive pulmonary disease (COPD). This investigation was intended to 
elucidate miRNAs that were involved in smoking-induced COPD.
Methods: Altogether 155 COPD patients and 77 healthy volunteers were recruited, 
and their serum levels of miR-221-3p and miR-92a-3p were determined. Besides, 
human bronchial epithelial cells (16HBECs) were purchased, and they were treated 
by varying concentrations of cigarette smoke extract (CSE). The 16HBECs were, ad-
ditionally, transfected by miR-221-3p mimic, miR-92a-3p mimic, miR-221-3p inhibitor 
or miR-92a-3p inhibitor, and cytokines released by them, including TNF-α, IL-8, IL-1β, 
and TGF-β1, were monitored using enzyme linked immunosorbent assay (ELISA) kits.
Results: Chronic obstructive pulmonary disease patients possessed higher serum lev-
els of miR-221-3p and miR-92a-3p than healthy volunteers (p < 0.05), and both miR-
221-3p and miR-92a-3p were effective biomarkers in diagnosing stable COPD from 
acute exacerbation COPD. Moreover, viability of 16HBECs was undermined by CSE 
treatment (p < 0.05), and exposure to CSE facilitated 16HBECs’ release of TNF-α, IL-
8, IL-1β, and TGF-β1 (p < 0.05). Furthermore, miR-221-3p/miR-92a-3p expression in 
16HBECs was significantly suppressed after transfection of miR-221-3p/miR-92a-3p 
inhibitor (p < 0.05), which abated CSE-triggered increase in cytokine production and 
decline in viability of 16HBECs (p < 0.05).
Conclusion: MiR-221-3p and miR-92a-3p were involved in CSE-induced hyperin-
flammation of COPD, suggesting that they were favorable alternatives in diagnosing 
COPD patients with smoking history.
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including nuclear factor κB (NF-κB), tumor necrosis factor alpha 
(TNF-α), matrix metalloproteinases (MMPs), C-reactive protein 
(CRP), and interleukins (ILs), are usually up-regulated in the serum 
of COPD patients.3–5 It is, however, insufficient to diagnose COPD 
merely through tracking level changes of the biomarkers, which 
might engender delays in COPD treatment. To avoid over/under 
diagnosis/treatment of COPD, it is paramount to clarify mech-
anisms of smoking-induced COPD at the genetic level, which 
might precede histopathological damages in the trachea of COPD 
patients.

MiRNAs, stably expressed in serum, are reported to signal-
ize patho-physiological changes of inflammation diseases sensi-
tively.6 For example, miR-221 was discovered to activate MAPK 
signaling and NF-κB signaling, both of which are responsible for 
over-inflammation in COPD.7–10 More than that, miR-221 level was 
elevated in human umbilical vein endothelial cells (HUVECs) ex-
posed to TNF-α,11 and its rise enhanced secretion of IL-6, TNF-α, 
and IL-1β, whose levels were heightened as COPD severity esca-
lated,12,13 by targeting SIRT1 in the context of diabetes mellitus.14 
With respect to miR-92a, a member of miR-17–92 family, restraint of 
its level markedly diminished endothelial inflammation strengthened 
by oxidized low-density lipoprotein (oxLDL),15 besides involvements 
in coronary artery lesion, vascular endothelial injury and tumorigen-
esis.16–18 Similar to miR-221, miR-92a also participated in exacerbat-
ing inflammation via promoting NF-kB signaling, albeit in diabetes 
mellitus-related cardiovascular disease.19 Despite pronounced roles 
in the inflammation disorders, the involvement of miR-221 and miR-
92a in controlling inflammation of smoking-induced COPD remained 
vague.

Therefore, this investigation attempted to elucidate the per-
formance of miR-221-3p and miR-92a-3p in diagnosing COPD of 
varying severities, and also to evaluate their associations with in-
flammation dysfunction underlying etiology of smoking-triggered 
COPD.

2  |  MATERIAL S AND METHODS

2.1  |  Inclusion of COPD patients

One hundred and fifty-five COPD patients, grouped into patients 
with stable COPD (n = 71) and patients with acute exacerbation 
(ae)-COPD (n = 84), and 77 healthy people (control group) who con-
ducted physical examination were recruited from Taizhou Clinical 
Medical School of Nanjing Medical University. Patients under fol-
lowing circumstances were incorporated into stable COPD group: 
1) they hardly demonstrated any cough- or sputum-related syn-
dromes for >1 month; 2) they received no other treatment except 
inhalation of bronchodilators/glucocorticoids for 1 month; and 3) 
they had a smoking history of >5 years. The participants were ex-
cluded from stable COPD group if they: 1) concurrently suffered 
from severe disorders in heart, brain, liver, and kidney; 2) they 
were accompanied by other systemic chronic diseases; 3) were 

tumor patients; 4) inhaled glucocorticoid for a long term; and 5) 
performed mechanical ventilation. Moreover, ae-COPD patients 
were included if: 1) they were newly admitted, and their cough/
sputum deteriorated within 1  week; 2) they inhaled bronchodi-
lators/glucocorticoids for >1 month; and 3) they had smoked for 
>5 years. Correspondingly, the ae-COPD patients were excluded 
in case that: (1) they were accompanied by pneumothorax, rib frac-
ture, cardiovascular/cerebrovascular diseases, infection, severe 
dysfunctions in liver and kidney, or other respiratory diseases; 
and (2) they were plagued by respiratory infection for >1 month. 
Furthermore, the COPD patients were grouped in accordance 
with their severity, by consulting standards set by Global Initiative 
for Chronic Obstructive Lung Disease (GOLD).20 All participants 
have signed informed consents, and this program was approved 
by Taizhou Clinical Medical School of Nanjing Medical University 
and the ethics committee of Taizhou Clinical Medical School of 
Nanjing Medical University (KY201904701). What's more, 3  ml 
cubital venous blood was collected from each COPD patient and 
healthy participant, and the blood samples were stored at −80℃ 
after being centrifuged at the speed of 3,000 r/min.

2.2  |  Acquisition of cigarette smoke extracts (CSE)

Following procedures stated by Krimmer et al,21 two filter-tipped cig-
arettes (brand: Daqianmen, Shanxi Taiyuan Tobacco company, China), 
including 0.013G tar, 0.001g nicotine, and 0.014g carbon monoxide 
per cigarette, were ignited, and the gas collected by negative pres-
sure suction was injected through 100 ml RPMI-1640 serum-free me-
dium (Gibco, USA). The products were stored at 4℃ in a sealed bottle.

2.3  |  Cell culture

Human bronchial epithelial cells (16HBECs), purchased from American 
Type Culture Collection (ATCC) (USA), were inoculated into 10% fetal 
bovine serum (FBS) (Gibco, USA)-containing RPMI-1640 complete 
medium (Gibco, USA). They were cultured in an incubator of 5% CO2 
and saturated humidity at the constant temperature of 37℃.

2.4  |  Cell transfection

Precisely 1  ×  106 16HBECs were inoculated into 
each well of 6-well plates, and they were grown to 
50–70% confluency. Then miR-221-3p mimic (4  μg, 
5′-AGCUACAUUGUCUGCUGGGUUUC-3′), miR-221-3p inhibi-
tor (4  μg, 5′-GAAACCCAGCAGACAAUGUAGCU-3′), miR-92a-3p 
mimic (4 μg, 5′-UAUUGCACUUGUCCCGGCCUGU-3′), miR-92a-3p 
inhibitor (4 μg, 5′-AUAACGUGAACAGGGCCGGACA-3′) and miR-
NC (4 μg, 5′-UUGUACUACACAAAAGUACUG-3′) (Ribobio, China) 
were transfected into 16HBECs for 48 h, following the specifica-
tion of Lipofectamine 2000 reagent kit (Invitrogen, USA).
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2.5  |  Real-time fluorescence quantitative 
polymerase chain reaction (qPCR)

Total RNAs were extracted from serum samples of subjects 
and 16HBECs by addition of Trizol reagent (Invitrogen, USA). 
Subsequently, miRNAs were isolated from total RNAs according to 
requirements of mirPremier©microRNA Isolation Kit (Bio-Rad, USA), 
and they were reversely transcribed into cDNAs utilizing SuperScript 
RT Kit (Dalian Baosheng, China). Real-time PCR of the cDNAs was 
accomplished with the aid of SYBR Green PCR master Mix kit (Dalian 
Baosheng, China), abiding by steps as below: 1) pre-denaturation at 
95℃ for 30 s, and 2) 40 cycles of denaturation at 95℃ for 5 s, an-
nealing at 60℃ for 30 s and extension at 70℃ for 10 s. Finally, ex-
pressions of miR-221-3p and miR-92a-3p were quantified by means 
of 2−ΔΔCt method, and they were normalized to expression of U6.

2.6  |  Enzyme-linked immunosorbent assay (ELISA)

Tumor necrosis factor alpha, IL-6, IL-1β and TGF-β1  levels in the 
serum of participants and in the supernatant of 16HBECs were 
measured according to detailed guidance of separate ELISA kits 
(Shenzhen Jingmei Biotech, China).

2.7  |  Western blotting

After supplementation of 1% phenylmethylsulfonyl fluoride (PMSF)-
containing RIPA lysate (Sigma, USA), total proteins were dissociated from 
16HBECs, and the amount of proteins was determined through BCA 
method (Beyotime, China). Every 50 μg protein in each treatment group 

was collected to implement sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (SDS-PAGE) (Beyotime, China), products of which were 
transferred onto polyvinylidene fluoride (PVDF) membrane (Millipore, 
USA) by wet method. Then protein samples under each treatment were 
blocked by 5% skimmed milk for 1 h, after which they were incubated by 
primary antibodies (mouse anti-human, Abcam, USA) against Collagen 
IV (cat. no.: ab86042, 1:1000), Fibronectin (cat. no.: ab253288, 1:500), 
α-SMA (cat. no.: ab119952, 1:2000) and GAPDH (cat. no.: ab8245, 
1:1000) at 4℃ for overnight. After rinsing the PVDF membrane with 
Phosphate Buffered Saline with Tween (PBST), the samples were in-
cubated with Goat Anti-Mouse IgG H&L (cat. no.: ab47827, 1:5000, 
Abcam) for 2 h. Following 10-min development using electrochemilu-
minescence (ECL) reagent (Beyotime, China), photographs were taken 
through infrared laser imaging system (Odyssey, LI-COR Biosciences, 
USA). Relative expressions of Collagen IV, Fibronectin or α-SMA were 
assessed using Image-Pro Plus software (Media Cybernetics, USA), and 
GAPDH was designated as their internal reference.

2.8  |  3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay

After digestion by 0.25% pancreatin (Gibco, USA), 16HBECs of expo-
nential growth phase were adjusted to the concentration of 5 × 104 
per ml. Until 16HBECs grew to 70%-80% confluence, 16HBECs in 
each well were blended by 200 μl CSE, which were diluted to ra-
tios of 0%, 2.5%, 5.0%, 7.5% or 10.0% by supplementing serum-
free minimum essential medium (MEM) culture medium (Gibco, 
USA). After 24 h of culture, 16HBECs in each well were treated by 
20 μl MTT solution (Promega, USA) for 4 h, following which they 
were blended by 150 μl dimethylsulfoxide (DMSO) (Sino-American 

TA B L E  1 Comparison of baseline clinical characteristics between COPD patients and healthy people

Clinic characteristics Acute exacerbation COPD Stable COPD Healthy control F/χ2/t test p value

Number 84 71 77

Age (year) 64.82 ± 6.18 63.54 ± 6.73 65.29 ± 7.31 1.33 0.268

Gender

Male 55 40 37

Female 29 31 40 4.99 0.083

Course 12.41 ± 3.06 11.73 ± 3.54 1.28 0.202

BMI (Kg/m2) 23.58 ± 2.39 23.16 ± 3.55 22.89 ± 2.27 1.28 0.280

Smoking history

With 84 71 35

Without - - 42

GOLD classification

Stage I 8 12

Stage II 23 25

Stage III 29 20

Stage IV 24 14 4.11 0.250

FVC (L) 1.61 ± 0.31 2.03 ± 0.61 2.81 ± 0.59 111.70 <0.001

FEV1 (L) 1.13 ± 0.18 1.73 ± 0.21 2.66 ± 0.18 1,319.00 <0.001

FEV1/FVC (%) 39.06 ± 4.82 61.73 ± 6.12 86.26 ± 7.55 1,154.00 <0.010

Abbreviations: BMI, body mass index; COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity.
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Biotechnology, China). Absorbance (A) values of each well were de-
tected at the wavelength of 490 nm, with the assistance of an auto-
matic microplate reader (BioTek, USA).

2.9  |  Cell apoptosis assay

After addition of 200 μl Annexin V/Propidium Iodide (PI) staining 
solution (BD Bioscience, USA), the 16HBECs were incubated in the 
darkness for 15 min. Apoptotic rates of 16HBECs under each treat-
ment were tested on the flow cytometer (BD Bioscience, USA), and 
excitation light wavelength of the instrument was fixed at 488 nm, 
with channel filters at 515 nm to detect Fluorescein isothiocyanate 
(FITC) fluorescence and channel filters at >560 nm to determine PI 
fluorescence.

2.10  |  Colony formation assay

The 16HBECs at the logarithmic growth phase were inoculated into 
24-well plates at the density of 500 per well after being digested by 
pancreatin. Ten days later, 16HBECs were fixated by methanol for 
15 min and were stained by Giemsa for 20 min (Sigma-Aldrich, USA). 
Colonies that were made up of >50 16HBECs were counted under 
the microscope (Olympus, Japan).

2.11  |  Statistical analyses

SPSS 13.0  statistical software (SPSS, USA) was adopted to con-
duct data analyses in this investigation. Measurement data 
(mean±standard deviation [SD]) were compared through student's 

F I G U R E  1 Association of miR-221-3p and miR-92a-3p with chronic obstructive pulmonary disease (COPD) onset. (A) Expressions of 
miR-221-3p and miR-92a-3p were determined in serum of patients with acute exacerbation COPD, patients with stable COPD and healthy 
volunteers. *p < 0.05 when compared with healthy volunteers; #p < 0.05 when compared with stable COPD. (B) Serum level of miR-221-3p 
was correlated with miR-92a-3p of patients with acute exacerbation COPD or with stable COPD
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t test or one-way analysis of variance (ANOVA), while enumera-
tion data (n) between groups were contrasted via chi-square test. 
Correlations between miR-221-3p/miR-92a-3p level and levels of 
biomarkers, which were indicative of pulmonary function, were 
carried out based on Pearson's correlation analysis. And two-sided 
P values less than0.05  symbolized statistical significance in the 
differences.

3  |  RESULTS

3.1  |  Comparison of baseline features between 
COPD patients and healthy volunteers

Hardly any significant difference was found among patients of ae-
COPD group, patients of stable COPD group and healthy controls with 
smoking history, with respect to age, gender distribution, and body 

F I G U R E  2 Correlation between serum level of miR-221-3p/miR-92a-3p and indicators of pulmonary function among patients with acute 
exacerbation COPD (A) and with stable COPD (B)
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mass index (BMI) (p > 0.05) (Table 1). Nevertheless, forced vital capac-
ity (FVC), forced expiratory volume in 1 s (FEV1) and FEV1/FVC ratio 
were notably reduced in ae-COPD patients as relative to stable COPD 
patients (p < 0.05), and both of the COPD populations were associ-
ated with lower FVC, FEV1, and FEV1/FVC ratio than healthy volun-
teers with and without smoking history (p < 0.05) (Table 1). Moreover, 
serum levels of TNF-α, IL-6, IL-1β, and TGF-β1 were up-regulated in 
smokers with COPD, when compared with smokers without COPD 
(Figure S1A).

3.2  |  Association of miR-221-3p/miR-92a-3p level 
with clinical features of COPD patients

Serum levels of miR-221-3p and miR-92a-3p went higher in ae-COPD 
patients than in stable COPD patients (p < 0.05), and COPD patients 
as a whole revealed higher serum levels of miR-221-3p and miR-
92a-3p than healthy volunteers (p < 0.05) (Figure 1A). Furthermore, 
serum levels of miR-221-3p and miR-92a-3p tended to escalate 
in COPD patients at the advanced GOLD stage in comparison to 

F I G U R E  3 Diagnostic performances of miR-221-3p, miR-92a-3p and miR-221-3p&miR-92a-3p in diagnosing COPD patients from all 
healthy volunteers (A), in diagnosing COPD patients from healthy smokers (B), and in differentiating patients with acute exacerbation COPD 
from those with stable COPD (C)
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COPD patients at mild stages (p < 0.05) (Figure S1B). And smokers 
with COPD possessed higher serum levels of miR-221-3p and miR-
92a-3p than smokers without COPD (p < 0.05) (Figure S1C). In addi-
tion, serum level of miR-221-3p was positively correlated with that 
of miR-92a-3p among patients with ae-COPD (rs = 0.453) and stable 
COPD (rs = 0.585) (Figure 1B), while serum levels of miR-221-3p and 
miR-92a-3p displayed negative correlations with FVC (ae-COPD: 
miR-221-3p rs  =  −0.450, miR-92a-3p rs  =  −0.444; stable COPD: 
miR-221-3p rs = −0.372, miR-92a-3p rs = −0.362), FEV1 (ae-COPD: 
miR-221-3p, rs = −0.596, miR-92a-3p rs = −0.470; stable COPD: miR-
221-3p rs  = −0.524, miR-92a-3p rs  = −0.505) and FEV1/FVC ratio 
(ae-COPD: miR-221-3p rs = −0.543, miR-92a-3p rs = −0.599; stable 
COPD: miR-221-3p rs = −0.508, miR-92a-3p rs = −0.637) among ae-
COPD patients and stable COPD patients (Figure 2).

3.3  |  Diagnostic performance of miR-221-3p and 
miR-92a-3p for COPD

MiR-221-3p in combination with miR-92a-3p (AUC = 0.949) yielded 
superior performance in sorting out COPD patients from healthy 
volunteers as compared with when they were separately applied 
(miR-221-3p: AUC = 0.887; miR-92a-3p; AUC = 0.889) (Figure 3A, 
Table 2). MiR-221-3p (AUC = 0.941) and miR-92a-3p (AUC = 0.932) 
also seemed productive in diagnosing stable COPD patients from ae-
COPD patients, and their combination resulted in an optimum AUC 
value of 0.979 (Figure 3C, Table 2). Furthermore, either miR-221-3p 
(AUC = 0.883) or miR-92a-3p (AUC = 0.867) was able to distinguish 
COPD patients, all of whom have smoking history, from smokers in 
the healthy control group, and their synergy showed more outstand-
ing efficacy in this respect (AUC = 0.909) (Figure 3B, Table 2).

3.4  |  Impact of CSE on miR-221-3p/miR-
92a-3p expression, inflammation response and 
viability of 16HBECs

Viability of 16HBECs was depressed by increasing concentrations of 
CSE (p < 0.05), and this suppressive effect became prominent with 

the prolongation of reaction time (p < 0.05) (Figure 4A). From the 
results, we intended to evaluate the impact of 2% CSE on 16HBECs, 
and the acting time was set as 48 h. It was indicated that miR-221-3p 
and miR-92a-3p were highly expressed in 2% CSE-treated 16HBECs 
in comparison to 16HBECs treated by none (p < 0.05) (Figure 4B), and 
apoptotic rate of 16HBECs in the CSE treatment group was around 
2 folds of that in the NC group (p < 0.05) (Figure 4C). Expressions of 
TNF-α, IL-6, IL-1β, TGF-β1, Collagen IV, Fibronectin, and α-SMA were 
also significantly increased in 16HBECs of CSE treatment group, 
when compared with NC group (p < 0.05) (Figure 4D–E).

3.5  |  Contribution of miR-221-3p/miR-92a-3p to 
viability, proliferation, apoptosis and inflammation 
response of 16HBECs

Viability and proliferation of 16HBECs were observably diminished 
in the CSE+miR-221-3p/miR-92a-3p mimic group as compared 
with CSE group, miR-221-3p mimic group and miR-92a-3p mimic 
group (p  <  0.05), and 16HBECs of the latter 3  groups exhibited 
weaker viability and multiplicative potential than 16HBECs of NC 
group (p  <  0.05) (Figure  5A–D). MiR-221-3p/miR-92a-3p inhibitor 
(ie, CSE+miR-221-3p/miR-92a-3p inhibitor group), to some degree, 
restored viability and proliferative ability of CSE-treated 16HBECs 
(p < 0.05) (Figure 5A–D). Moreover, apoptosis of 16HBECs in miR-
221-3p mimic group, miR-92a-3p mimic group and CSE group was 
facilitated markedly as compared with NC group (p  <  0.05), and 
miR-221-3p/miR-92a-3p mimic transfection cooperating with CSE 
treatment promoted 16HBEC apoptosis more significantly than CSE 
treatment alone (p < 0.05) (Figure 5E–F). However, miR-221-3p/miR-
92a-3p inhibitor (ie, CSE+miR-221-3p/miR-92a-3p inhibitor group) 
partly reversed influence of CSE on apoptosis of 16HBECs (p < 0.05) 
(Figure 5E–F).

Furthermore, 16HBECs in miR-221-3p mimic group and miR-
92a-3p mimic group expressed larger amounts of TNF-α, IL-6, IL-
1β, TGF-β1, Collagen IV, Fibronectin, and α-SMA than NC group 
(p < 0.05), and dual treatments of CSE and miR-221-3p/miR-92a-3p 
mimic facilitated production of TNF-α, IL-6, IL-1β, TGF-β1, Collagen 
IV, Fibronectin, and α-SMA more dramatically than CSE treatment 

TA B L E  2 Diagnostic performances of miR-221-3p, miR-91a-3p and its combination in differentiating COPD patients from healthy controls 
and Acute COPD patients from stable COPD patients

Groups Biomarkers Value Sensitivity Specificity AUC 95% CI

COPD patients vs. healthy control miR−221-3p 2.69 0.697 0.974 0.887 0.846–0.928

miR−92a−3p 3.38 0.677 0.974 0.889 0.849–0.929

miR−221-3p&miR−92a−3p - 0.884 0.896 0.949 0.924–0.974

COPD patients vs. smokers in healthy 
control

miR−221-3p 2.59 0.729 0.971 0.883 0.835–0.930

miR−92a−3p 3.38 0.677 0.971 0.867 0.814–0.920

miR−221-3p&miR−92a−3p - 0.813 0.943 0.909 0.868–0.950

Acute COPD patients vs. stable COPD 
patients

miR−221-3p 3.99 0.845 1.000 0.941 0.898–0.984

miR−92a−3p 4.16 0.881 0.958 0.932 0.888–0.977

miR−221-3p&miR−92a−3p - 0.929 1.000 0.979 0.953–1.000

Abbreviations: AUC, area under the curve; CI, confidence interval; COPD, chronic obstructive pulmonary disease.
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F I G U R E  4 Impact of CSE on 16HBEC activity. (A) Inhibition of CSE on 16HBEC viability was determined under different concentrations. 
(B) Expressions of miR-221-3p and miR-92a-3p in 16HBECs were detected after CSE treatment. *p < 0.05 when compared with NC group. 
(C) Apoptotic rate of 16HBECs was evaluated after CSE treatment. *p < 0.05 when compared with NC group. (D) Expressions of TNF-α, IL-8, 
IL-1β and TGF-β1 were assessed after CSE treatment. *p < 0.05 when compared with NC group. (E) Expressions of Collagen IV, Fibronectin 
and α-SMA were measured after CSE treatment. *p < 0.05 when compared with NC group
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alone (p < 0.05) (Figures 6A,C and 7A,C). By contrast, expressions of 
TNF-α, IL-6, IL-1β, TGF-β1, Collagen IV, Fibronectin, and α-SMA were 
decreased prominently in 16HBECs of miR-221-3p/miR-92a-3p in-
hibitor+CSE group, when compared with CSE treatment group 
(p < 0.05) (Figures 6B,D and 7B,D).

4  |  DISCUSSION

Smoking, a well-known external trigger of chronic COPD,22 increases 
likelihood of COPD onset by 2~4 times.23 Harmful substances of 
cigarettes, including nicotine, nitric oxide, tar, aldehydes, phenols 
and hydrocyanic acid, serves to exacerbate airway inflammation24 
and promote apoptosis of airway epithelial cells,25 thus facilitat-
ing occurrence of COPD. Hence, it was vital to expose the internal 

connection of CSE with COPD development, so as to hinder COPD 
progression as much as possible.

Airway epithelium, a physiological barrier, is meant to protect 
respiratory system from harms of outside stimulants. Destroying its 
structural integrity could lead to necrosis of airway epithelial cells 
and overwhelming inflammation in the airway.26 In this study, we 
observed that 16HBECs after CSE treatment were predisposed to 
apoptosis (Figure 4C), and they produced larger amounts of inflam-
matory cytokines, including TNF-α, IL-6, IL-1β, and TGF-β1, and air-
way remodeling biomarkers, including Collagen IV, Fibronectin and 
α-SMA, than 16HBECs treated by none (Figure 4D–E), which implied 
that airway epithelium might be injured by CSE. Regarding inflam-
matory factors investigated here, TNF-α and IL-1βare up-regulated 
when inflammation cascade is initiated,27,28 and IL-6  level, mainly 
secreted by monocytes and macrophages, is prominently increased 

F I G U R E  5 Viability (A–B), proliferation (C–D) and apoptosis (E–F) of 16HBECs were compared among NC group, CSE group, miR-221-3p/
miR-92a-3p mimic group, miR-221-3p/miR-92a-3p inhibitor group, CSE+miR-221-3p/miR-92a-3p mimic and CSE+miR-221-3p/miR-92a-3p 
inhibitor. *p < 0.05 when compared with NC group, #p < 0.05 when compared with miR-221-3p/miR-92a-3p mimic or inhibitor group
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F I G U R E  6 Expressions of inflammatory cytokines (A–B) and airway remodeling-associated proteins (C–D) were determined among 
16HBECs of NC group, CSE group, miR-221-3p mimic group, miR-221-3p inhibitor group, CSE+miR-221-3p mimic and CSE+miR-221-3p 
inhibitor. *p < 0.05 when compared with NC group, #p < 0.05 when compared with miR-221-3p mimic or inhibitor group
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F I G U R E  7 Expressions of inflammatory cytokines (A–B) and airway remodeling-associated proteins (C–D) were determined among 
16HBECs of NC group, CSE group, miR-92a-3p mimic group, miR-92a-3p inhibitor group, CSE+miR-92a-3p mimic and CSE+miR-92a-3p 
inhibitor. *p < 0.05 when compared with NC group, #p < 0.05 when compared with miR-221-3p mimic or inhibitor group
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as inflammation severity of COPD escalates.29 TGF-β1, released by 
monocytes, expedites airway remodeling by promoting prolifera-
tion of airway smooth muscle cells,30 which also explains why levels 
of airway remodeling biomarkers were increased in CSE-exposed 
16HBECs (Figure 4E). Summing up the above, CSE was likely to stim-
ulate damages in airway epithelium by pathologically inducing air-
way inflammation and airway remodeling.

Furthermore, a number of miRNAs have been corroborated to 
associate with smoking, for instance, miR-223 was under-expressed 
in the population accustomed to smoking as compared with peo-
ple without such a habit,31 and miR-34a expression is markedly de-
creased in COPD mice models which were exposed to CSE.32 When 
it came to a Belgium cohort, miR-92a-3p, miR-218-5p, miR-221-3p, 
miR-99b-5p, and miR-34a-3p were profoundly over-expressed in 
lung tissues of COPD patients with smoking history.33 Similarly, this 
investigation also revealed that serum levels of miR-221-3p and miR-
92a-3p were dramatically increased in a Chinese COPD population 
with smoking history (Figure 1A). On top of that, detecting serum 
levels of miR-221-3p and miR-92a-3p was considered feasible in dif-
ferentiating COPD patients of various severities (Figure 3). Although 
highly expressed miR-221 and miR-92a were also measurable in 
bronchial epithelial cells, lung tissues and plasma of asthma and 
lung cancer patients,34–36 the specificity of miR-221 and miR-92a in 
COPD diagnosis might not be reduced for that we focused on serum 
in this investigation. Despite this strength, combination with other 
biomarkers or association with clinical symptoms37,38  might yield 
more desirable results in COPD diagnosis than application of miR-
221/miR-92a alone.

Mechanistically, inhibiting miR-221-3p/miR-92a-3p expression 
was beneficial to attenuate CSE-induced excessive inflammation in 
16HBECs (Figures 6–7), which underlined the pro-inflammatory role 
of miR-221-3p and miR-92a-3p in smoking-induced COPD. In effect, 
the linkage of miR-221-3p/miR-92a-3p with inflammation-triggered 
lung injury and respiratory disorder has been emphasized numer-
ously. For example, miR-221 facilitated lung injury by motivating NF-
κB signaling,39 and accelerated asthmatic progression by worsening 
eosinophilic inflammation in the airway.40 For another, miR-92a ag-
gravated acute lung injury by mobilizing PTEN/AKT/NF-κB signaling 
and increasing production of IL-6 and TNF-α.41 Nonetheless, down-
stream pathways that miR-221-3p and miR-92a-3p activated or de-
activated to mediate smoking-facilitated COPD have not yet been 
comprehensively studied.

In addition to over-inflammation, apoptosis of 16HBECs, which 
was relevant to deterioration of lung injury,42 was facilitated by 
both miR-221-3p and miR-92a-3p (Figure  5). Consistent with this 
pro-apoptotic role, apoptosis of lung fibroblasts was promoted by 
miR-221-3p during progression of pneumonia,43 and Wilms tumor 
cells became apoptotic under the influence of highly expressed 
miR-92a.44 Certain investigations, however, appeared to draw con-
tradictory results. To be specific, miR-221 was speculated to in-
crease odds of tumorigenesis by curbing apoptosis of tumor cells 
in glioblastoma,45 gastric cancer,46 pancreatic cancer,47 papillary 
thyroid carcinoma48 and acute myelogenous leukemia.49 And the 

proliferative capability of neoplastic cells, including colorectal can-
cer cells,50 cervical cancer cells,51 pancreatic cancer cells,52 breast 
cancer cells53 and ovarian cancer cells, was reinforced by highly ex-
pressed miR-92a. We ascribed this controversy to that miR-221-3p 
and miR-92a-3p might play discrepant roles in cell types with dispa-
rate pathological mechanisms.

In conclusion, miR-221-3p and miR-92a-3p were both impli-
cated in CSE-caused inflammation disorder underlying pathogene-
sis of COPD, and they were promising biomarkers in the diagnosis 
of COPD. However, there were several defects in the experimen-
tal design. Firstly, animal models of COPD were not constructed, 
so that the in-vivo effects of miR-221-3p and miR-92a-3p on 
tobacco-induced inflammation could not be validated. Secondly, 
the molecular network that explained roles of miR-221-3p and miR-
92a-3p in COPD was hitherto not all-sided. Finally, COPD patients 
recruited were all of Chinese Han ethnicity, so conclusions of this 
study might not go for populations of other ethnicities. To settle 
puzzles as mentioned above, more studies with rigorous designs 
were in need.
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