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Abstract

Nicrophorus is a genus of beetles that bury and transform small vertebrate carcasses into a

brood ball coated with their oral and anal secretions to prevent decay and that will serve as a

food source for their young. Nicrophorus pustulatus is an unusual species with the ability to

overtake brood of other burying beetles and whose secretions, unlike other Nicrophorus

species, has been reported not to exhibit antimicrobial properties. This work aims to better

understand how the presence or absence of a food source influences the expression of

genes involved in the feeding process of N. pustulatus. To achieve that, total RNA was

extracted from pooled samples of salivary gland tissue from N. pustulatus and sequenced

using an Illumina platform. The resulting reads were used to assemble a de novo transcrip-

tome using Trinity. Duplicates with more than 95% similarity were removed to obtain a “uni-

gene” set. Annotation of the unigene set was done using the Trinotate pipeline. Transcript

abundance was determined using Kallisto and differential gene expression analysis was

performed using edgeR. A total of 651 genes were found to be differentially expressed,

including 390 upregulated and 261 downregulated genes in fed insects compared to

starved. Several genes upregulated in fed beetles are associated with the insect immune

response and detoxification processes with only one transcript encoding for the antimicro-

bial peptide (AMP) defensin. These results confirm that N. pustulatus does not upregulate

the production of genes encoding AMPs during feeding. This study provides a snapshot of

the changes in gene expression in the salivary glands of N. pustulatus following feeding

while providing a well described transcriptome for the further analysis of this unique burying

beetle.
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Introduction

Carrion beetles (Coleoptera, Silphidae) have been widely studied by ecologists as they are

among the first insects to arrive at vertebrate carrion and display a number of interesting

behaviors to utilize this ephemeral resource [1]. Most members of the genus Nicrophorus
(burying beetles), bury appropriately-sized vertebrate carcasses and transform them into a

brood ball, which will serve as a food source for offspring [2]. For burying beetles, access to

carrion is necessary for reproduction since copulation only occurs after the food source has

been buried. Thus, these insects have evolved strategies and behaviors to take advantage of the

unpredictable availability of this resource [2, 3].

Burying beetles are unusual in providing a high degree of bi-parental care to their offspring

[2, 4]. They defend vertebrate carcasses, coat them with oral or anal secretions to retard decay

[5, 6], and the parents regurgitate pre-digested carrion into the mouths of their young [7]. The

oral and anal secretions of these beetles reduce carcass degradation [5, 8], and inhibit the

growth of yeast and bacteria that are found within the burying beetles habitat and may act as

competitors for the nutritious buried carcasses [9].

Research on Nicrophorus orbicollis, Nicrophorus investigator and Nicrophorus margina-
tus has confirmed the presence of antimicrobial peptides (AMP) in oral and anal exudates

[9]. Chemical analyses of anal and oral secretions of Nicrophorus vespilloides found these

exudates contain more than 30 secondary metabolites [10] and bacterial cell wall active

lysozymes [11].

A study in N. vespilloides, using whole-adult RNA samples and anal exudates, reported the

expression of genes that encode for 27 putative antimicrobial peptides (AMPs) and 13 lyso-

zymes [12]. Another study in Nicrophorus carolinus [13] demonstrated that the antimicrobial

properties exhibited from secretion were temperature-dependent and expressed during

warmer temperatures.

The burying beetle Nicrophorus pustulatus is an unusual species in that exhibits the ability

to overtake brood of other burying beetles and has been reported to produce secretions that do

not exhibit antimicrobial properties [14]. In nature, unlike other Nicrophorus species, N. pustu-
latus has been reported to use snake eggs instead of vertebrate carcasses for breeding [15–17].

Similar to other carrion beetles, N. pustulatus feeds on vertebrate carrion and live insects when

not breeding, using extra oral digestion and ingesting the digested fluids [18]. Observations of

adult and larvae N. pustulatus in the nests and eggs of the black rat snake, Elaphe obsoleta, indi-

cate a host shift from carrion to snake egg parasitoidism [15]. Laboratory studies confirmed

that N. pustulatus efficiently exploit snake eggs and treat them differently from carrion, not

moving or burying the eggs [16]. The communal nesting behavior and clutch size of black rat

snakes also provides a large resource of N. pustulatus, perhaps explaining why it produces the

largest broods compared to congeners in captivity [2]. Despite having never buried any of

1000+ research carcasses in the field [2], in the laboratory N. pustulatus can still use vertebrate

carcasses for reproduction [17, 19].

Although there are some molecular resources for the Nicrophorus beetles, most of the

available transcriptomic data has been generated for N. vespilloides [20, 21] and N. orbicol-
lis [22, 23]. We now report on the salivary gland RNA-seq generated transcriptomes of

male and female N. pustulatus following starvation and feeding. We hypothesized that the

presence or absence of a food source will influence the expression of salivary gland genes

involved with the feeding process in N. pustulatus. The transcriptomes produced also pro-

vide a resource that will support further investigations on the transcriptional responses of

the Nicrophorus.
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Materials and methods

Insect collection and rearing

Beetles were collected as previously described [24] in May 2018 on Camp Gruber Training

Center in Muskogee County, OK. The beetles were collected as part of a study on the fed-

erally protected Nicrophorus americanus under authority of federal permit # TE045150-3

held by Hoback. The N. pustulatus used in the present study are not a protected species.

Beetles were collected with permission of the Oklahoma Army National Guard. Insects

were trapped using 5-gallon above-ground Silphidae bucket traps filled with approxi-

mately 7cm of peat moss and baited with a rotted rat carcass (RodentPro.com, IN) [25].

Captured beetles were identified based on morphology and kept alive in moist soil, half of

them were deprived of food and half of them were provided high-fat (30%) ground beef as

sustenance. After 5 days, beetles were anesthetized in an ice bath before the salivary gland

tissue was removed for RNA extraction.

RNA isolation and library preparation

RNA extraction was performed for a total of six biological replicates (3 pools of males and

3 pools of females) for each fed or starved conditions. Each biological replicate consisted

of the combined salivary gland tissue of five individual beetles of the same sex. The com-

bined salivary gland tissue was submerged in a tube containing RNAzol RT (Molecular

Research Center, Inc. Cincinnati, Ohio), frozen with liquid nitrogen, and stored at -80˚C.

Total RNA was isolated from homogenized salivary gland tissue using RNAzol RT accord-

ing to the manufacturers protocol (ThermoFisher Scientific). Briefly, tissues were homog-

enized in a microfuge tube with a plastic pestle in 500 μl RNAzol RT and allowed to stand

at 25˚C for 5 min. After chloroform addition (200 μl), samples were vigorously mixed for

2 min followed by centrifugation (13,000 X g for 10 min). The aqueous layer was then

placed in a microfuge tube and an equal volume of isopropanol was added, and after mix-

ing, the samples were placed at -20˚C (16 h). The samples were then centrifuged (13,000 X

g for 30 min) and the pellets were washed once with 75% ethanol and once with 70% etha-

nol, and then re-pelleted (13,000 X g for 5 min). The supernatant was removed, and the

dried pellets were re-suspended in nuclease-free water. RNA samples were quantified with

a NanoDrop (ThermoFisher, MA) and size distributions analyzed by BioAnalyzer 2100

(Agilent, CA) using a RNA Nano chip.

One microgram of RNA samples from each sample was used to construct Illumina TruSeq

RNA Sample Preparation Kit v2 libraries following the manufacturer’s instructions (Illumina

Inc., San Diego, California), except only 13 PCR amplification cycles were conducted. The Illu-

mina libraries were quantified and quality was assessed using the BioAnalyzer 2100 DNA 100

chip. All libraries had similar size distributions between 200–500 bp with a ~260 bp peak. The

libraries were sent to Novogene (Davis, California) for paired-end RNA sequencing.

Transcriptome de novo assembly and annotation

Read quality was assessed using FastQC (version 0.11.3) [26] and adapters and low quality

bases were trimmed using Trimmomatic (version 0.38) [27]. A de novo transcriptome assem-

bly was generated by Trinity (version 2.8.1) [28] using merged reads from all libraries. A uni-

gene set was obtained from the transcriptome by removing sequences with over 95% similarity

using CD-HIT (version 4.8.1) [29, 30]. Assembly quality and completeness of both the tran-

scriptome and the unigene set was assessed using BUSCO (version 4) with the Arthropoda

ortholog dataset [31, 32].
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Differential expression analysis

Transcript abundance was determined using the pseudo-aligner Kallisto (version 0.46.2) [33]

with the unigene set. Differential gene expression analysis between libraries of fed and starved

N. pustulatus was performed in R (version 4.0.0) [34] using the edgeR package (version 3.30)

[35, 36]. Read counts were normalized using the trimmed mean of M-values method [37]. Dif-

ferentially expressed genes (DEGs) were defined using the ‘robust’ algorithm of edgeR using

False Discovery Rate (FDR) to adjust for multiple testing [38] and determine significance.

Functional annotation and pathway analysis

Transcriptomes were annotated using the Trinotate pipeline, a comprehensive annotation tool

that uses well referenced methods and databases to generate functional annotation of de novo
assembled transcriptomes [39]. For annotation, in silico peptide sequences were obtained

using Transdecoder (version 5.5.0) [39]. Annotation of the transcriptomes included homology

searches against the UniProtKB/Swiss-Prot database [40] and the NCBI ref-seq database [41]

using BLAST+ (version 2.8.1) [42]. Protein domains in the peptide sequences were identified

using HMMER version 3.1b2 [43] to query against the Pfam database [44]. Ribosomal RNA

(rRNA) genes were identified in the transcriptomes using RNAmmer (version 1.2) [45].

Gene Ontology (GO) terms were obtained from the annotation pipelines against the Swiss-

Prot database. KEGG Orthology (KO) terms were assigned using the KEGG Automatic Anno-

tation Server (KAAS) [46]. Gene set enrichment analysis (GSEA) of the GO terms was done in

R using the package topGO (version 2.40.0) [47] by comparing the assigned GO terms of the

differentially expressed genes to the GO terms of the whole unigene set.

For the KO terms, gene set enrichment analysis was performed using the R package clusterPro-

filer [48] and comparing the assigned KO terms of the differentially expressed genes to a section

of the universe of KO terms in the KO database. The section of KO terms used for the analysis

corresponded to those that were assigned to pathways present inNicrophorus vespilloides [49].

Availability of supporting data

Raw RNA-Seq data is deposited in FASTQ format to the NCBI Sequence Read Archive data-

base (SRA) and assembled transcripts to the NCBI Transcriptome Shotgun Assembly (TSA)

Database under the BioProject accession number PRJNA740345. Code and project-specific

scripts detailing parameters used for all analysis performed in this study can be found in the

GitHub Repository: https://github.com/Coayala/npustulatus.

Results

Transcriptome assembly

The transcriptome of N. pustulatus was assembled using pooled reads from all libraries of the

different experimental conditions. The resulting assembly produced a total of 78,390 tran-

scripts. A unigene assembly set was created by reducing transcripts sharing more than 95%

similarity to a single representative, resulting in a final assembly of 61,290 contigs. The statis-

tics of the whole transcriptome assembly and the unigene are detailed in Table 1.

Completeness of the assembly and unigene set was evaluated using BUSCO [31, 32] with

the Arthropoda dataset. The transcriptome and the unigene dataset were found to contain

more than 91% of the single-copy orthologs in the dataset (Fig 1), and thus our transcript data

is fairly complete.
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Transcriptome annotation

The unigene transcriptome was annotated using the Trinotate pipeline and representative pep-

tide sequences using Transdecoder [39]. The nucleotide and peptide sequences of N. pustula-
tus were searched against three different databases, the Uniprot/Swiss-prot database [40], the

NCBI RefSeq database [41] and the Pfam database [44]. In total, 65.70% of transcripts in the

unigene set produced a significant hit against the NCBI RefSeq database and only 38.69% of

them produced significant hits against the Uniprot/Swissprot database (Table 2).

During the annotation, over 73% of the annotated unigenes produced a significant hit

against reference sequences of the closely related species N. vespilloides, and to a lesser extent,

other Insecta species as well (Fig 2).

Differential gene expression

A differential gene expression (DGE) analysis of the transcriptomes obtained from the salivary

glands of fed and starved N. pustulatus was performed in order to identify genes that altered

Table 1. Assembly statistics.

Trinity Assembly Unigene set

Total assembled bases 135,410,906 84,714,160

Number of contigs 78,390 61,290

Average contig length 1,727 1,382

N50 3,800 3,290

GC content (%) 40.10 39.92

https://doi.org/10.1371/journal.pone.0255660.t001

Fig 1. BUSCO completeness assessment. Both the transcriptome and the unigene set are more than 90% complete.

Duplication levels are lower in the unigene set.

https://doi.org/10.1371/journal.pone.0255660.g001
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their expression following feeding in this species. After pseudo-aligning the reads to the uni-

gene set using Kallisto [33], and filtering lowly expressed transcripts, the remaining 13,555

transcripts were analyzed using edgeR [36]. A multi-dimensional scaling (MDS) plot shows

the samples cluster together primarily by treatment (fed vs starved) and secondarily by sex (Fig

3). For this reason, it was decided to perform the following analysis by comparing only

between treatments and not between sexes.

After analysis, 651 significant (FDR< 0.05) DGEs were identified. Of those, 390 genes were

upregulated in the fed insects while the remaining 261 were downregulated. A heatmap of dif-

ferentially expressed genes with the greatest log fold change (logFC) (FDR<0.05 and |logFC|

> 2) can be seen in Fig 4.

Gene Ontology and KEGG pathway enrichment analysis

To better understand the molecular and biological responses of N. pustulatus to feeding and

starvation, topGO [47] was used to perform a GSEA and identify enriched GO terms in the

differentially expressed genes. Enriched GO terms were ranked based on the significance of

their enrichment for each domain. Table 3 shows the top significantly enriched GO terms

Table 2. Number and percentage of significant hits against biological relevant databases.

NCBI RefSeq Uniprot/Swiss-prot Pfam

Number of contigs with hits 40,270 23,713 26,689

Percentage of contigs with hits (%) 65.70 38.69 43.54

https://doi.org/10.1371/journal.pone.0255660.t002

Fig 2. Taxonomic distribution of the Blast hits of the unigene set.

https://doi.org/10.1371/journal.pone.0255660.g002
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among all the DEGs, while Fig 5 shows the significantly enriched GO terms among the upre-

gulated (Fig 5A) and downregulated genes in fed beetles (Fig 5B).

Identification of KEGG pathways activated or deactivated in fed insects compared to

starved beetles was done using clusterProfiler [48]. The KEGG Orthology (KO) terms associ-

ated to the DEGs were compared to the KO terms assigned to N. vespilloides. The GSEA did

not produce any enriched pathway. Instead, a term enrichment analysis was done using the

same software package (Fig 6).

Discussion

Nicrophorus pustulatus is considered unique among other burying beetles [15]. This species

provides its brood with the same biparental care as other species of burying beetles and aggres-

sively protects its offspring [16, 19]. However, it appears to have undergone a host shift, using

snake eggs rather than vertebrate carcasses as a resource for its breeding [15–17]. Nonetheless,

it still retains the ability to use vertebrate carcasses for reproduction if needed [15].

During the annotation of the RNA-seq derived transcriptome of N. pustulatus against the

RefSeq database, most of the BLAST hits (>75%) were against reference sequences from N.

vespilloides, which is presently the only Nicrophorus beetle with a genome assembly [50]. Addi-

tional BLAST hits identified transcripts more similar to other Coleoptera species such as the

red flour beetle, Tribolium castaneum, and the dung beetle, Onthophagus taurus. These tran-

scripts represent genes not present in Nicrophorus vespilloides RefSeq assembly and may either

be incomplete or misassembled in the N. vespilloides RefSeq assembly or species-specific N.

pustulatus genes.

Some assembled transcripts produced high scoring BLAST hits aligning to mite sequences,

suggesting the potential presence of phoretic mites in N. pustulatus [51, 52]. Mites are highly

prevalent in burying beetles populations and may be present in as many as 95% of individuals

in a given population. Different species of phoretic mites, such as those from the genus Uroo-
bovell and Poecilochirus have been shown to associate with Nicrophorus beetles [53, 54]. In

addition, roughly 8% of the BLAST hits were against sequences from different species of bacte-

ria (e.g. Paenibacillus sp., Bacillus thuringiensis, Pseudomonas aeruginosa, Acinetobacter bau-
mannii, Klebsiella pneumoniae, and Escherichia coli) which contributes information about the

microbiome of N. pustulatus and its environment. Core microbiota are transmitted vertically

in burying beetles via the secretions that coat the carcass and inoculate feeding larvae [55],

thus explaining the presence of bacterial-derived transcripts in the salivary glands of N.

Fig 3. Multi-dimensional scaling (MDS) plot of the normalized read counts. Samples cluster together based on

whether they came from a fed or starved beetle.

https://doi.org/10.1371/journal.pone.0255660.g003
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pustulatus. The presence of these transcripts in the current N. pustulatus transcriptome is simi-

lar to contaminant sequences found in the transcriptome assemblies of other Coleoptera spe-

cies annotated using BLAST and similar databases. Roughly 10% of the hits obtained during

transcriptome annotation of the seed beetle, Callosobruchus maculatus, belonged to viruses,

Fig 4. Heatmap of differentially expressed genes. The expression levels are quantified as log-transformed counts-per-million. The names of the genes

were obtained from the annotation with the NCBI database.

https://doi.org/10.1371/journal.pone.0255660.g004
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bacteria or fungi (Sayadi, et al., 2016). The annotation of the Colorado Potato Beetle, Leptino-
tarsa decemlineata, produced 16% of BLAST hits outside of the Arthropoda [56, 57]. Dissec-

tions and RNA extractions were performed with the utmost care to prevent external

contamination and mites were not found within the salivary gland tissue at the time of dissec-

tion. We do not have any evidence that these transcripts represent non-biological contamina-

tion. As such, these transcripts were not removed from the data used for downstream analysis

and likely represent an accurate snapshot of the beetle’s gene expression.

Analysis of gene expression in N. pustulatus identified a total of 651 differentially expressed

genes in fed beetles. Of them, 261 genes were downregulated and 390 genes were upregulated

in fed beetles compared to the starved ones. While, perhaps unsurprising, both male and

female beetles had a similar response indicating that the sex of the beetle did not alter the feed-

ing related transcriptional alterations we investigated.

Table 3. Enriched GO terms in the set of 651 differentially expressed genes.

GO.ID Term # of significant genes Rank

Biological Process

GO:0071702 organic substance transport 4 6

GO:0006865 amino acid transport 3 1

GO:0006820 anion transport 3 2

GO:0015711 organic anion transport 3 3

GO:0015849 organic acid transport 3 4

GO:0046942 carboxylic acid transport 3 5

GO:0000495 box H/ACA snoRNA 3’-end processing 1 7

GO:0001659 temperature homeostasis 1 8

GO:0001678 cellular glucose homeostasis 1 9

GO:0001710 mesodermal cell fate commitment 1 10

GO:0003416 endochondral bone growth 1 11

GO:0019725 cellular homeostasis 1 12

GO:0033500 carbohydrate homeostasis 1 13

GO:0033979 box H/ACA snoRNA metabolic process 1 14

GO:0034964 box H/ACA snoRNA processing 1 15

GO:0035265 organ growth 1 16

GO:0042593 glucose homeostasis 1 17

GO:0048333 mesodermal cell differentiation 1 18

Cellular component

GO:0005576 extracellular region 13 6

GO:0005615 extracellular space 7 1

GO:0005886 plasma membrane 7 19

GO:0005887 integral component of plasma membrane 2 13

GO:0031226 intrinsic component of plasma membrane 2 14

Molecular Function

GO:0004497 monooxygenase activity 8 2

GO:0045735 nutrient reservoir activity 5 1

GO:0000010 trans-hexaprenyltranstransferase activit. . . 2 3

GO:0080030 methyl indole-3-acetate esterase activit. . . 2 4

GO:0003958 NADPH-hemoprotein reductase activity 2 5

GO:0003988 acetyl-CoA C-acyltransferase activity 2 6

GO:0005549 odorant binding 2 7

https://doi.org/10.1371/journal.pone.0255660.t003
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Fig 5. Enriched GO terms in the set of differentially expressed genes. (A) Enriched GO terms among the upregulated genes in the fed

beetles. (B) Enriched GO terms among the downregulated genes in the fed beetles.

https://doi.org/10.1371/journal.pone.0255660.g005
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Fig 6. Enriched KEGG Pathways in the DEGs.

https://doi.org/10.1371/journal.pone.0255660.g006
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Several of the transcripts upregulated in fed insects compared to starved, were determined

to encode hexamerin-like and arylphorin proteins (Fig 4). These two proteins belong to the

same protein superfamily and are present in almost all insect species [58]. Hexamerin and aryl-

phorin proteins are involved with the storage of energy and amino acids and also have a role in

the insect immune response [59]. Similar to our findings, transcripts encoding hexamerin and

arylphorin proteins were also downregulated in starved Galleria mellonela [60] and Tribolium
castaneum [61].

Other genes involved in the insect immune response found to be upregulated in fed beetles

during the quantitative analysis of the beetle transcriptome included defensin and serine pro-

teases, including the circulative protease persephone. These genes are associated with the Toll

and Imd signaling KEGG Pathway. Defensins are small, disulfide-rich peptides shown to

exhibit a broad spectrum of antimicrobial activity against different parasites such as fungi and

bacteria [62, 63]. These peptides have been previously found to be present in the oral and anal

secretions of N. vespilloides [12] and transcripts encoding these peptides were upregulated in

N. vespilloides challenged with heat inactivated bacteria [64], adult N. orbicollis [21], and the

ticksHaemaphysalis flava [65] and Amblyoma sculptum [66] during blood feeding.

Serine proteases hydrolyze peptide bonds, making them a critical component of a number

of biological processes, including digestion and immune response. Protein catabolism is inte-

gral to the digestion and usage of carrion, an incredibly protein-rich resource. In addition, ser-

ine proteases are a component of one of the most important processes in the innate immune

responses of insects, the melanization process [67]. Serine protease upregulation has been

reported in N. vespilloides that are breeding [20] and actively providing parental care [19]. A

number of serine proteases specifically tied to immune response were identified in N. vespil-
loides challenged with heat inactivated bacteria [64]. These immunity-linked serine proteases

included coagulation factor proteases, prophenoloxidase activating enzymes, and hemolymph

proteases [62]. The circulative protease persephone has been found activate the Toll signaling

pathway in Drosophila [68], and it is likely this protein has a similar role in N. pustulatus. The

ability of persephone to sense a broad range of microbe virulence factors may enable N. pustu-
latus to launch immune responses against the diverse community of microbes present in soil

and carcass microbiomes [63].

Other transcripts upregulated in the fed beetles were identified as Cytochrome P450

(CYP450). Insect CYP450s have many metabolic roles including the detoxification of several

chemicals considered harmful for insects such as plant secondary metabolites and insecticides

[69]. Transcripts encoding CYP450 were upregulated in N. vespilloides actively providing

parental care [19], induced in T. castaneum following immunization [70], and induced in Pro-
taetia brevitarsis sulensis during bacterial infection [71]. It has been hypothesized that the abil-

ity of CYP450 to produce reactive oxygen species leads to the initiation or amplification of the

immune response [72].

A previous study showed that oral secretions in N. pustulatus lack antimicrobial activity [5],

and in this study only one transcript encoding an antimicrobial peptide (AMP), defensin, was

found to be upregulated in fed beetles. Our results suggest that N. pustulatus does not seem to

upregulate genes in the salivary glands that encode AMPs following feeding. However other

genes associated with the insect immune response as well as detoxification processes did

increase their expression, maybe with the aim of lowering the detrimental effects that the pres-

ence of exogenous microbes have to their reproductive success and larval growth [6]. Opening

snake eggs to allow feeding by larvae or burying a carcass to prepare a brood ball exposes feed-

ing adults and larvae to soil and carrion microbes which may trigger immune response [52].

This work provides a snapshot of the transcriptional alterations that occur in the salivary

glands of N. pustulatus following feeding and also provides a well described transcriptome for
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the further analysis of this unique burying beetle. The diet presented to beetles during this

study was significantly different than food resources available for beetle in their native envi-

ronment. As such, additional research simulating field-like conditions is warranted to fully

understand the changes in gene expression of N. pustulatus during its usual reproduction

cycle, which will show for sure a different expression profile than the one reported by this

work. Nonetheless, additional studies are underway to compare and contrast the alterations in

the salivary glands of N. pustulatus following feeding with other burying beetle species.
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