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ABSTRACT Drug testing in patient biopsy-derived cells can identify potent treatments for 
patients suffering from relapsed or refractory hematologic cancers. Here we 

investigate the use of weakly supervised deep learning on cell morphologies (DML) to comple-
ment diagnostic marker-based identification of malignant and nonmalignant cells in drug testing. 
Across 390 biopsies from 289 patients with diverse blood cancers, DML-based drug responses 
show improved reproducibility and clustering of drugs with the same mode of action. DML does so by 
adapting to batch effects and by autonomously recognizing disease-associated cell morphologies. In 
a post hoc analysis of 66 patients, DML-recommended treatments led to improved progression-free 
survival compared with marker-based recommendations and physician’s choice–based treatments. 
Treatments recommended by both immunofluorescence and DML doubled the fraction of patients 
achieving exceptional clinical responses. Thus, DML-enhanced ex vivo drug screening is a promising 
tool in the identification of effective personalized treatments.

SIGNIFICANCE: We have recently demonstrated that image-based drug screening in patient samples 
identifies effective treatment options for patients with advanced blood cancers. Here we show that 
using deep learning to identify malignant and nonmalignant cells by morphology improves such screens. 
The presented workflow is robust, automatable, and compatible with clinical routine.
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INTRODUCTION
Precision medicine aims to identify the best evidence-based 

treatment for each individual patient (1), historically focus-
ing on molecular markers to guide patient treatment. Exam-
ples of successful genetically guided precision medicine for 
blood cancers include the BCR-ABL1 inhibitor imatinib for 
patients with chronic myeloid leukemias (CML; ref.  2), and 
FLT3 inhibition for patients suffering from FLT3-mutated 
acute myeloid leukemia (AML; ref.  3). However, genetically 
stratified precision medicine is currently estimated to benefit 
around 10% of all patients with cancer (4), indicating a clear 
need for additional methods to identify effective treatments.

A complementary route to identifying effective treatments 
is to examine how cells from the patient respond to drugs 
in a lab test (4–12). Although conceptually simple, there are 
many ways to perform such ‘functional precision medicine’ 
(FPM) tests, and prospective clinical evidence is increasingly 
showing that they can bring patient benefit (4, 6, 10, 11). 
One such FPM approach relies on directly exposing cells 
isolated from patient biopsies to a panel of drugs, and, after 
drug incubation, immunofluorescent staining of cells for 
diagnostic markers (immunofluorescence; IF) and automated 
microscopy to determine cell type and viability of each cell in 
the complex biopsies. This approach, which we call phar-
macoscopy, is fast, automatable, high throughput, and can 
test hundreds of treatments from small peripheral blood or 
bone marrow biopsies. The single-cell resolution and marker-
based cell-type classification allows comparison of the drug 
response of cancer cells with that of healthy cells, providing 
a patient-internal toxicity control. Furthermore, the spatial 
and morphologic resolution provided by microscopy cap-
tures more complex drug responses, such as immune cell 
activation and engagement with target cells in response to 
immunomodulatory drugs (13–15).

In our recently reported clinical study, 56 patients with 
advanced aggressive hematologic malignancies received treat-
ments guided by pharmacoscopy (4, 6, 10, 16). Of these, 
30 patients (54%) achieved a more than 1.3-fold improved 
progression-free survival (PFS) compared with their previ-
ous therapy (4, 6). Furthermore, 12 patients (21%) achieved 
PFS that lasted three times longer than expected for their 
respective disease, referred to as “exceptional responses” (4, 
17). Cells were identified as malignant (“cancer”) or nonma-
lignant (“healthy”) by diagnostic marker IF. Post hoc analyses 
confirmed that the clinical predictions became more accu-
rate when also considering the drug toxicity on the healthy 
cells within the tested patient sample (4, 6). Given that IF 
marker–based cell-type identification is sensitive to cancer 
heterogeneity, antigen loss, and limited antibody specificity, 
improving cell-type identification in such image-based data 
could thus further increase the clinical predictive power of 
pharmacoscopy.

Assessment of cell morphology is fundamental for the 
diagnosis of cancer (18, 19) and provides rich information for 
deep learning–based diagnostic tools (20, 21). Recent stud-
ies have shown successes using deep learning, particularly 
convolutional neural networks (CNN), for cell class and state 
identification in the context of the hematopoietic system 
in health and disease (14, 22, 23): For example, CNN-based 

deep learning on live-cell imaging of human hematopoi-
etic progenitor cells predicted lineage commitment outcome 
several cell divisions prior to the commitment event being 
evident at the molecular level (22). CNN-derived features pre-
dicted genetic aberrations from bone marrow histopathology 
imaging for patients with myelodysplastic syndrome (23). 
And, in the context of automated microscopy of peripheral 
blood mononuclear cells (PBMC), CNNs enabled deconvolu-
tion of multiplexed immunofluorescence staining in a high-
throughput setting, based in part on morphologic differences 
between cell types (14, 15). CNNs consist of different “layers” 
representing different mathematical transformations, the 
combination of which makes up the “architecture” of the 
CNN. Given the large number of possible and published 
CNN architectures, an open question in CNN research is how 
to identify the most suitable architecture for a given problem.

In this study, we set out to investigate the use of deep learn-
ing using CNNs to morphologically classify nonmalignant 
and malignant cells (termed “deep morphology learning”; 
DML) in the context of ex vivo drug screening. We evaluate 
different CNN architectures and identify a relatively small 
CNN (mCNN) with good DML performance. Throughout 
the study, we contrast DML by mCNN to DML by a larger 
and state-of-the-art CNN (ResNet; ref.  24). Analyzing drug-
response data across 1.3 billion single cells from 390 indi-
vidual drug screens, we find improved performance for DML 
compared with marker-based analysis by IF and show that 
this is associated with robustness to batch effects and autono-
mous identification of disease-typical cell morphologies. The 
impact of DML on the clinical predictive power of ex vivo drug 
screening is assessed in a post hoc analysis of 66 patients with 
multiyear clinical follow-up data. This reveals improved PFS 
for treatments recommended by DML-based drug screen-
ing compared with the IF-based recommended treatments. 
Significant enrichment of exceptional responders is further 
observed for patients receiving treatments recommended 
simultaneously by IF and DML-based analyses, indicating 
diagnostic markers and cell morphology are complementary 
in cancer cell identification. Thus, DML deepens the insights 
derived from image-based ex vivo drug screening and enhances 
its clinical predictive power for the personalized treatment of 
relapsed and refractory hematologic malignancies.

RESULTS
We performed image-based drug screening in 390 real-time 

biopsies from 289 individual patients, collecting multiyear 
clinical follow-up for a subcohort of 66 prospectively treated 
patients reported previously (4, 6, 13, 16, 25). The combined 
data set comprises a total of 1.3 billion patient cells across 
136 ex vivo tested drugs (Supplementary Tables  S1–S4). The 
screens were performed over a period of 3 years and across 
diverse and heterogeneous hematologic diagnoses, includ-
ing AMLs, T-cell lymphomas, diffuse large B-cell lymphomas 
(DLBCL), chronic lymphocytic leukemias (CLL), and multi-
ple myeloma (MM). Diagnosis and tumor cell content were 
confirmed by routine clinical pathology. Real-time patient 
samples were incubated for 24 hours in 384-well format 
microtiter plates containing the drug library, and afterward 
fixed and stained. The drug screens were imaged by automated 
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confocal microscopy, recording a DNA dye (DAPI) capturing 
the nuclear morphology, brightfield (BF) imaging capturing 
cytoplasmic cell morphologies, as well as IF against up to three 
disease-matched diagnostic markers (see Supplementary 
Table S4 for the markers used per sample).

Weakly Supervised CNN Training for Label-Free 
Cancer and Healthy Cell Classification

We set out to develop and use deep CNNs to classify cancer 
and healthy cells strictly by their nuclear and cytoplasmic 
morphologies, termed DML (Fig.  1A). In the absence of a 
single-cell level ground truth, we use the diagnostic marker 
expression measured by IF to automatically label single-cell 
centric image crops (20  ×  20 pixels per channel) as either 
“cancer” or “healthy,” and train the CNNs to reproduce these 
labels from just the DAPI and brightfield image crops (i.e., 
20 × 20 × 2 input images). Such so-called weak supervision 
allows training at a scale not easily attainable with manual 
curation, which can help CNNs learn robust DAPI- and 
brightfield-derived features that differentiate cancer from 
healthy cells. The increased training data set size can further 
protect against CNN overfitting on experimental, technical, 
or lineage-specific features and avoid annotator bias.

Many CNN architectures with excellent performance in 
image classification tasks have been previously reported (26); 

however, none have been optimized for this weakly supervised 
classification task. We systematically explored different possi-
ble CNN models by training 291,800 different neural network 
architectures on 5,000 cells labeled as cancer cells and 5,000 
cells labeled as healthy. For each CNN, we evaluated their 
training time, model size, and training accuracy, i.e., how 
well the CNN-predicted labels match the IF-derived labels on 
the training data (Fig. 1B). As a control, we trained ResNet, a 
previously published and considerably more complex CNN 
architecture with state-of-the-art performance for image clas-
sification purposes (ref.  24; Fig.  1C and D; Supplementary 
Fig. S1). None of the randomized architectures outperformed 
the training accuracy of ResNet (Fig.  1C). However, the 
analysis identified a CNN architecture (referred to as mCNN) 
that was considerably smaller than ResNet, while reaching 
a similar test accuracy on 1,000 previously unseen cells per 
sample and class (85% for mCNN vs. 89% for ResNet; Fig. 1C 
and D). Smaller models with fewer parameters are generally 
less prone to overfitting, i.e., performing well on training data 
but poorly on data on which it was not trained. We, therefore, 
continued our analyses with both mCNN and ResNet.

Given that the used diagnostic markers were predominantly 
cell lineage markers (Supplementary Table  S4), training a 
CNN on the data of a single sample stained with a single 
marker (marker-sample pair) might lead to the identification 

Figure 1.  Screening neural network architectures for DML. A, Workflow and data set used for DML. 390 blood cancer samples were screened ex vivo 
on a library of 136 drugs, followed by automated confocal microscopy and single-cell image analysis. The final data set encompasses 696 fully imaged 
384-well plates, imaging over 1.3 billion single cells in 5 channels: brightfield, DAPI, and three channels used for IF staining of up to three markers identi-
fied by clinical diagnostics for each sample. DML uses CNNs trained to recognize malignant and healthy cells from just the DAPI and brightfield channels. 
CNN training is weakly supervised by marker immunofluorescence. DML-based drug scores were used to stratify patient PFS in a post hoc analysis. 
B, Graphical presentation of the randomized architecture screen. mCNN was selected based on training time, network size, and test accuracy from over 
290,000 screened architectures. C, Scatter plot of training accuracy and corresponding training time of screened architectures. Storage size of the 
network data structures are color-coded. D, Graphical comparison of the mCNN and ResNet architectures.
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of the cell lineage as opposed to the identification of malignant 
cells. Training a CNN across heterogeneous samples—although 
more challenging—is less likely to lead to the identification of 
just lineage features, as it presents malignant and nonmalig-
nant cells from across diverse lineages. To evaluate this, we 
compare the accuracy of mCNN trained per marker-sample 
pair (defined as drug screen of one patient sample analyzed 
by a single marker), with that of an mCNN trained across 
cells from all samples (Supplementary Fig.  S2A). Individual 
mCNNs were trained per marker-sample pair on 5,000 cancer 
and 5,000 healthy labeled cells. The pan-sample mCNN was 
trained on 586,500 cells (0.05% of all imaged cells) evenly 
subsampled from all 390 samples. This training data set 
was equally split across malignant and nonmalignant cell 
labels, and labels were based for each sample on the marker 
with the best performance in the per marker-sample pair 
mCNN training. Strikingly, training per marker-sample pair 
only achieved modestly higher test accuracies compared with 
mCNN trained across all samples, and accuracies per sample 

were correlated (rSP = 0.63; Supplementary Fig. S2A and S2B). 
This shows that mCNN classification accuracy would not be 
improved much by limiting the training data to cells from a 
single sample.

DML Improves Drug-Response Characteristics
The labels on which we trained mCNN are, however, 

themselves imperfect in distinguishing malignant cells from 
nonmalignant cells. As a result, the interpretation of classi-
fication accuracies in this so-called weakly supervised setting 
has limited value. Therefore, we next asked, notwithstanding 
these uncertainties, whether our DML-based cancer cell clas-
sification could improve our ability to identify cancer cell 
response to drugs (Fig.  2A) across all 390 samples and 136 
drugs (Fig. 2B; Supplementary Table S5). As a drug-response 
metric, we calculated the area under the curve (AUC) across 
concentrations, previously reported to be a robust drug effect 
estimator (ref.  27; Fig.  2A). Positive AUCs denote an on-
target drug-induced reduction in the fraction of cancer cells 

Figure 2.  DML-based cancer cell identification improves results from massively parallel ex vivo drug screening. A, Schematic example of the drug 
score calculation (AUC = area under the curve). B, Heat map of clustered DML-based drug-response scores (AUCs; see color bar) for drugs (rows) and 
patient samples (columns). Drug signature similarity is calculated with 1 − the Pearson correlation and graphically represented as node distance in a hier-
archical binary tree above the heat map. DML was performed using the mCNN architecture. Adjacent signatures associated with the same drug class are 
indicated on the right side of the heat map in red. Each sample-associated test accuracy and corresponding diagnosis are color-coded on top of the heat 
map. The accuracy is calculated as the percentage of matching DML and IF single-cell labels assigned to a test set (unseen during training) of 2,000 ran-
domly selected cells per sample, equally split across both classes. n = number of patient samples/drugs. The P values are derived from hypergeometric 
testing. C, Volcano plots showing the significance [−log10(P value); y-axis) and effect size (AUC; x-axis] per drug for all drugs and samples, analyzed either 
by DML (left) or IF (right). Significance was calculated by a two-sided Student t test comparing the drug score replicate wells with the negative control 
DMSO wells per sample. n = number of drug scores that are located in the corresponding quadrant as confined by the black dashed outlines. (continued on 
next page)
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Figure 2. (Continued) D, Mean significance [−log10(P value); P values are derived as in C; y-axis] of the top-x strongest drug responses per sample 
(x-axis) compared for different drug-screen readouts. IF indicates marker-based cancer cell identification. % indicates change in the target cell fraction 
relative to control. # indicates change in the number of target cells relative to control. “Total cell #” indicates change in total cell number relative to 
control. Random indicates randomized cancer cell classification. E, Box and whisker plots comparing the similarity in drug responses (pairwise Pearson 
correlation) across samples for drugs sharing the same class. Only drug classes with at least two associated drugs were considered. Red bar depicts the 
median. The bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. **, P ≤ 0.01. The P values indicate the significance of 
drug-response similarity and were derived from two-tailed Student t tests.

compared with DMSO control, whereas AUCs around 0 indi-
cate no change, and negative AUCs indicate a relative increase 
in the cancer cell fraction compared with DMSO. Hierarchical 
clustering across this DML-based drug-response landscape 
revealed several striking observations. We noted a significant 
grouping of samples by their diagnosis (P  <  10−14; Fig.  2B), 
which was not observed for repeated testing on randomly 
permuted data (Supplementary Fig. S2C). Furthermore, drugs 
with the same mechanism of action (annotated in Supple-
mentary Table S1) significantly clustered across the landscape 
(P < 10−9; Fig. 2B). And the significance of the strongest on-
target drug responses (or “hits”; measured by Student t test on 
the biological repeat measurements per condition against the 
DMSO-based negative controls of each screen) was better for 
DML than for IF (Fig. 2C). Given fixed effect size and signifi-
cance thresholds, more such on-target hits were obtained for 
DML (n = 5,389) compared with IF (n = 4,170) across the full 
set of image-based drug screens (Fig. 2C). Improved reproduc-
ibility for DML was also observed when comparing the mean 
significance of top on-target drug responses across samples 
(Fig. 2D). In this analysis, we included drug responses based 
on the relative drug scores of either DML (DML %) or IF (IF 
%), as well as on the total number of marker-positive cells rela-
tive to control (IF #), the total cell number measured in each 
condition relative to control (total cell #), and single-cell level 
randomized drug responses (random %). Across all different 
readouts, DML-based readouts showed the most significant 
top hits (Fig. 2D).

For comparison, we also trained ResNet on the same pan-
sample data set of 586,500 cells that mCNN was trained on. 
For clarity, please note that we use “DML” to denote deep mor-
phology learning using the mCNN architecture trained on all 

586,500 cells, unless indicated otherwise. In the comparison 
between DML by mCNN and DML by ResNet, we observed 
that top hits from ResNet were even more significant (Supple-
mentary Fig. S2D). Lastly, clustering of drugs with the same 
mode of action was also strongest for DML-based results 
compared with the other screening readouts (Fig. 2E). In this 
test, DML by mCNN and by ResNet showed equally good 
performance (Supplementary Fig.  S2E). Thus, cancer cell 
classification by DML, irrespective of the CNN architecture, 
resulted in drug-response profiles that outperformed marker-
based cancer cell identification by IF in orthogonal technical 
and biological evaluation criteria.

Opening the Black Box: Analyzing Features by 
Which Cells Are Clustered in mCNN’s Latent Space

CNNs learn a multidimensional data representation called 
the latent space, in which images that look similar to each 
other group closer together. Analysis of latent-space cluster-
ing of images is thus an effective way to get a better under-
standing of what a CNN has learned. We, therefore, asked 
whether morphologically similar samples and similar diag-
noses were clustered together in the multidimensional latent 
space of the CNN. At the technical level, we extracted the out-
put from mCNN’s last fully connected layer per cell (Fig. 3A; 
Supplementary Fig. S1), and calculated the pairwise sample 
similarity in this latent-space representation. We defined sam-
ple similarity as statistical enrichment in the K-nearest neigh-
bors (KNN) between the cells of two samples, which we refer 
to as the deep morphologic similarity (DMS) score (Fig. 3A). 
Hierarchical clustering of the DMS scores showed strong 
separation between cancer and healthy cell classes, each fur-
ther divided into three subclusters containing samples from 
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multiple diagnoses (Fig. 3B). A closer investigation indicated 
that these three subclusters reflected power settings of the 
light source used during brightfield (P  <  10−192) and DAPI 
(P  <  10−128) imaging, which had been stepwise altered over 
the course of 3 years of continuous biopsy screening (Fig. 3B; 
Supplementary Fig. S3A). Given that the cell class separation 
was stronger than the batch-associated clustering, mCNN 

had recognized and learned to overcome technical batch 
effects in the data.

DML Autonomously Learns Diagnosis-Associated 
Cell Morphologies

The clustering of DMS scores additionally showed signifi-
cant grouping of samples with the same diagnosis (P < 10−11; 

Figure 3.  DML autonomously recognizes diagnosis-enriched cell morphologies. A, Workflow for the analysis of mCNN’s latent space (left) by DMS 
(bottom right) and single-cell KNN enrichment (top right). Feedforward-propagation-derived activations of the last fully connected (FC) mCNN layer are 
analyzed. Bottom right, DMS is calculated by quantifying hypergeometric enrichment in the latent-space nearest neighbors between two samples, among 
the full set of samples. 1,000 cells per class and sample are used. Top right, Hypergeometric enrichment for categories (e.g., diagnosis) in the 100 nearest 
neighbors in latent space per cell. Enrichments are projected onto the t-SNE embedding. fc = fold change. B, Hierarchical clustering of the pairwise DMS 
matrix for 1,000 cells per class and sample. Leaf identity is color-coded according to the corresponding cell class (cancer, healthy), diagnosis, the laser 
power settings in the brightfield and DAPI channels, and the assigned cluster ID. The P values indicate cluster significance and are derived from hyper-
geometric testing. (continued on next page)
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latent-space projected onto the t-SNE embedding. E, Bar graph depicting fractions of cells calculated per sample and latent-space spectral cluster from 
D, for AML, CLL, and DLBCL samples from batch cluster I (n = 85). The corresponding clinical diagnosis for each sample is indicated above. The P value 
denotes cluster significance and is derived from hypergeometric testing. F, mCNN’s delta class probabilities per image subregion for eight example cell 
images from each of the diagnosis- [AML (1, 4), CLL (2, 5), DLBCL (3, 6)] and class- [cancer (1, 2, 3), healthy (4, 5, 6)] enriched t-SNE regions in C. For every 
input image, each pixel was masked with a square (5 × 5 pixels) of equal intensity in the brightfield and DAPI channel. G, Median and variance of the delta 
class probabilities per cell image projected on the t-SNE–clustered mCNN latent space. Metrics were calculated for each image individually in the DAPI 
and brightfield channels, and t-SNE embedding is colored according to a 2D color map reflecting results for each channel.



Deep Morphology Learning for Functional Precision Medicine RESEARCH BRIEF

 NOVEMBER  2022 BLOOD CANCER DISCOVERY | 509 

Fig. 3B). As leukemias and lymphomas are morphologically 
distinct (28, 29), this hinted at the possibility that mCNN 
had learned to recognize diagnosis-associated cell morpholo-
gies. To further investigate this, we visualized the t-SNE 
embedding of the single-cell latent space, only considering 
samples from cluster ID I to reduce batch effects as possible 
confounding factors (Fig.  3B). The t-SNE embedding sug-
gested considerable subclustering within both healthy and 
malignant classes, which we investigated in the context of our 
three most frequent diagnoses in our cohort: AMLs, CLLs, 
and DLBCLs (Fig. 3C). KNN enrichment analysis in the latent 
space (Fig.  3A) showed distinct regions enriched for cells 
from each diagnosis (visualized on the t-SNE embedding in 
Fig. 3C), despite AMLs and DLBCLs comprising a variety of 
subtypes (30, 31). Notably, this latent-space clustering of cells 
from the same diagnosis was significantly stronger for the 
mCNN architecture than for the deeper ResNet architecture 
(P  <  0.009; Supplementary Fig.  S3B). We further clustered 
the cells in latent space using a graph clustering approach 
(called spectral clustering) and quantified the fraction of cells 
per cluster and sample (Fig. 3D). This confirmed that these 
morphologic single-cell signatures were not an artifact of a 
few samples, but were observed across all samples (Fig. 3E). 
Furthermore, analyzing the sample similarity based on these 
cluster frequencies resulted in highly significant grouping of 
samples with the same diagnosis (P < 10−12; Fig. 3E). Finally, 
we could confirm that these latent-space clusters partially 
captured differences in interpretable cellular features, includ-
ing DAPI intensity and nucleus size. For example, we found 
that the AML-enriched cancer subcluster #9 was character-
ized by particularly large nuclei (Supplementary Fig.  S3C 
and S3D).

The presence of distinct diagnosis-enriched cell morpholo-
gies detected by DML was further investigated by measuring 
the response of mCNN to partially masking the input images. 
This showed that mCNN’s classification confidence was sen-
sitive to masking distinct image subregions and channels in 
a cell class- and diagnosis-dependent manner (Fig. 3F; Sup-
plementary Fig. S3E). Projecting the median and variance of 
the change in confidence per cell crop onto the t-SNE embed-
ding of the latent space indicated between- and within-class 
sensitivity differences (Fig.  3G). For example, healthy cell 
classification was strikingly more sensitive to masking of the 
brightfield channel than to masking of the DAPI channel, 
independent of the patient diagnosis. This indicates that the 
brightfield channel adds important confidence to a healthy 
cell classification. Thus, while learning to classify healthy and 
malignant cells across the entire patient cohort, the tailored 
mCNN architecture had recognized and adapted to batch 
effects and autonomously learned to recognize diagnosis-
associated cell morphologies.

Treatments Recommended by Both IF and DML 
Double Fraction of Patients Achieving Exceptional 
Clinical Responses

On-target drug responses measured by pharmacoscopy, 
evidenced by positive AUC scores, can be taken as a treatment 
recommendation for patients who have exhausted stand-
ard therapies. Indeed, we have previously shown that treat-
ments recommended by IF-based pharmacoscopy for patients 

enrolled in the Extended Analysis for Leukemia/Lymphoma 
Treatment (EXALT) study (Fig.  4A) led to improved PFS 
compared with the patient’s own response to their prior 
treatment (4, 6, 10, 16). This positive association between on 
target ex vivo drug response and good clinical response was 
also previously confirmed by post hoc analysis (4). Here, we 
use this same post hoc analysis strategy of the 66 patients 
included in both the EXALT trial and the current study to see 
how well the patients responded to the DML-recommended 
treatments compared with IF-recommended treatments. The 
66 patients included 24 patients suffering from relapsed/
refractory AML and 36 patients suffering from relapsed/
refractory B- or T-cell lymphomas, further characterized in 
Supplementary Table S2. As the treatments that the patients 
received following pharmacoscopy contained multiple drugs 
for most patients, we quantified the ex vivo support for such 
combination treatment as the integrated drug responses 
(integrated AUC score; iAUC; Fig.  4B). We take positive 
iAUCs above 0.1 to indicate ex vivo support for the treatment, 
whereas lower scores indicate the treatment is not recom-
mended by pharmacoscopy.

Comparing the IF- and DML-based treatment recom-
mendations for the 66 patients showed that 47 patients 
received treatments recommended by IF-based pharmacos-
copy, whereas only 21 patients received treatments supported 
by DML (Fig.  4C). Post hoc analysis indicated that treat-
ments recommended (iAUC  >0.1) by either DML alone, or 
simultaneously by DML and IF, showed clinical benefit by 
several metrics. DML-supported treatments were associated 
with prolonged median PFS compared with IF-supported 
treatments (although significance not reached by the Wilcoxon 
rank test; Fig.  4D; Supplementary Fig.  S4A), with a near 
doubling of median PFS, from 72 days for IF to 144 days for 
DML, and median not reached for treatments recommended 
by both DML and IF (Fig. 4D; Supplementary Fig. S4A). As 
the survival curves were characterized by heavy tails that 
were not captured by the median PFS, we further quantified 
clinical performance by three metrics: (i) the normalized 
“area under the Kaplan–Meier curve” (AUKM; Fig. 4E) as an 
ad hoc measure of integrated clinical benefit; (ii) the median 
PFS ratio, which compares the patient’s prior PFS response 
to PFS achieved following testing (Fig.  4F); (iii) and enrich-
ment for so-called exceptional responders, previously defined 
as patients achieving responses lasting three times longer 
than expected for their respective disease (ref.  4; Fig.  4G). 
By all three measures, treatments recommended by either 
DML alone, or by both DML and IF, outperformed treat-
ments recommended by IF alone. Enrichment for exceptional 
responders was particularly striking: 38% (8 of 21) of patients 
receiving DML-recommended treatments (P  <  0.0024) and 
50% (7 of 14) of patients receiving treatments recommended 
by both DML and IF (P < 0.00041) led to exceptional clinical 
responses.

DML-recommended treatments further significantly im proved 
median PFS compared with treatments not recommended by 
DML (P < 0.025; Fig. 4D and E; Supplementary Fig. S4A). And 
patients receiving treatments that were recommended by IF 
but not by DML showed poor PFS, indicating DML identified 
a number of false-positive treatment recommendations from 
IF (Fig. 4D and E; Supplementary Fig. S4A). Nonetheless, both 
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IF- (P < 0.01; consistent with the EXALT study; refs. 4, 6) and 
DML- (P < 0.002) recommended treatments showed improved 
clinical responses compared with prior treatment based on the 
physician’s choice (Supplementary Fig. S4B).

The lower number of treatments recommended by DML 
coinciding with their improved clinical performance thus 
suggests that morphologic cancer cell classification is robust 
to IF-based false-positive treatment recommendations, pos-
sibly stemming from drug-induced loss of marker expression. 
Such differences in false positives between IF and DML are a 
likely explanation for why their intersection is associated with 
the best clinical responses.

Network Architecture and Pan-Diagnosis Training 
Are Critical for DML Performance

Given the clinical heterogeneity of the 66 patients included 
in the retrospective analysis, we analyzed if the advantages 
resulting from DML-based cancer cell classification were 
observed across different patient subgroups. Indeed, both 
DML alone and the combination of DML and IF identified 
the most effective personalized treatments for the 24 included 
patients with AML (Supplementary Fig.  S4C), for the 36 
included patients with lymphoma (Supplementary Fig. S4D), 
and for fitter patients (as identified by ECOG performance 
status  ≤1; Supplementary Fig.  S4E, F). These improvements 
were consistently seen using either Kaplan–Meier curves, 
AUKMs, or median PFS as clinical performance metrics.

Lastly, we evaluated if the CNN architecture and train-
ing regime influenced the clinical response associated with 
DML-recommended treatments. Despite the state-of-the-
art ResNet architecture achieving a higher training accu-
racy than the smaller mCNN architecture (Fig. 1C), mCNN 
outperformed ResNet with regard to the PFS achieved 
in response to their recommended treatments, both as a 
standalone recommendation and when combined with IF-
recommended treatments (Supplementary Fig.  S4G and 
S4H). Furthermore, training DML only on the samples of an 
individual diagnosis (as tested for AML, CLL, DLBCL, and 
other lymphomas) entirely annulled the improvements in 
PFS and AUKM achieved by DML-based treatment recom-
mendations compared with IF (Fig.  4H and I). Even when 
evaluating the PFS of patients treated for the same diagnosis 
as DML was trained on (for either AML or lymphomas), no 
improvements over IF-based treatment recommendations 
were observed (Fig.  4H and I; Supplementary Fig.  S4I and 

S4J). Thus, as originally postulated, weakly supervised pan-
diagnosis training with a slim neural network architecture 
had enabled DML to rise above the limitations inherent to 
marker-based cancer cell identification, thereby improving 
ex vivo image-based drug-response testing for personalized 
treatment identification.

DISCUSSION
There is an urgent need for methods that identify effective 

therapies for patients suffering from relapsed and refractory 
cancer. Here, we introduce an automated workflow for weakly 
supervised DML to classify malignant and healthy cells in 
patient biopsies and show that it leads to highly actionable 
clinical treatment recommendations from image-based ex 
vivo drug screening for hematologic cancers.

Our results are at first sight counterintuitive: DML by 
a small CNN architecture (mCNN) analyzing only two of 
our five imaging channels outperforms both patient-tailored 
marker expression measured by immunofluorescence as 
well as DML based on a deeper and more accurate ResNet 
classifier. mCNN-based drug-response profiles showed an 
increased number of significant on-target hits, superior clus-
tering of drugs with the same mechanism-of-action, stronger 
identification of diagnosis-enriched cell morphologies, and 
its treatment recommendations were associated with better 
clinical outcomes.

mCNN achieved these improvements by weakly supervised 
training on 586,500 (out of 1.3 billion) imaged cells from 
390 drug screens in real-time patient biopsies, labeled by the 
marker expression of each individual cell. Given that ResNet 
achieved higher test accuracies with a deeper residual net-
work architecture, the smaller mCNN likely induced it to bet-
ter generalize features of malignant and healthy cells across 
diagnoses. This interpretation is supported by (i) the fact 
that mCNN’s latent-space representation of the data more 
strongly clustered cells from the same diagnosis, (ii) that 
mCNN post hoc identified more effective treatments across 
both leukemias and lymphomas, and (iii) that the improved 
performance of mCNN was lost when trained on multiple 
samples with the same diagnosis, rather than across multi-
ple diagnoses. Furthermore, the custom mCNN architecture 
resulting from the architecture screen might have helped it 
adapt to technical batch effects present in the training data. 
Thus, we show that optimizing deep learning just on accuracy 

Figure 4.  DML-based pharmacoscopy identifies clinically effective personalized treatment options. A, Outline of the EXALT trial (4, 6). B, Graphic 
presentation of the integrated drug score calculation (iAUC) per patient. AUC scores are integrated for all tested drugs each patient subsequently 
received in the clinic. C, Scatter plot of marker- (IF; y-axis) and morphology-based (DML; x-axis) iAUCs per patient. Selected strong negative values not 
shown for readability. Dashed red lines indicate the iAUC thresholds of 0.1, used to determine if patient treatments were supported by either IF and/or 
DML-based pharmacoscopy. Exceptional responders are colored in green. D, Kaplan–Meier plot showing the percentages of progression-free patients 
with treatment regimens supported by iAUCs > 0.1 for: DML and IF (green, n = 14 patients); DML (pink, n = 21); IF (blue, n = 47); IF but not DML (light gray, 
n = 33); DML but not IF (dashed gray, n = 7); not DML (dashed pink, n = 45); not IF (dashed blue, 19); or not DML and not IF (dashed green, n = 12); see 
legend on the right. Tick marks indicate censored data points (i.e., ongoing responses). The P value indicates Wilcoxon rank test significance. E, Area under 
the Kaplan–Meier curve (AUKM; see insets on the right for DML and IF examples) corresponding to the patient subgroup PFS curves shown in D. F, Median 
PFS ratio comparing the patients’ current treatment response (following pharmacoscopy testing) and the responses to their previous treatment, strati-
fied as in D. G, Percentage of patients achieving exceptional clinical responses, stratified as in D. H, Kaplan–Meier curves comparing the PFS of EXALT 
patients (n = 66) receiving treatments post hoc recommended by either DML trained on all patient samples (pink; n = 390) or DML trained on all CLLs 
(light blue; n = 50), AMLs (gray; n = 101), DLBCLs (brown; n = 62), or all other lymphoma samples (dark yellow; n = 141). The PFS curve of patients receiv-
ing treatments recommended by IF is shown as reference (blue). I, AUKM values corresponding to H (left) or corresponding to the subset of EXALT AML 
patients (n = 24; middle) or the subset of EXALT “other lymphoma” patients (n = 36; right). Bar colors corresponding to DML trained on different sample 
subsets as shown in H. A, D, G–I, n = number of patients. G, **, P ≤ 0.01; ***, P ≤ 0.001. P values are derived from hypergeometric testing.
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is not always ideal. Rather, screening CNN architectures to 
balance the trade-off between classification accuracy and net-
work size yielded the best biological and clinical performance. 
This concept, and the developed computational workflow, 
will likely apply to other biomedical questions where training 
data labels are imperfect.

Functional assays that probe drug sensitivity and resist-
ance directly in patient biopsies are increasingly used to guide 
patient treatment and complement molecular tumor profil-
ing for clinical decision support (4–7, 9–12, 32–35). These 
functional screens stand out as they can provide evidence for 
treatments that lack molecular response predictors, identify 
drug sensitivities for cancers that do not harbor actionable 
molecular markers, and prioritize among therapies associated 
with the same biomarker, even on an n = 1 patient basis (8, 
36). Our concomitant clinical study shows that our image-
based approach is feasible in clinical routine and beneficial 
for the treatment of aggressive hematologic malignancies 
(4, 6). With the development of DML, we here demonstrate 
the power of combining cell morphology, a bedrock of clini-
cal pathology, with deep learning across massively parallel 
image-based ex vivo drug screening for precision medicine. 
Several features of DML make it highly attractive for inclu-
sion in future clinical studies: DML works in parallel and 
complementary to established experimental protocols; it can 
learn to be robust to technical and biological variation; it 
can learn from previously generated data sets; training data 
can be expanded by experimentation as well as manual cura-
tion; and retraining is fast. Furthermore, by training the deep 
learning on single-cell classification and deriving the clinical 
treatment recommendations from the resulting drug-screen 
analysis, rather than directly training the network on the 
identification of effective treatments, we avoid overfitting-
associated limitations that have hampered the adoption of 
deep learning in clinical routine (37, 38). Thus, our results 
encourage further clinical studies testing the impact of deep 
morphology learning-augmented ex vivo drug screening for 
personalized treatment selection in hemato-oncology.

METHODS
Clinical Cohort and Sample Preparation

In this study, we examined 390 samples from patients suffering 
from various hematologic malignancies, including, among others, 
101 AML, 62 DLBCL, 50 chronic lymphocytic (CLL), and various 
T-cell lymphoma samples (n = 69; Fig. 2B; Supplementary Tables S3 
and S4). A subset of samples were from 66 patients enrolled in the 
EXALT trial (4, 6), for which clinical outcome information with a 
median follow-up time of 23.9 months following pharmacoscopy 
testing was previously documented (Supplementary Table  S2). All 
samples were collected and processed with written informed consent 
from the participants. For individual late-stage patients who met 
the EXALT trial inclusion criteria (4, 6), pharmacoscopy-guided 
therapy was provided as an individual healing attempt, conducted in 
accordance with the Declaration of Helsinki and the International 
Conference on Harmonization Guidelines for Good Clinical Practice. 
Ethical approval was granted by the Ethics Commission of the Medi-
cal University of Vienna (Ethik Kommission 1830/2015, 2008/2015, 
and 1895/2015).

Cancer cell–containing samples were acquired by either biopsy, 
bone marrow aspirate, or peripheral blood draws and were processed 
fresh or frozen (Supplementary Table  S4). Tumor cell content was 

determined in clinical routine by fluorescence-activated cell sorting 
and/or by differential blood counts for liquid samples (blood and 
bone marrow) and by microscopic, IHC evaluation of slides for the 
respective tumor markers by a pathologist. Procured biopsies were 
either purified using Ficoll density gradient (bone marrow aspirates, 
peripheral blood, pleural effusion, ascites) or filtered through a 70-μm 
mesh filter (lymph tissue) into single cells resuspended in RPMI 
containing 10% FBS and 1% penicillin–streptomycin. Where possible, 
20,000 cells per well were seeded in 384-well imaging plates. Depend-
ing on cell numbers, most samples (304 of 390) were distributed 
over two plates containing small compound libraries including 136 
different drugs in two concentrations (1 μmol/L and 10 μmol/L) in, 
respectively, 2 and 3 technical replicate wells (Supplementary Tables S1 
and S4). Compound annotations were retrieved from the database of 
Chemical Entities of Biological Interest (CHEBI; http://www.ebi.ac.uk/
chebi/), as well as from the Kyoto Encyclopedia of Genes and Genomes 
Compound database (http://www.genome.jp/kegg/compound/) and 
DrugBank (https://go.drugbank.com/). Based on these resources, a 
“simplified drug class” annotation was generated manually. Samples 
were incubated in the drug plates overnight (18–24 hours, 37°C, 5% 
CO2), subsequently fixed with 0.5% formaldehyde and 1:1,000 Triton 
X in phosphate-buffered saline, stained with the sample-specific set of 
antibodies and 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI, 
Thermo Fisher Scientific) for later nuclear identification. Depend-
ing on the patient’s diagnosis, different fluorescence-labeled primary 
antibodies were chosen for their ability to detect the malignant target 
cancer cell populations in each sample and cells were subsequently 
stained for 1 hour. Selected antibodies are listed in Supplementary 
Table  S4 and include CD3 (HIT3a), CD19 (HIB19), CD20 (2H7), 
CD79a (HM47), CD34 (4H11), CD117 (104ED2), and CD138 (DL-
101; eBioscience; Thermo Fisher). Next, all samples were imaged by 
automated microscopy (brightfield (650–760 nm), DAPI/Nuclear 
signal (435–480 nm), GFP/Green signal (500–550 nm), PE/Orange 
signal (570–630 nm), and APC/Red signal (650–760 nm) by Opera 
Phenix (PerkinElmer). Cell detection, fluorescence quantification 
(CellProfiler v2; Broad Institute of Harvard and the Massachusetts 
Institute of Technology, Boston, MA; ref.  39) and data processing 
(Matlab; version R2020a) were conducted as described previously (6, 
13). In short, cell segmentation was performed by locating cell nuclei 
based on their DAPI signal followed by several rounds of nuclear 
expansion to detect the cell outline and background regions for 
local background correction. Mis-segmented cells, contaminants, or 
image artifacts were excluded based on thresholding on the DAPI 
intensity and the segmented area.

CNN Architecture Screen and CNN Training
CNNs have repeatedly demonstrated leading-edge performance in 

learning meaningful biological information for the automated analy-
sis of microscopy images (40–42). With an improving computational 
infrastructure and newly emerging network building blocks, CNN 
architectures can be more easily adapted to specific classification 
problems in terms of network complexity, layer type, and parameter 
count. To determine the optimal architecture for the classification 
of our small single-cell image crops, we screened 291,800 randomly 
generated CNN architectures. For each sampled network, a fixed scaf-
fold of image input and a three-layered classification block (fully con-
nected, softmax, and class output; Fig. 1B) was complemented with 
a random collection of up to 25 layers drawn with equal probability 
from a set of nine layer types (including the sampling of layer-specific 
parameters): (i) convolutional layer (filter size: 3–10, stride: 1–3, pad-
ding: 0–2, number of filters: 5–100); (ii) fully connected layer (number 
of nodes: 4–100); (iii) rectified linear unit layer; (iv) leaky rectified 
unit layer; (v) batch normalization; (vi) cross-channel normalization 
(window size: 1–5); (vii) dropout layer; (viii) average pooling layer 
(window size: 1–5, stride: 1–3); (ix) max pooling layer (window size: 
1–5, stride: 1–3). Before training, all networks were tested for their 

http://www.ebi.ac.uk/chebi/
http://www.ebi.ac.uk/chebi/
http://www.genome.jp/kegg/compound/
https://go.drugbank.com/
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basic functionality to discard networks with invalid layer sequences 
or incorrect parameterizations (like mismatching input/output sizes).

Functional networks were trained on 20 × 20 × 2 pixels (52 μm ×   
52 μm × 2 channels; DAPI and brightfield) subimage crops extracted 
from the DAPI and brightfield images, where each image contains a 
cell of interest at the image center. Cells overlapping with the original 
image border were excluded from training and classification. The cells’ 
class labels (cancer or healthy) were automatically assigned by thresh-
olding the fluorescence intensity of the staining antibody marking 
the malignant target population. The threshold optimally separating 
the marker-positive cancer cell population from the marker-negative 
healthy cells was determined by fitting a Gaussian mixture model 
with two components to the marker intensity distribution and iden-
tifying the intersection of both Gaussians (see Matlab’s Statistics and 
Machine Learning Toolbox). The image resolution was constrained 
by a 10× magnification and subsequent binning of the pixel informa-
tion to allow for faster imaging. Apart from image normalization 
with the in-built Matlab zero-center functionality, additional image 
preprocessing steps were conducted as described previously (4, 6). The 
training data ratio was set to 0.7/0.2/0.1 (training/validation/test 
cells). Network-layer weights and biases were initialized randomly 
before training. To avoid overfitting, L2 regularization with 0.005 was 
applied. Furthermore, images were randomly rotated in 45-degree 
steps and flipped vertically or horizontally in each iteration. CNNs 
were trained up to 30 epochs with a fixed learning rate of 0.0001. As 
a parameter optimization algorithm, the stochastic gradient descent 
implementation from Matlab was used with a momentum of 0.9.

Screened network candidates were ranked according to the high-
est training accuracy achieved on an image set from one of the 
patient samples (5,000 randomly sampled marker-positive and nega-
tive cell images per class; mini batch size: 250). Architecture, network 
size, training time, and training accuracy of the top-scoring CNN 
(mCNN) and an adapted state-of-the-art ResNet architecture are dis-
played in Fig. 1D. For the pan-sample versus per marker-sample pair 
training strategy comparison, we first trained up to three mCNNs per 
sample, one for each sample-specific target population (5,000 cells 
per sample and class; mini batch size: 250). Subsequently, mCNN and 
ResNet were trained on 586,500 cell images (750 randomly sampled 
images per sample and class; mini batch size: 2,000) pooled from all 
patient samples and across all drug conditions. For the pan-sample 
training image labels, we selected the marker signal that led to the 
highest per marker-sample pair training accuracy. To benchmark 
how the training strategy affects network performance, we collected 
a reference test set of 1,000 cell images per sample and class and com-
pared the test accuracies achieved by the pan-sample and per marker-
sample pair-trained mCNNs on this reference set (Supplementary 
Fig. S2A and S2B). CNN training and classification were done with 
Matlab (version 2020a).

Drug Score Calculation
For quantification of the ex vivo drug responses per sample and 

condition, we compared several drug score readouts that each rely on 
the classification of cancer and healthy cells. In total, we considered 
six measures: two CNN-based drug scores (DML by mCNN% and 
DML by ResNet%), where neural networks predicted the cell class 
labels, two immunofluorescence-based readouts (IF% and IF#), where 
a fluorescence threshold separated marker positive from negative 
cells, and two control measures based on the total cell number (total 
cell#), and a class vector, where the cell labels were assigned randomly 
(random%). The drug scores were reported either as absolute cell 
counts normalized to control (labeled with #), or by taking the rela-
tive cancer cell fraction (RCF) into account (labeled with %), i.e., the 
fraction of cells labeled as cancer in drug-treated wells divided by the 
average fraction of cancer-labeled cells measured in dimethyl sul-
foxide (DMSO)-containing control wells (Fig. 2A). For the latter, we 
determined the AUC by calculating 1—the mean RCF value averaged 

over technical replicates and summed over both drug concentrations 
as described previously (4, 6, 13). Consequently, AUC drug scores 
above zero (corresponding with small RCF values) indicate on-target 
responses, values around zero refer to no significant drug effects and 
negative scores can be interpreted as chemoresistance. Statistical 
analyses were performed with Matlab (version R2020a).

Morphologic Profiling in CNN Latent Space
During training, CNNs learn an abstract interpretation of the 

input data, which is accompanied by an automated selection of 
those image features that desirably lead to an optimal classification 
of the image content. At the core, this learning process is an opti-
mization problem, where the intrinsic parameters of each artificial 
neuron are systematically altered to improve class prediction. As 
CNN architectures are often hierarchically organized, i.e., neurons 
are arranged in layers, which have connections only to the preceding 
and the following layers, each layer constitutes a separate intermedi-
ate representation of the inputs and thus forms a so-called latent 
space. Consequently, latent spaces encode cellular morphology and 
vice versa; morphologic similarities appear closer also in latent space. 
Assuming that layers located deeper in the architecture contain a 
more concise representation of the learned features, we extracted 
the latent space either from the 23rd mCNN layer or from the 36th 
ResNet layer. Specifically, we computed the outputs of all neurons 
(so-called activations) that span the mCNN and ResNet latent space, 
respectively, via feed-forward propagation for 1,000 single-cell images 
per patient sample and class. All cell images were randomly selected 
from DMSO-control wells. For a better comparison of the mCNN 
and ResNet performance, we aligned the latent space dimensionality 
by conducting a principal component analysis and selected the first 
20 components, respectively.

To explore the morphologic similarity between samples, we calcu-
lated the KNN of each cell in the extracted latent space. Each queried 
cell was assigned with the sample identity of the most similar cell 
from another sample (k =  1, Euclidean distance). Subsequently, we 
calculated the DMS score between two samples by computing the log 
ratio (log2 fold change) between the actual and the expected number 
of neighboring cells from those two samples.

Local enrichment of diagnosis-specific morphologies was com-
puted by hypergeometric testing, i.e., by calculating the probability 
to randomly find at least n cells of diagnosis X in the defined neigh-
borhood using a hypergeometric cumulative distribution function. 
This takes into account the total number of cells in the KNN-
neighborhood (k = 100), the total number of cells sampled, and the 
total number of cells of diagnosis X. The enrichment probability 
is assigned to the corresponding cell in a t-distributed stochastic 
neighbor embedding (t-SNE) of the CNN latent space. In the t-SNE 
calculation (Barnes-Hut algorithm, Matlab 2020a), a standardized 
Euclidean distance metric, a perplexity of 1,000, and an exaggeration 
parameter of 50 were applied. All P values were corrected for multiple 
testing (Bonferroni correction), i.e., by the number of total cells (i.e., 
tests) in the analysis.

Possible Routes for Implementing DML-Based 
Pharmacoscopy into Clinical Routine

There are several different routes by which DML-based pharma-
coscopy could be implemented in clinical routine. Sample testing 
by pharmacoscopy could be either done in a centralized lab or 
decentralized. Subsequently, computational analysis could be done 
either on local infrastructure or on decentralized “cloud” infra-
structure. Analysis by DML operates out-of-the-box as described in 
the downloadable example code (https://www.snijderlab.org/deep_
morphology_learning/). If samples were processed according to the 
provided pharmacoscopy protocol with similar imaging settings and 
modalities and patient diagnoses as the data mCNN was trained 

https://www.snijderlab.org/deep_morphology_learning/
https://www.snijderlab.org/deep_morphology_learning/
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on, the provided pretrained mCNN network can classify single-cell 
images from new samples into cancer or healthy without further 
network modifications. Those class labels, in turn, allow for drug-
response quantification per condition, drug ranking, and subsequent 
treatment recommendation. However, the pretrained mCNN will not 
work out-of-the-box for stainings, imaging settings or modalities and 
diagnoses that were not included in its training data. In this case, it 
would be required to retrain mCNN via transfer learning on addi-
tional in-house samples. Possible control samples would be those for 
which IF identifies cancer from healthy cells with a 100% accuracy.

Data Availability
Due to privacy regulations, data storage was conducted on secured 

servers at the Medical University of Vienna, the Research Center for 
Molecular Medicine of the Austrian Academy of Sciences (CeMM), 
and the ETH Zurich. A pretrained instance of mCNN and exam-
ple implementation is available at https://www.snijderlab.org/deep_
morphology_learning/. All drug-response data and anonymized 
clinical annotations required to reproduce presented results are pro-
vided in the Supplementary tables accompanying this article.
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