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Abstract: Recent literature has revealed a long discussion about the importance and necessity of
nerve conduction studies in carpal tunnel syndrome management. The purpose of this study was
to investigate the possibility of automatic detection, based on electrodiagnostic features, for the
median nerve mononeuropathy and decision making about carpal tunnel syndrome. The study
included 38 volunteers, examined prospectively. The purpose was to investigate the possibility of
automatically detecting the median nerve mononeuropathy based on common electrodiagnostic
criteria, used in everyday clinical practice, as well as new features selected based on physiology and
mathematics. Machine learning techniques were used to combine the examined characteristics for a
stable and accurate diagnosis. Automatic electrodiagnosis reached an accuracy of 95% compared
to the standard neurophysiological diagnosis of the physicians with nerve conduction studies and
89% compared to the clinical diagnosis. The results show that the automatic detection of carpal
tunnel syndrome is possible and can be employed in decision making, excluding human error. It
is also shown that the novel features investigated can be used for the detection of the syndrome,
complementary to the commonly used ones, increasing the accuracy of the method.

Keywords: carpal tunnel syndrome; CTS; feature extraction; machine learning; median nerve
mononeuropathy; nerve conduction studies

1. Introduction

Carpal Tunnel Syndrome (CTS) is caused by compression of the median nerve as it
travels through the carpal tunnel, formed by flexor retinaculum, while the other nerves
of the hand (ulnar and radial) are not affected by the syndrome (Figure 1). It is the
most common peripheral compression mononeuropathy and a significant cause of work
disability, with almost 3% of the general population affected [1,2]. Compressing forces
on the median nerve result in microvascular damage to the nerve and its myelin sheaths.
Prolonged or repetitive compression results in inflammation, fibrosis and demyelination,
which leads to disruptions in the speed of axonal signaling [3]. With persistent compression,
the combination of these factors may lead to axonal degeneration [4]. The symptoms that
define the syndrome are numbness and tingling in the median nerve distribution along with
pain at the palmar side of the hand and the wrist. Symptoms typically start insidiously,
during the night and they gradually exacerbate. These initial sensory symptoms are
followed by weakness in grip and atrophy of thenar muscles if the condition remains
untreated [5]. Moreover, the pain is frequently reported to spread proximally to the wrist
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up the arm and sensory symptoms are often described outside the typical median nerve
distribution [6,7].

Figure 1. Nerves of the wrist and hand. Note the position of the median nerve under the flexor
retinaculum. Reproduced with permission from www.kenhub.com, accessed on 1 August 2021.

Clinical diagnosis of CTS is made with an accurate patient history describing a combi-
nation of the typical symptoms, along with physical examination of the hand and clinical
provocative tests (Tinel’s sign, Phalen’s test and compression test) [8]. Final diagnosis and
decisions about the further treatment of CTS is accomplished by the detection of median
nerve mononeuropathy through the use of electrophysiological and imaging studies [9,10].
Imaging modalities, including magnetic resonance imaging and ultrasonography of the
wrist, had low sensitivity and conflicting results, until recently, and they were not recom-
mended for routine use in diagnosis [8]. However, improvements in ultrasound equipment
and the training of physicians increased its sensitivity and specificity in the detection of
median nerve mononeuropathy, making it a useful tool for diagnosis, as well as for the
detection of anatomical abnormalities, contributing to median mononeuropathy [10–13].
Magnetic resonance imaging is a useful tool for the assessment of various traumatic and
pathological conditions in the wrist and hand, including nerve mononeuropathy [14,15],
but its routine use is not supported for the diagnosis of CTS [10].

On the other hand, electrophysiological Nerve Conduction Studies (NCSs) have long
been considered the most useful tool for the confirmation of the median nerve mononeu-
ropathy and the decision of therapeutic strategy in CTS [5]. Analysis of the median nerve
motor and sensory conduction across the wrist compared to ulnar and radial nerve conduc-
tion is used to evaluate the functional result of median nerve compression [16]. Different
parameters with comparable high sensitivities are included in NCSs depending mainly
on the neurophysiologist’s experience [17]. The combination of these commonly used
parameters for the neurophysiological testing, has led to the development of a grading
scale widely accepted for the diagnosis and management decisions [18].

Nevertheless, many controversies have arisen regarding the necessity of NCSs as
confirmatory tests or tools contributing to patient management [19–22]. These controversies
emanate mainly by the rise of the time and the cost needed for the diagnosis of CTS with
the use of NCSs [23,24], the discomfort caused to the patients by nerve stimulation, and the
high rate of false positive and false negative results of NCSs along with the ease and the
accuracy of clinical diagnosis in many cases with symptoms and signs typical of CTS [20].
Thus, the present study sought out to test the sensitivity of the different NCSs’ parameters
for the diagnosis of CTS with a final goal to facilitate and accelerate the electrodiagnosis
and make it more accurate.

Recently, machine learning based methods have found widespread use in healthcare,
revolutionizing the area of medical diagnosis [25–27]. To this end, previous attempts for
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the automatic diagnosis of neuropathies and CTS through machine learning NCS signal
processing have shown promising results [28,29]. However, these studies are focused
exclusively in the analysis of motor nerve conduction parameters, having — in the case of
CTS — the inherent drawback of the wide variation of compound muscle action potentials
(CMAP) related to muscle contraction and hand position [30]. Furthermore, there is a
number of hand-held devices developed for the diagnosis of peripheral neuropathies, but
they employ analysis solely of specific signal characteristics carried out with restricted
numbers of classifiers [31,32], resulting in very limited use in the diagnosis of CTS, indis-
pensably together with thorough history and clinical examination [33,34]. This study aims
to highlight the accuracy that can be reached in the automatic diagnosis of CTS by the
analysis of diverse NCS signal characteristics with multiple classifiers.

2. Materials and Methods

The main target of this study is to evaluate the sensitivity of different NCSs’ pa-
rameters for the diagnosis of median nerve mononeuropathy and the ability of different
classifiers to automatically discriminate normal and pathological values. Machine learning
techniques were employed to examine signal characteristics and compute the accuracy of
automatic classification.

2.1. Data

This study included 38 volunteers that were examined prospectively, over a period
of two months, at the Laboratory of Clinical Neurophysiology, Neurological Department
of the University Hospital of Ioannina. Among them, 28 participants were patients with
symptoms and signs suggestive of CTS, who were referred to the laboratory by hospital
physicians not affiliated to the study (neurologists, orthopedics and rheumatologists).
Patients diagnosed with other neurological disorders apart from CTS (other neuropathies,
radiculopathies, central nervous system lesions), as well as patients with other systemic
diseases, were excluded from the study. Ten age-matched healthy individuals were also
included in the study (Table 1).

Table 1. Characteristics of the study population.

Characteristics 1 Patients (n = 28) Controls (n = 10)

Women 25 (89%) 7 (70%)
Age (years) 47.93± 12.92 41.3± 9.14
Weight (kgr) 72.55± 13.97 66.50± 10.23
Height (cm) 163.35± 7.68 166± 8.94

BMI 2 (kg/cm2) 27.23± 5.15 24.13± 3.16
1 There is no statistically significant difference between the groups. 2 Body Mass Index.

All participants signed an informed consent form and underwent an initial clinical
evaluation from two neurologists of the study for both hands, before neurophysiological
testing. From the total number of hands examined (76), 65 were included in the study
(46 with CTS and 19 control) and 11 hands were excluded because there was either a history
of prior surgical intervention for CTS or a mismatch between clinical and neurophysiologi-
cal diagnosis [13,35]. Clinical diagnosis of CTS for each hand was based on the following
criteria: (a) hypesthesia or paresthesia in the distribution of the median nerve; (b) night
paresthesia; (c) wrist and palm pain; (d) weakness or atrophy of the thenar musculature;
(e) Tinel’s or Phalen’s signs. Each hand was clinically categorised into three groups. The
first group, assigned as control, included 19 hands without any symptomatology. The
second group, assigned as mild to moderate, included 27 hands with solely sensory symp-
tomatology and pain. The third group, assigned as severe, included 19 hands that had
developed weakness and/or thenar atrophy, apart from the sensory symptoms. Taking
into account the inherent subjectivity of sensory symptomatology, we used the emergence
of motor symptoms for the clinical categorization, modified from a previously described
clinical scale [36].
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A detailed neurophysiological examination of both hands was carried out on all
participants using the same equipment (Dantec Keypoint, two channel EMG), as previously
described [37]. The temperature of the upper limbs to be examined was acclimatized at
30–31 ◦C. Bilateral median motor nerve distal latency, median motor nerve conduction
velocity from the elbow to the wrist, median sensory nerve conduction velocity from the
wrist to the second and forth digits and motor and sensory action potential amplitude were
measured. Bilateral radial nerve sensory and ulnar nerve motor and sensory conduction
studies were also performed, in order to exclude other possible neuropathies and compare
parameters to the median nerve. Based on the NCSs’ findings, the hands were categorized
into four main groups, using a modification of the neurophysiological grading introduced
by Bland JDP [18]. The first group included 19 hands without findings in NCSs suggestive
of median nerve mononeuropathy (MM). This is the control group A (no MM). Group B
(mild MM) included ten hands with sensory conduction velocity from index finger to wrist
smaller than 40 m/s and motor terminal latency from wrist to Abductor Pollicis Brevis (APB)
smaller than 4.5 m/s. Group C (moderate MM) included 17 hands with motor terminal
latency for APB between 4.5 m/s and 6.5 m/s and preserved index finger SNAP (Sensory
Nerve Action Potential). Group D (severe MM) included 19 hands with motor terminal
latency for APB > 4.5 m/s and absent SNAP or motor terminal latency larger than 6.5 m/s.
With the symbol BCD we refer to the union of sets B, C and D. The participants of the
study were carefully selected and each hand was finally included in the dataset only in the
case of a perfect match between clinical diagnosis and NCSs, enabling a robust grouping of
the hands and facilitating further accurate signal analysis and classification.

2.2. Methodology

Next, machine learning techniques were used to analyze those data and investigate
the sensitivity of the signal characteristics and the ability to automatically discriminate
controls and patients. Experiments were performed with two sets of features. The first one
consisted of those features which are considered common and are widely used today by
medical doctors and medical devices for the diagnosis of median nerve mononeuropathy.
The purpose was to test whether it is possible to achieve a high level of accuracy in
automatic diagnosis using machine learning classifiers and the widely used features. In
order to decouple the classification capability from the selected classifiers, experiments
were performed with five different classifiers, selected based on their popularity and the
expected ability to achieve increased accuracy.

The second set of features consisted of novel features. The purpose this time was to
identify new features which could carry useful diagnostic information and do not belong
to the set of the common features; features which, if used in addition to the common ones,
could possibly increase the classification capability of the machine learning classifiers.
Features with physical or mathematical meanings were selected.

Finally, feature selection techniques were employed in order (a) to evaluate the level
of significance of each feature in the automatic diagnostic procedure and (b) to help the
classifiers present a better performance, a common practice in machine learning.

2.3. Signal Features

Features were separated into two subsections; one for the common features and one for
the novel.

2.3.1. Common Features

The following common features were tested: Sensory Amplitude or Height (Hs,
Figure 2), Sensory Maximum Value Amplitude (Hs

max, Figure 2), Maximum minus Min-
imum Amplitude (Hs

max−min, Figure 2), Sensory Onset Latency (Ls
on, Figure 3), Sensory

Peak Latency (Ls
peak, Figure 3), Sensory Onset to Peak Latency (Ls

on→peak, Figure 3), Sensory
Conduction Velocity (CVs), Sensory Area (As, Figure 4), Motor Distal and/or Proximal
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Amplitude (HmD, HmP), Motor Distal and/or Proximal Takeoff Latency (HmD
takeoff, HmP

takeoff),
and Motor Conduction Velocity (CVm).

peak
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H
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H
s
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Figure 2. Several features related to definitions about amplitude.
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Figure 3. Several features related to definitions about duration.

peak

onset

Figure 4. The area under the curve.

2.3.2. Novel Features

Next, some features are presented, tested for the first time in this study for the
diagnosis of CTS. The main goals and motivation to test these features were:

• To investigate characteristics which have some inherent diagnostic information, not
exploited by common features;

• To explore features, which may reveal new diagnostic information, not easily predicted
or explained by current knowledge. Such features should be further investigated
with other studies and examined by a larger number of researchers, before reaching a
conclusion about possible physical meaning;
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• To suggest features that do not heavily depend on the detection of critical points of
the signal. This detection is now performed manually by the medical doctor, who
indicates them with the aid of a pointing device. In this way, the extraction process is
independent from the manual detection and excludes the human error.

The examined features are described below.

(a) Expanded Absolute Sensory Area (|As
e|):

A descriptive name for this feature is Expanded Absolute Sensory Area, a graphical
example of which is shown in Figure 5. It consists of both the positive and the negative part
of the curve. The negative part is treated as positive, considering the absolute values of
the curve. There is a physical meaning behind this feature, since this small negative curve
following the positive part of the curve corresponds to the repolarization of the membranes
of the cell [38,39].

peak

onset

offset

Figure 5. The expanded absolute area.

(b) Duration (Ds) and Duration at Half Maximum (Ds
h/2):

Ds is defined as the duration (the width in x-axis) of the signal between the onset and
offset point of the curve. Ds is shown in Figure 6.

Ds
h/2 is defined as the duration of the signal between the points where the y-values

are taking the half of the maximum value, as also shown in Figure 6. Compared to Ds,
Ds

h/2 provides additional and complementary information, since it also takes into account
the height of the wave as well as its shape, since an acute wave will give a smaller value of
Ds

h/2 than a less acute one.

peak

onset

s

h/2D

s
D

Figure 6. Features related to duration.
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(c) Areas and their ratios:

In Figure 7, the definition of the four main subareas is presented. The areas are defined
by the line between the points where the y-values take the half of the maximum value
(used for the definition of Ds

h/2) and perpendicular to the x-axis line, crossing the peak
point. The following four subareas are defined: Upper Left Area, Lower Left Area, Upper
Right Area an Lower Right Area. From these partitions, the following areas are defined:
the Left Area as the sum of Upper and Lower Left areas and the Right Area as the sum of
Upper and Lower Right areas, Upper Area as the sum of Upper Left and Upper Right areas
and Lower Area as the sum of the Lower Left and Lower Right Areas. All possible ratios
between any two of the above areas were also considered as features. In addition, the ratio
between each of the above areas over the total area under the curve was also examined.

Areas are of special interest. They not only describe single features as the duration or
the height, but they also consider relations between figures, since their values depend on
the duration, height and the shape of the curve. Even though sub areas cannot be directly
connected to physiology, it cannot be ignored that valuable information can be hidden
there. This information is very difficult to explain, since, as noted above, it depends on
more than one factor. The rations between areas, especially, could hide information that is
even more complicated and difficult connect to physiological reasons.

peak

onset

upper

left

upper

right

lower

left

lower

right

Figure 7. Several features related to definitions about subareas.

(d) Slopes:

Two kinds of slopes have been examined for both left and right sides of the curve. θleft
is the angle of the line that connects the onset and the peak points (Figure 8):

tan θleft =
fpeak − fonset

xpeak − xonset
. (1)

A similar definition comes from the right side of each curve:

tan θright =
foffset − fpeak

xoffset − xpeak
. (2)

The fitting slope is also an interesting feature. The Fitting slope is the line that best
fits all the data points of the left (Fleft) and then of the right (Fleft) sides of the curve, using
regression analysis (Figure 9). The fitting slope is of special interest, since its computation
is almost independent from the human error. A reasonable lack of accuracy in the detection
of the onset and offset points does not affect the computed value of Fleft or Fright.
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Figure 8. Features related to slopes based on onset, offset and peak points.
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Figure 9. Features related to slopes based on regression.

2.4. Processing

The level of noise was much higher in sensory than in motor signals. A moving
window average technique was used to smooth the signal and a detrending one to remove
the effect of isoelectric line drift.

Critical points were detected on the smoothed signal and were then projected back to
the original one. The peak point and the lowest one were first and easiest to locate using
maximum and minimum values in a time frame after the initial stimulus. Then, starting
from the peak point, and moving backward, the onset point was detected, exploiting
the sharp change of the slope in this part of the curve. The slope threshold was set
experimentally, common for all signals. In a similar way, the computation of the offset
started from the lowest point and moved forward until the change in the slope indicated
the offset point. The detection of the offset point and the peak and lowest points was
more accurate than the estimation of the offset point, something that was concluded after
visual inspection.

The critical points were used for the computation of the features discussed earlier, in
Section 2.3. Features were fed as input to five classifiers. State-of-the-art machine learning
algorithms were selected: Decision Trees (DT), Support Vector Machines (SVM), k-Nearest
Neighbors (kNN), Naive–Bayes (NB) and Logistic Regression (LR). Thirty four features
were defined (common and novel) and each feature was computed for eight different
signals of every hand. These signals include the sensory conduction of the median nerve on
the second and fourth digits, the sensory conduction of the ulnar nerve on the fourth and
fifth digits, and the motor conduction of median and ulnar nerves on proximal and distal
stimulation. So, the total number of features extracted from each hand is 34× 8 = 272,
which is a very large number of features for a classifier. If 30 features were added to this
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number, which were computed as differences of some of those 272 features, a total number
of 302 features is reached.

Thus, in order to reduce the number of features and assist the classifiers to optimize
their accuracy, feature selection and parameter tuning were applied. Given the large
number of features and the relatively small number of recordings, a custom feature selection
and parameter tuning technique was selected.

All classifiers were trained and tested separately with one feature as input each time
and for a reasonable range of parameters. For example, for the 3-class problem and for
SVM with an RBF kernel, the values 0.1 ≤ c ≤ 3 were checked with step 0.1, a range that
seemed adequate enough, according to the variation of accuracy values computed. The
value c = 0.9 seemed to be the best one, based on the number of features presenting high
accuracy with this value. For NN, and the same problem, the values 1 ≤ nn ≤ 11 were
checked and the best value appeared to be nn = 5.

Using the selected parameters, each classifier was trained again. A custom sequential
feature selection technique was applied, using NN and SVM. The custom feature selection
technique was based on the sequential backward feature selection (SBS) and the sequential
backward feature selection (SFS) algorithms [40]. In each step of SBS, the feature causing the
maximum performance loss gets removed, while in each step of SFS the feature adding
the maximum to the performance is added. The custom version combines those two
algorithms and consists of two phases. In the first phase, an initial set of features consisted
of all extracted features was considered. After each time excluding one of the features
from this set, the performance of both classifiers was tested. If none of the two classifiers
had improved its performance, the specific feature was excluded from the set. In the
second phase, the initial set was defined as the set with those features which were not
eliminated during the first phase. Starting by adding, one by one, each excluded feature,
and following the same order as the previous phase, the performance of the two classifiers
was tested again. Those features that increased the performance of at least one classifier
were considered significant.

For training and testing leave-one-out cross validation was selected, a technique
appropriate when the amount of available data is not large. K-fold cross validation is called
the technique of partitioning the dataset into k subsets of equal size. One of these subsets
is used as test data and the other k−1 subsets are used as training data. The validation
process is being repeated k times, since each subset must play the role of the test data
exactly once. In the special case where k = N (N: number of instances), the k-fold cross
validation is induced to leave-one-out cross validation.

3. Results

Experiments were performed with five classifiers (LR, SVM, kNN, DT, NB) in order to
decouple the classification capability of each classifier from the results. The dataset was
segregated into several subsets and different problems were studied based on this segre-
gation. Their names were given based on the number of the classes that were attempted
to be discriminated: 4-class, 3-class and 2-class. In the 4-class problem, the categorization
between the groups A (no MM), B (mild MM), C (moderate MM) and D (severe MM)
was studied. Please also see Section 2 for the definition of those subsets. In the 3-class
problem, the groups B and C were merged and the categorization between groups A, BC
(mild and moderate) and D (severe) was studied. Finally, in the 2-class problem, all groups
with symptoms (B,C,D) were merged into one BCD and controls (A) and patients (BCD)
were compared.

The configuration for each classifier was different for every problem and the parame-
ters were selected after experimentation. For example, for the 3-class and 4-class problems,
the RBF kernel was proved best for the SVM classifier with C = 0.9. For the 2-class problem,
the linear SVM presented the most accurate classification. When the NN classifier was
used, the best results were achieved for nn = 5.
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For all problems, the common features and the novel features were studied separately
and how all features work together was investigated, in comparison with the standard
neurophysiological diagnosis of the physicians with NCSs. There is, however, an inevitable
bias on common features, given that the electrodiagnosis has been based on them.

The same experiments were performed on the clinical grading. The purpose of these
experiments was to evaluate all features in correlation with clinical symptoms and not
just to the electrodiagnosis. Clinical evaluation is considered the gold standard for the
diagnosis of CTS and does not always correlate absolutely with NCSs’ findings. Thus, the
comparison of common and novel features upon the field of clinical grading is necessary
and very interesting.

Results are presented in Tables 2–4. On the third column, the classification accuracy of
the common features is shown. Bold letters indicate the best performing classifier.

Table 2. Four-class Problem Classification Accuracy.

Common Novel All

NCS

LR 0.7123 0.5455 0.7792
SVM 0.8243 0.7388 0.9117
kNN 0.6623 0.5714 0.7403
DT 0.7068 0.6364 0.8182
NB 0.8092 0.7143 0.8701

Table 3. Three-class Problem Classification Accuracy.

Common Novel All

NCS

LR 0.8172 0.6364 0.8312
SVM 0.9404 0.8622 0.9415
kNN 0.7208 0.6654 0.7922
DT 0.8052 0.8302 0.8117
NB 0.9013 0.7403 0.8961

Clinical

LR 0.5195 0.5909 0.5519
SVM 0.6867 0.7187 0.7144
kNN 0.5395 0.5169 0.5610
DT 0.5539 0.7273 0.5649
NB 0.6549 0.5642 0.6594

Table 4. Two-class Problem Classification Accuracy.

Common Novel All

NCS

LR 0.8052 0.8182 0.8377
SVM 0.9513 0.9077 0.9692
kNN 0.8471 0.8442 0.8805
DT 0.9538 0.8701 0.9481
NB 0.9481 0.8142 0.9091

Clinical

LR 0.7957 0.8247 0.7403
SVM 0.8691 0.8748 0.8906
kNN 0.7403 0.8312 0.8701
DT 0.7792 0.7438 0.8571
NB 0.8532 0.7926 0.8172

As accuracy, we consider the fraction of the successfully classified subjects over the
total number of subjects:

accuracy =
success f ully_categorized_subjects

all_samples
=

true_possitive + true_negative
all_samples
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The accuracy of the novel features can be found in the fourth column and in the
classification of all features in the last column. Each line of a table corresponds to a different
classifier. As described in Section 2, clinical categorization classified the study population
into three groups, so it was not included in the 4-class problem experiments. For the 3-class
and the 2-class problems, comparisons with the clinical symptoms were also included and
are shown in the lower part of the tables.

For the 4-class problem presented in Table 2, one can notice that the novel features
achieved a much lower accuracy. This is expected, not only for the 4-class problem, but
also for the 2 and 3-class problems. It should be emphasized here that subjects have
been classified by the medical doctor using the common criteria. So, there is a bias in the
comparison between common and novel features against the novel ones, since the system
is trained with expertise extracted with the common criteria. This is why in Tables 2–4 the
common criteria present better categorization. However, when both common and novel
criteria are used as inputs to the classifier, the total accuracy (last column in these tables) is
almost always improved, indicating the benefits of using both common and novel criteria
in the automatic electrodiagnosis.

In the 3-class problem (Table 3), the novel features also ameliorated the performance
of the models if put together with the common features. Apart from that, they performed
better than the common features in the field of clinical grading for most classifiers. This is
also very important, if one considers that the medical doctors’ diagnosis has been based
mainly on the common features.

With the experiments comparing patients to control group (Table 4), which correspond
to the 2-class problem, the addition of the novel features could also ameliorate the perfor-
mance of most classifiers. It also performed better on the field of clinical grading than the
common features for most of the classifiers.

From all three tables, one can notice that SVM presents the highest accuracy among
all examined classifiers, with a small insignificant exception. The inclusion of novel
characteristics improved SVM’s performance in almost all cases. In the field of clinical
grading, the novel features performed better than the common features, and improved the
performance of SVM both in the 3-class and the 2-class problems.

In Table 5, the accuracy of two of the classifiers is presented, when a single feature is
used as an input. This table shows the effectiveness of each feature, which can be compared
with the entire feature set for each feature category (Tables 2–4). Since the number of the
features used was very large, the table includes only the features selected by the feature
selection process and some of the best, but not selected, features from each group.

Table 5. Accuracy achieved by each feature separately.

kNN SVM

from feature selection: 2-class 3-class 4-class 2-class 3-class 4-class
Median Sensory Onset Latency Digit 4 0.89 0.84 0.81 0.88 0.84 0.78
Median Sensory Conduction Velocity Digit 4 0.87 0.79 0.74 0.84 0.81 0.75
Median Sensory Max Amplitude Digit 4 0.82 0.58 0.50 0.81 0.59 0.58
Median Motor Take-off Latency 0.87 0.75 0.66 0.85 0.78 0.73
Median Motor Right Area 0.66 0.53 0.52 0.75 0.51 0.50
Median Sensory Right Tangent Theta Digit 4 0.76 0.63 0.62 0.76 0.69 0.64
Med/Uln Difference Sensory FDHM Digit 4 0.64 0.34 0.26 0.66 0.42 0.25

common features: 2-class 3-class 4-class 2-class 3-class 4-class
Median Motor Amplitude 0.57 0.32 0.40 0.66 0.40 0.39
Median Sensory Area Digit 4 0.74 0.48 0.39 0.72 0.55 0.48

novel features: 2-class 3-class 4-class 2-class 3-class 4-class
Median Motor Left Area 0.67 0.42 0.35 0.68 0.38 0.37
Median Motor Left Slope 0.75 0.59 0.53 0.71 0.62 0.60
Median Motor Right Area 0.75 0.43 0.33 0.70 0.49 0.30

Finally, confusion matrices (Table 6) from the two class problem and the best perform-
ing classifier are presented. The best performing classifier was the DT for the common
features and SVM when the novel or all features were used. Matrices show how many
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hands which were predicted positive/negative were actually positive/negative. For exam-
ple, in the third matrix of Table 6, for the 44 hands predicted positive, all 44 were actually
positive and from the 21 hands predicted to be negative, 19 were actually negative, but
two were positive. This corresponds to a rate of 1 and 0.995, respectively. Looking at the
matrix from the other side, from the 46 hands which were actual positive, two of them were
predicted to be negative and 44 positive with a success rate of 0.957. All actual negative
hands were predicted correctly (rate:1).

Table 6. Confusion matrices for the 2-class problem.

DT/Common Predicted Positive Predicted Negative
Actual Positive 44 2 0.956
Actual Negative 1 18 0.947

0.978 0.900 0.9538

SVM/Novel Predicted Positive Predicted Negative
Actual Positive 41 5 0.891
Actual Negative 1 18 0.947

0.976 0.783 0.9077

SVM/All Predicted Positive Predicted Negative
Actual Positive 44 2 0.957
Actual Negative 0 19 1

1 0.995 0.9692

4. Discussion

Recent literature has revealed a long discussion about the importance and necessity of
NCSs in CTS management. Laboratory findings supporting clinical diagnosis are necessary
for decision making about further management in CTS, especially when invasive treatment
is needed [41]. To date, the most reliable diagnostic tool for CTS is electrodiagnosis, but
its usability is being questioned due to the rise in the time and the cost needed for the
diagnosis, with the employment of NCSs, as well as the emergence of ultrasonography as
an alternative [23,24]. In this study, the parameters of the NCSs that are currently widely
used for the diagnosis of median nerve mononeuropathy were evaluated. New features
of the waveforms that could ameliorate the accuracy of NCSs were tested. These features
describe the right side of the signal curves that is related to the repolarization of axons. The
repolarization processes can be affected in nerve injury [42] and current diagnostic use of
NCS for CTS does not include these parameters.

Machine learning algorithms with five classifiers (LR, SVM, kNN, DT, NB) were em-
ployed in the NCS signal analysis and the results were compared to the neurophysiological
and clinical diagnosis. Automated discrimination between patients and controls, with the
most accurate classifier (SVM), reached an accuracy of 0.9513 compared to NCS and 0.8906
compared to clinical diagnosis. Further analysis with SVM and classification into three
groups (control group, patients with mild and moderate CTS, patients with severe CTS)
reached an accuracy of 0.9415 compared to NCS and 0.7144 compared to clinical diagnosis.
Finally, SVM performed equally well in the classification of the study population into four
groups (control group, patients with mild CTS, patients with moderate CTS and patients
with severe CTS), with an accuracy of 0.9117 compared to NCS. Comparing the maximum
accuracy of the present study with other studies in the literature [28,32,43], it is evident that
the methodology described here has superior results, keeping in mind that the comparison
concerns studies with differences in the dataset and the experimental configuration.

Currently, NCS is considered the gold standard for the confirmation of median nerve
mononeuropathy in the CTS. The aim of the present study is to find a methodology to
enable automatic diagnosis through the analysis of conventional electrodiagnosis signals
with machine learning techniques. This would facilitate and accelerate the electrodiagnosis,
excluding the human error. The results show that the inclusion of the novel features
described here can increase the accuracy of the automatic electrodiagnosis, when they are
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used together with the common features. So, the inclusion of the novel features does not
aim to replace the common features but to enhance their performance.

5. Conclusions

The findings of this study show that an accurate automatic electrodiagnosis for median
nerve mononeuropathy is possible. Apart from testing the accuracy of the common NCSs’
features, several geometric features with indicated physiological meaning for median nerve
compression were extracted and presented. These features are employed for the first time
in the workup of CTS. The classification model proposed is unbiased and indicates that
these features can play an important role in supporting the diagnosis of the syndrome and
grading its severity. However, the evaluation of the results through a larger database of
CTS patients would be useful, in order to establish an accurate grading scale and produce
more robust generalizations. Such a grading scale could serve as a basis for an automatic
electrodiagnosis, excluding the human error, implemented in costume electrophysiological
testing or hand-held devices.
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