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Summary points

• Use of risk factors for decision-making in cardiovascular disease has a long history in

medicine.

• Early attempts to augment traditional risk factors with genetic risk scores were hampered by

too little understanding of the genetic basis of complex cardiovascular disease.

• Newer studies based on hundreds of thousands of people and millions of genetic variants

indicate that genetic risk scores can now outperform traditional risk factors in risk

prediction.

• We propose the time has come to incorporate genetic risk scores into clinical practice.

• Studies should focus on the most appropriate way to do this to maximize benefit for our

patients.

“[However,] epidemiologic information has accumulated which now allows the physician to
recognize certain characteristics of increased risk in patients he [sic] sees in his practice. Some
of these characteristics have been convincingly demonstrated, others are still under investiga-
tion. More precise identification will undoubtedly be possible in the future.”—William Kannel,

Director, Framingham Heart Study [1]

In a classic paper [1], Kannel reported the early results of the longitudinal Framingham Heart

Study, demonstrating the identification of factors (for which he coined the term “risk factors”)

that “precede the development of overt coronary heart disease in humans”. Later, the Framing-

ham Risk Score was formalized to include age, sex, diabetes, smoking status, total cholesterol,

high-density lipoprotein (HDL) cholesterol, and blood pressure [2], providing a framework

for cardiovascular disease (CVD) risk assessment to which all others are compared. Intuitively,

the burden of these risk factors accumulates over time (e.g., pack years of smoking or years of

hypertension), and some newer risk models allow input of risk factor data from multiple time

points [3].

While repeated measurement of CVD biomarkers such as total cholesterol may improve

risk prediction, lifelong exposure to CVD risk factors is better captured by genetic susceptibil-

ity [4]. Thus, the quest to improve risk prediction for CVD has naturally come to focus on the

development of genetic risk scores [5]. This has only been possible because of robust, replicable
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findings from genome-wide association studies (GWAS) in extremely large cohorts [6,7].

Early genetic risk scores, based on relatively few single-nucleotide variants, showed a consis-

tent ability to identify those in the highest strata of risk [8,9], with some improvement in

“reclassification” of risk. This interest in risk prediction led to an increased focus on the tools

for judging utility with a return to prominence of metrics like the C statistic and the proposal

of newer metrics, such as the integrated discrimination improvement (IDI) and the net reclas-

sification index (NRI), specifically aimed at judging the merit of adding new factors (i.e.,

genetic markers) to existing scores [10]. Although the focus of many hundreds of articles,

these newer metrics have been criticized for too highly rating poorly fitted risk models and for

showing improvement in models with a new biomarker that adds no new information [11–

13]. Around 2009, there was also criticism of the common variant studies for failing to find

“missing” heritability [14], and the lack of robust risk prediction from discovered variants fed

into an overall narrative that genomics was underperforming relative to its hype [15].

Yet it was clear that this was chiefly a problem of study size. While human clinical trials

have historically recruited hundreds or thousands of individuals, the genomics community

realized that studies with hundreds of thousands to millions of participants would be required

to provide the power necessary to fuel discovery of the larger proportion of heritability. This

realization ushered in a new era of data sharing. Today, as a result of large-scale collaboration,

meta-analysis, and the emergence of national projects such as the United Kingdom Biobank

[16,17], there are GWAS of common variants drawing on more than 1 million individuals

[18]. Such studies, as modeling would predict [19], are beginning to demonstrate that genetic

factors provide robust and powerful risk estimation across diseases that is additive to tradi-

tional risk factors [20–22]. Indeed, as the idea that rare variation (synthetic or otherwise)

could explain much of the missing heritability of common disease fell in favor [23] and out

again [24], the realization dawned that still-too-small studies and overzealous correction of

multiple testing had left significant signal in the noise. This stimulated the idea of using a

much broader array of variants in a polygenic score. Khera and colleagues [21] used 6.6 million

variants, while Inouye et al. [22] used 1.7 million variants as predictors, and both studies dem-

onstrate the ability to identify a group in the upper echelon of genetic risk with a hazard of

greater than 4. In particular, the meta genetic risk score (metaGRS) had a higher C-index for

incident coronary artery disease than any single traditional risk factor, including smoking, dia-

betes, hypertension, and body mass index [22]. In that study, the addition of the genetic score

to a combination of conventional risk factors increased the C-index by 3.7%. Drawing on mul-

tiple interacting mechanisms, it is not surprising that much of the signal of genetic risk scores

overlaps traditional risk factors and mechanisms. But the potential of genetic approaches is

emphasized by a component of independence, illustrated by the ability to improve on a C-

index derived from conventional risk factors alone.

Thus, despite early criticism, most recent genetic risk scores have demonstrated significant

improvements in performance for risk prediction in CVD [25]. Given these advantages, it is

reasonable to ask whether such scores have the potential to significantly improve multimorbid-

ity assessment for diseases where risk assessment has been routine, especially as the costs of

genome-wide genotyping now fall below US$100 per person. Indeed, because genotyping

chips survey common variants across the entire genome, reflecting risk for hundreds of condi-

tions besides CVD, it is possible to simultaneously predict risk of multiple diseases with a sin-

gle “test.” Cardiometabolic scores [26,27] can be combined [28], or estimates can be made, for

dozens of diseases, including—as we reported [29]—from whole-genome sequencing.

A critical aspect of the utility of any predictive score is its impact on clinical management.

Since Kannel’s coining of the term, risk prediction has been leveraged for management deci-

sions in medicine. Recent guidelines on hypertension [30] and hypercholesterolemia [31,32]
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emphasize the role of risk estimation in therapeutic decision-making, particularly for patients

with intermediate risk. Yet, whereas cholesterol levels can be lowered through therapy and

individuals can stop smoking, what is the specific “answer” to a high genetic risk score? Khera

and colleagues [20] provided one answer in a study demonstrating that lifestyle factors are

capable of abrogating genetic risk, elegantly underlining the universality of the benefits of diet

and exercise while providing a defense for the concern that patients who discover they are at

high genetic risk will view that deterministically and be less inclined to lifestyle change (some-

thing that has always remained hypothetical [33]). Another recent study has shown that

genetic risk for high blood pressure can be mitigated by a healthy lifestyle [34]. Additional data

are needed to address the converse concern that individuals shown to have a “protective”

genetic background will feel less inclined to maintain a healthy lifestyle. In this regard, the best

outcomes are in those individuals that have both a favorable genetic susceptibility and healthy

lifestyle [20].

So if polygenic risk scores now outperform traditional risk factors in univariate prediction,

augment the C statistics of traditional risk factors taken as a whole, can be implemented for

minimal cost, and are targets for intervention, is it not time to incorporate them into clinical

practice?

Despite the increasingly well-demonstrated value of the genetic risk scores, few studies have

focused on the practical aspects of incorporating scores into clinical practice. Although the

benefit of delivering traditional risk factors to physicians and patients has never itself been

tested in a randomized controlled trial, the traditional risk score, based on data already gath-

ered, is effectively free to the healthcare system. While there remains an additional cost for

genetic scores, albeit modest, it is reasonable to require an outcome benefit to be demonstrated

before arguing for adding to medical expenditure. In a small pilot randomized controlled

study, we showed the feasibility of delivery of a genetic risk score in a clinical environment

[35–37]. While we did not demonstrate that the score led to an improvement in patient adher-

ence to guideline-based therapeutic advice, others have shown that the incorporation of a

genetic risk score into clinical care may increase statin usage (mostly through increased statin

prescriptions) [38]. We would note that similar challenges in changing behavior despite

improving risk prediction have been reported in studies of coronary calcium, carotid ultra-

sound, and coronary computed tomography (CT) scans [39–41]. However, as we become

more sophisticated in delivery of information to “activate” positive behavioral changes, these

results are expected to improve. Digital approaches may offer one avenue for improvement:

for example, there are now smartphone studies of cardiovascular risk that incorporate geno-

type data, as well as studies focused specifically on returning genetic risk scores to participants

[42–44].

In an additional wrinkle, if the genetic risk score could be calculated from preexisting data,

the cost to the healthcare system would be zero, and few would argue that we should not look

to refine traditional scores with genetic data. The highly computable nature of genotype data

makes for straightforward implementation and future refinement of genetic risk scores when

more data become available [45]. Indeed, the ability to create scores across multiple diseases

was attractive for direct-to-consumer genetic testing companies who started offering such esti-

mates for multiple diseases and traits many years ago. Early versions received technical criti-

cism based on the small numbers of variants used and the variation between providers in the

creation and interpretation of scores. However, this technical criticism was secondary to more

general uncertainty over the direct-to-consumer model [46]. Today, with increasing interest

from the public and increasing acceptance—at least in the United States from the Food and

Drug Administration (FDA)—of consumer-focused tests, the environment is primed for

delivery and testing of multimodal risk scores for millions of individuals through direct-to-
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consumer services utilizing laboratories accredited under the Centers for Medicare and Medic-

aid Services Clinical Laboratory Improvement Amendments (CLIA) standard. Healthcare sys-

tems and academic clinicians should work together with these companies to ensure standards

and transparency in the safe and effective translation of these data for the public good [47].

We believe there are strong reasons to now consider incorporation of genetic risk scores

into clinical practice. But questions remain. Since genetic information is viewed as more sensi-

tive than that of other risk factors and since genetic risk does not result from an individual

choice, some countries have chosen to separately protect genetic information from discrimina-

tion by health insurers or employers. The US Genetic Information Non-Discrimination Act of

2008 [48] includes both of those protections but excludes protection from life insurance dis-

crimination. As such, before testing for a genetic risk score, individuals should receive educa-

tion beyond that which a treating physician or nurse might be comfortable delivering. The

scale of common disease means that the genetic counselor workforce could not meet the

demand of delivering counseling for common disease risk scores. Brief video education has,

however, been shown to be engaging and compelling, even for much more complex concepts

in genetics [49]. Decision support would also be required for physicians and nurses incorpo-

rating scores into clinical management. Another challenge that has existed since the earliest

use of risk factors in clinical medicine is that of unmeasured factors. A good prognostic score

produces a prediction that, on a population level, has acceptable test characteristics. It cannot,

however, speak to unmeasured factors in the individual. In the genetic era, this is most relevant

for rare variation. It is possible, for example, for an individual to have a common variant risk

score that places them in the lowest quintile for risk, but for that individual also to harbor a

rare variant of large magnitude in, for example, the gene LDLR that overwhelms the common

risk and places them instead in the highest quintile—or even gives them a Mendelian disease.

The most proximal answer to this issue is education: unmeasured factors are not a challenge

specific to genetic risk scores. The more distant answer—though one with its own nuanced

challenge—is to use genome sequencing, a future imagined almost a decade ago [28,29,50].

In conclusion, through collaboration and data sharing, genetic studies of common diseases

now allow genetic risk scores that predict future diseases better than traditional risk factors. As

millions around the world already have this data in hand, and as the cost of generating this

data falls further towards the cost of a daily cup of coffee for just one week, we propose that the

time has finally come to build for the testing and incorporation of genetic risk scores into clini-

cal practice.
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