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Projecting the impact of variable 
MDR-TB transmission efficiency on 
long-term epidemic trends in South 
Africa and Vietnam
Phillip P. Salvatore   1*, Emily A. Kendall2, Dena Seabrook3, Jessie Brown3, 
George H. Durham3 & David W. Dowdy1,4

Whether multidrug-resistant tuberculosis (MDR-TB) is less transmissible than drug-susceptible (DS-)
TB on a population level is uncertain. Even in the absence of a genetic fitness cost, the transmission 
potential of individuals with MDR-TB may vary by infectiousness, frequency of contact, or duration of 
disease. We used a compartmental model to project the progression of MDR-TB epidemics in South 
Africa and Vietnam under alternative assumptions about the relative transmission efficiency of MDR-TB. 
Specifically, we considered three scenarios: consistently lower transmission efficiency for MDR-TB 
than for DS-TB; equal transmission efficiency; and an initial deficit in the transmission efficiency of 
MDR-TB that closes over time. We calibrated these scenarios with data from drug resistance surveys 
and projected epidemic trends to 2040. The incidence of MDR-TB was projected to expand in most 
scenarios, but the degree of expansion depended greatly on the future transmission efficiency of 
MDR-TB. For example, by 2040, we projected absolute MDR-TB incidence to account for 5% (IQR: 4–9%) 
of incident TB in South Africa and 14% (IQR: 9–26%) in Vietnam assuming consistently lower MDR-TB 
transmission efficiency, versus 15% (IQR: 8–27%)and 41% (IQR: 23–62%), respectively, assuming 
shrinking transmission efficiency deficits. Given future uncertainty, specific responses to halt MDR-TB 
transmission should be prioritized.

The global epidemic of multidrug resistant tuberculosis (MDR-TB) represents a major challenge to worldwide 
TB control efforts. In 2016, an estimated 490,000 cases of MDR-TB occurred, representing 4% of new TB cases 
and 19% of previously-treated TB cases globally1. While substantial efforts have been made to improve the detec-
tion and effective treatment of patients suffering from drug resistant TB, the global burden of MDR-TB has not 
abated1. As MDR-TB epidemics may continue despite improvements in the diagnosis and treatment of drug sus-
ceptible TB (DS-TB), successful TB control may increasingly depend on the trajectory of MDR-TB. If MDR-TB 
fails to transmit efficiently, improved DS-TB management alone could be sufficient to contain epidemics of 
MDR-TB, but if MDR-TB transmits nearly or equally as efficiently, it may replace DS-TB as the dominant TB 
strain2. However, predicting these epidemic trajectories remains a challenge.

The relative transmission efficiency of MDR-TB has classically been conceptualized as a genetic “fitness cost,” 
a reduction in reproductive capacity that may accompany the development of drug resistance. Recent laboratory 
evidence, however, suggests that not all resistance-conferring mutations carry a fitness cost and that such costs 
may be offset by compensatory mutations, leading to high-fitness MDR strains3. Epidemiological time-series 
studies indicate that the prevalence of MDR-TB isolates carrying these low-cost or compensatory mutations 
has increased over time in several settings4,5. Simultaneously, evidence has accumulated that modern MDR-TB 
epidemics are driven primarily by transmission rather than by the acquisition of drug resistance during treat-
ment2,6,7. Nevertheless, it is possible that the epidemiological transmission potential of MDR-TB (as might be 
estimated, for example, in calculations of the basic reproductive number R0) may differ from that of DS-TB8. For 

1Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, 
Baltimore, MD, 21205, USA. 2Division of Infectious Diseases, Johns Hopkins School of Medicine, 733 North 
Broadway, Baltimore, MD, 21205, USA. 3Linksbridge SPC – 808 Fifth Avenue North, Seattle, Washington, 98109, 
USA. 4Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe 
Street, Baltimore, MD, 21205, USA. *email: psalvat1@jhu.edu

OPEN

https://doi.org/10.1038/s41598-019-54561-9
http://orcid.org/0000-0001-8305-9056
mailto:psalvat1@jhu.edu


2Scientific Reports |         (2019) 9:18099  | https://doi.org/10.1038/s41598-019-54561-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

example, individuals with MDR-TB may have lower infectiousness (e.g., less pulmonary concentration of bacilli) 
or fewer susceptible contacts (e.g., they are more socially isolated and thus make fewer infectious contacts)9,10 
than individuals with DS-TB. We therefore utilize the term “relative transmission efficiency,” describing the rel-
ative frequency of generating secondary infections per unit of infectious person-time (comparing MDR-TB to 
DS-TB), to capture the biological as well as social and epidemiological factors which influence MDR-TB trans-
mission. The future trajectory of MDR-TB (and the relative importance of efforts to control MDR-TB) is likely to 
depend substantially on the relative efficiency with which MDR-TB cases transmit infection.

In light of the complexity of empirical evidence3,11 regarding MDR-TB transmission efficiency and the variety 
of modeling approaches7,12,13 used to evaluate this phenomenon, we sought to compare how different assumptions 
about MDR-TB transmission efficiency influence projections of long-term MDR-TB incidence. We used a math-
ematical model of DS-TB and MDR-TB to project future trajectories of MDR-TB epidemics in South Africa and 
Vietnam under three competing assumptions about the relative transmission efficiency of MDR-TB. Within this 
framework, we first explore the relative ability of models using these different assumptions to recapitulate empir-
ical DS-TB and MDR-TB incidence data. We then show that models using these assumptions forecast highly 
divergent epidemic trajectories of MDR-TB.

Methods
TB dynamics and natural history.  To explore the impact of differential transmission efficiency on epi-
demic projections, we formulated a deterministic compartmental model of adult TB transmission14. We then used 
this model to independently simulate epidemics of TB in two high-burden countries. Our model represents the 
natural history of DS-TB and MDR-TB as follows (Fig. 1A): susceptible populations who become infected with 
either DS-TB or MDR-TB may develop latent TB infection (and slow progression to active TB disease) or rap-
idly progress to active TB. Regardless of whether populations progress rapidly or slowly, all experience a period 
of incipient disease (where cases are not ostensibly symptomatic but are partially infectious) before developing 
clinically detectable TB. The emergence of MDR-TB occurs initially through natural selection during first-line 
treatment of DS-TB but subsequently spreads through person-to-person transmission. Our model incorpo-
rates a simplified interaction of HIV and TB co-epidemics (Fig. 1B) with the annual incidence of HIV fitted to 
setting-specific estimates15 of adult HIV incidence. Populations living with HIV are classified into three states: 
high CD4 (T cell levels above 250 cells/mL), low CD4 (levels below 250 cells/mL), and receiving antiretroviral 
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Figure 1.  Model Structure. States of TB infection and possible transitions between them are represented in 
panel A. Compartment colors correspond to the respective infectiousness and TB-associated mortality of each 
state. In addition to TB natural history, populations are also classified by treatment history (treatment-naïve or 
previously-treated, not shown), and HIV status (represented in panel B). Following HIV infection, populations 
transition through states of increasing immunosuppression or to antiretroviral therapy (ART) at defined rates. 
Populations returning to an uninfected state through self-cure remain classified as treatment-naïve; other 
distinctions between uninfected compartments are shown only for illustrative purposes.
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therapy (ART). A subpopulation’s HIV status in turn affects TB dynamics, including susceptibility, mortality, and 
care-seeking.

Transmission efficiency of DS-TB and MDR-TB.  We investigated the impact of transmission-related dif-
ferences between DS-TB and MDR-TB by varying assumptions about the relationship between different strains’ 
transmission efficiency over time. We define transmission efficiency as the mean number of new TB infections 
that occur during each infectious person-year of active TB. (This quantity includes infections that eventually 
progress to disease and infections that never progress to disease, as opposed to the reproductive number which 
quantifies the number of secondary cases.) Transmission efficiency captures both biological processes of TB 
transmission (infectious doses, bacterial virulence, etc.) and non-biological processes (contact rates, population 
mixing, etc.). Therefore, the transmission efficiency of either DS- or MDR-TB strain may be increased through 
changes in underlying biology or through population-level influences. In our approach, we concentrate on the 
relative transmission efficiency of MDR-TB; that is, the degree to which fewer MDR-TB infections will arise than 
DS-TB infections under comparable periods of infectious person-time. Mathematically, this is accomplished by 
setting the transmission parameter for MDR-TB equal to the product of the transmission parameter for DS-TB 
and a relative efficiency term (domain [0, 1]). (See “Sampling & Calibration” below and “Model Summary” in the 
Appendix for technical and sampling details.)

We evaluated three plausible transmission efficiency scenarios (illustrated in Fig. 2). In the first scenario 
(“Constant Efficiency Deficit”), we assume that MDR-TB emerges historically with a deficit in transmission effi-
ciency (relative to that of DS-TB) which remains constant through the present and into the future. In the second 
scenario (“Shrinking Efficiency Deficit”), we assume that MDR-TB emerges with a deficit in transmission effi-
ciency which gradually shrinks (through, for example, compensatory evolution or social processes that concen-
trate MDR-TB in high-transmission settings) until the efficiency of MDR-TB equals that of DS-TB. In the third 
scenario (“No Efficiency Deficit”), we assume that MDR-TB emerges historically with a transmission efficiency 
equal to that of DS-TB and continues to transmit with equal efficiency over time.

The date of emergence of MDR-TB was varied from 1971 to 1996, reflecting uncertainty in the timing of 
emergence of modern MDR-TB strains (see Table S3). The initial transmission efficiency of MDR-TB relative to 
that of DS-TB was similarly varied from 38–94% in the Constant Deficit and Shrinking Deficit scenarios. In the 
Shrinking Deficit scenario, the annual rate of reduction in the MDR-TB transmission efficiency deficit was varied 
from 0 to 1·5% per year. Further details on the parameterization of each scenario may be found in the Appendix.

Diagnosis & treatment.  Our model conceptualizes treatment as being either sufficient to ultimately achieve 
cure (“effective”) or of a nature that does not cure active TB by the end of therapy (“ineffective”). Upon diagnosis 
with TB, therapy (either effective or ineffective) may be initiated following a mean diagnostic delay. Patients with 

Figure 2.  Transmission Efficiency Scenarios. The assumed transmission efficiency (transmission events 
per 1,000 infectious person-years) of DS-TB over time is drawn in green; the downward slope recapitulates 
reductions in TB transmission efficiency due to secular trends unrelated to MDR-TB diagnosis and treatment 
(for example, reductions in crowding, improved socioeconomic conditions, etc.). In our three model scenarios, 
we assume either that the transmission efficiency of MDR-TB is at a perpetual deficit compared to that of 
DS-TB (Constant Deficit Scenario, drawn in orange); that the transmission efficiency of MDR-TB is consistently 
the same as that of DS-TB (No Deficit Scenario, drawn in magenta); or that MDR-TB has lower transmission 
efficiency than DS-TB initially but gradually converges towards that of DS-TB over time (Shrinking Deficit 
Scenario, drawn in red). Years are shown for illustrative purposes; dates of MDR-TB emergence and rates of 
increase/decrease in transmission efficiency are sampled from defined ranges; see Sampling & Calibration for 
further details.
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DS-TB who receive effective therapy undergo a cessation of infectiousness16, a reduction in mortality, and – upon 
treatment completion – long-term cure or eventual relapse. Those receiving ineffective therapy (e.g., patients with 
MDR-TB receiving first-line treatment) experience partially reduced infectiousness and TB-associated mortality. 
Patients with MDR-TB receive drug susceptibility testing (DST) at a level determined by setting-specific national 
estimates of DST coverage over time (see Fig. S2)1. Those who do not receive DST before treatment initiate 
ineffective first-line therapy, while those who receive DST initiate longer second-line therapy which may be effec-
tive or ineffective. Patients with MDR-TB who receive effective second-line therapy experience partially reduced 
infectiousness and TB-associated mortality for the first six months of treatment (reflecting potential delays in 
initiating second-line therapy and reduced potency of historical second-line agents), followed by cessation of 
infectiousness and reduced mortality for the remainder of the treatment regimen. Patients may prematurely stop 
any treatment regimen; this probability is correlated with the length of each regimen (see Table 1). Rates of 
ART initiation are calculated from setting- and time-dependent data on ART coverage, and TB/HIV co-infected 
patients in whom either disease is detected experience increased rates of treatment initiation for the other condi-
tion (see the Appendix for modeling methods and ordinary differential equations).

Sampling & calibration.  For each input parameter used in our model, we defined a range of plausible 
values based on the scientific literature (Tables 1 and S1–S3). These ranges were parameterized as lognormal (for 
continuous ranges bounded at 0), logit-normal (for continuous ranges bounded between 0 and 1), or uniform 
probability distributions (for parameters on continuous ranges with sparse support in empirical literature). To 
capture the uncertainty in these parameter values, we utilized a two-stage, semi-Bayesian Sampling/Importance 
Resampling algorithm to simulate epidemics consistent with empirical data17.

Using Latin Hypercube Sampling, we generated 135,000 sets of initial parameters, each set composed of one 
value for each parameter related to DS-TB drawn from the probability density defined in Table 1 (see Tables S1–
S3 for all parameters). Each parameter set was then used to simulate a DS-TB epidemic to 1990 followed by a 
DS-TB/HIV epidemic to 2016. In the first stage of calibration, these simulations were fitted to the WHO estimates 
of total TB incidence in each setting and setting-specific estimates of the proportion of HIV-positive patients 
among incident TB cases (using national survey data in South Africa and WHO estimates in Vietnam)1,18. Each 
calibration point was defined as a bounded beta distribution, and a pseudo-likelihood weight for each initial 
parameter set was defined as the joint probability density of the simulated DS-TB epidemic incidence and propor-
tion of HIV-positive patients. (See Table S4 and Fig. S4 for DS-TB calibration targets and results).

In the second stage of sampling, 135,000 DS-TB/HIV parameter sets were resampled according to their 
pseudo-likelihood weights, and accompanying values for MDR-TB parameters in each set were drawn from 
their defined distributions (Table 1), again using Latin Hypercube Sampling. These parameter sets were used 
to simulate new DS-TB/HIV/MDR-TB epidemics from the date of the emergence of MDR-TB (itself a sampled 
parameter value) until 2016. In the second stage of calibration, these simulations were fitted to the proportion 
of MDR-TB among recently-diagnosed TB in new patients and, separately, in previously-treated patients (as 
measured in national drug resistance surveys)19–21. Each calibration point was defined as an independent nor-
mal distribution, and a new pseudo-likelihood weight for each parameter set was calculated from the MDR-TB 
calibration targets (see Table S4). These pseudo-likelihood weights were used to resample those DS-TB/HIV/
MDR-TB parameter sets most consistent with historical MDR-TB epidemics.

Description Median
Sampling 
Range† Distribution References

Probability of rapid progression after initial tuberculosis infection 0·14 0·08–0·25 Logit-normal 45

Reactivation rate from latent to incipient active tuberculosis, per year 0·001 0·0005–0·002 Lognormal 46–49

Rate of tuberculosis diagnosis and treatment initiation, per year 1·0 0·7–1·5 Lognormal 1,50,51

Proportion failing to initiate treatment for multidrug-resistant tuberculosis 
after diagnosis (in excess of loss to follow-up of patients with drug-susceptible 
tuberculosis)

0·05 0·02–0·10 Logit-normal 1,51

Proportion of treated patients who have an apparent treatment response

Newly diagnosed patients with drug-susceptible tuberculosis, first-line therapy 0·98 0·96–0·99 Logit-normal 1,52–54

Patients with multidrug-resistant tuberculosis, longer therapy 0·77 0·66–0·85 Logit-normal 55–57

Proportion who relapse, among those with apparent treatment response

Newly diagnosed patients with drug-susceptible tuberculosis, first-line therapy 0·04 0·026–0·06 Logit-normal 57,58

Patients with multidrug-resistant tuberculosis, longer therapy 0·04 0·015–0·10 Logit-normal 58,59

Probability of loss to follow-up during therapy

First-line therapy 0·06 0·03–0·10 Logit-normal 1

Longer therapy for multidrug-resistant tuberculosis 0·11 0·04–0·25 Logit-normal 60,61

Risk of acquiring multidrug resistance during first-line therapy 0·004 0·0015–0·01 Logit-normal 56

Table 1.  Selected* Parameter Values. *Parameters were selected for inclusion in this table based on familiarity 
to a scientific audience and prior belief of strong association with MDR-TB transmission. See the Appendix for 
a full listing of all parameters, sampling distributions, and references. †Sampling ranges represent the 2·5th to 
97·5th percentiles of unbounded distributions and lower to upper bounds of uniform distributions.
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Outcomes and statistical analysis.  For projections of our primary outcomes, we report median values 
as well as uncertainty ranges (UR), defined as the 5th and 95th percentiles of posterior distributions. The relative 
fit of each transmission scenario to the observed epidemiological data after calibration was determined by Bayes 
Factors (BFs); a BF is calculated as the ratio of the cumulative posterior probabilities of two models and can be 
interpreted as the calibration data’s support for one model over another. Unless otherwise stated in the text, BFs 
were calculated in support of the Constant Deficit scenario relative to other models.

Results
We projected the absolute and relative incidence of MDR-TB in 2040 in South Africa and Vietnam under three 
alternative scenarios. We estimated both the absolute and relative incidence of MDR-TB to be substantially lower 
if the transmission efficiency of MDR-TB remains constant (“Constant Deficit”) than if the transmission effi-
ciency of MDR-TB increases over time (“Shrinking Deficit”). For example, in South Africa, the Constant Deficit 
scenario (Fig. 3A) predicts the incidence of MDR-TB in 2040 at 26 cases per 100,000 (IQR: 17–41), comprising 
5% (IQR: 4–9%) of all incident TB (see also Figs. S5 and S7), a median 2·0-fold increase over 2016. By contrast, 
projections from the Shrinking Deficit scenario (Fig. 3B) predict a much higher MDR-TB incidence, reaching 
a median of 72 cases per 100,000 (IQR: 39–136) by 2040 and accounting for 15% of incident TB (IQR: 8–27%), 
a median 5·1-fold increase. Similar trends were predicted in Vietnam (Fig. 3C,D), where the Constant Deficit 
scenario predicts an MDR-TB incidence of 16 per 100,000 (IQR: 10–36) in 2040, comprising 14% (IQR: 9–26%) 
of incident TB, a 2·2-fold increase (IQR: 1·6–3·6-fold) over 2016. By contrast, the Shrinking Deficit scenario pre-
dicts an incidence of 70 per 100,000 (IQR: 30–144), accounting for 41% (IQR: 23–62%) of incident TB, a 5·4-fold 
increase (IQR: 3·6–7·4-fold) over 2016. The No Deficit model was consistently supported least well by the data 
(see below) but projected median MDR-TB incidences of 130 per 100,000 in South Africa and 24 per 100,000 in 
Vietnam by 2040 (see Fig. S6).

Figure 3.  Projections of MDR-TB Incidence in South Africa and Vietnam. Simulated MDR-TB epidemics 
in South Africa and Vietnam were projected from 2010 to 2040. Panels A and B illustrate the projections of 
each scenario in South Africa, while panels C and D illustrate the projections of each scenario in Vietnam. The 
2040 projected median (IQR) values are included in the upper right of each panel. IQR represents 25th to 75th 
percentiles and the 90% range represents the 5th to 95th percentiles of posterior simulations.
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Calibration and model fit.  To confirm that these model projections offered accurate reproductions of his-
torical data from South Africa and Vietnam, we used statistical measurements (Bayes Factors) to compare the 
fit of our model calibration in each scenario. Consistent with empirical observations, our model of South Africa 
demonstrates increasing TB incidence between 1990 and 2005 (driven largely by trends in HIV coinfection) with 
MDR-TB composing less than 1·5% of all TB cases by 2016 (Fig. 4 and Appendix Fig. S4). In contrast, our model 
of TB in Vietnam (where HIV coinfection is uncommon) demonstrates a slowly declining TB epidemic with 
MDR-TB accounting for roughly 20% of previously-treated TB cases by 2016 (Figs. 5 and S4). In both country 
settings, epidemiological data could be reproduced with similar accuracy in the Constant Deficit and Shrinking 
Deficit models (BF = 2·6 in South Africa, BF = 2·1 in Vietnam; see Table S5). The No Deficit model was supported 
far more poorly by the empirical data (BF < 10−8 and BF < 10−3 relative to other scenarios in South Africa and 
Vietnam, respectively).

Under the poorly-supported No Deficit scenario, our model projected that MDR-TB in South Africa would 
comprise 22% (IQR: 11–51%; Fig. S5) of all TB incidence by 2040, much higher than the estimate of 5·7% (95% 
UR: 3·0–7·6%) in a recent model that used a similar assumption of no transmission efficiency deficit7. By increas-
ing the estimated median delay between the onset of TB disease and the initiation of care from 12 months (our 
initial value) to 10 years (as reported in the prior publication), our model recapitulated the results of the previous 
model (Fig. 6). Specifically, when assuming a 10-year duration of illness, we projected that MDR-TB will account 
for 6% (IQR: 5–7%) of incident TB in South Africa by 2040, comparable to the previous estimate of 5·7%7, sug-
gesting that the discrepancy in results may not be due to fundamental differences in model structures or statistical 
approaches but can be explained largely by different assumptions about the duration of illness before treatment 
initiation. See the Appendix for further details.

Sensitivity analyses.  The variability in MDR-TB epidemic projections was influenced most strongly 
by parameters determining the transmission and mortality of MDR-TB (see Fig. 7 for South Africa). In the 
Shrinking Deficit model, the rate of increase in MDR-TB transmission efficiency was highly correlated with pro-
jected 2040 MDR-TB incidence (upper vs. lower quintile medians: 117 vs. 38 per 100,000). This parameter is the 
key dynamic driving the difference between the modest increases in MDR-TB incidence in the Constant Deficit 
scenario and the sizeable increases in incidence in the Shrinking Deficit scenario. In the Constant Deficit model, 
the relative efficiency of MDR-TB transmission was similarly correlated with future incidence (upper vs. lower 
quintile medians, 32 vs. 19 per 100,000). In the Shrinking Deficit and Constant Deficit models, both TB mortality 
rates and loss during first-line treatment (which determine infectious MDR-TB person-time in the absence of 
second-line therapy) were strongly correlated with projected MDR-TB incidence. Additional parametric and 

Figure 4.  Calibration Performance for South Africa. Simulated epidemics are weighted according to how 
well each reproduced empirical calibration targets (historical estimates of MDR in new and previously-treated 
TB cases). Recent diagnoses are defined as any populations transitioning from active, untreated TB into any 
diagnosis/treatment state. Red points represent median and 95% confidence intervals for calibration targets 
drawn from national survey data. IQR represents 25th to 75th percentiles and the 90% range represents the 5th 
to 95th percentiles of posterior simulations.
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nonparametric sensitivity analyses may be found in the Appendix, as well as parameter value posterior distribu-
tions (Figs. S11–S16).

Discussion
This analysis illustrates that the future trajectories of MDR-TB in South Africa and Vietnam are highly dependent 
on the transmission efficiency of MDR-TB and its trend over time. Assuming a constant deficit in transmission 
efficiency, the absolute incidence of MDR-TB was projected to increase only modestly by 2040 – to 26 per 100,000 
in South Africa and to 16 per 100,000 in Vietnam. If the transmission efficiency of MDR-TB increases over time, 
however, the incidence of MDR-TB could rise as high as 72 per 100,00 in South Africa and 70 per 100,000 in 
Vietnam. These findings underscore the importance of additional research to better estimate the relative trans-
mission efficiency of MDR-TB from an epidemiological (i.e., not purely genetic or in vitro) perspective, including 
evaluation of multiple settings and trends over time.

Much of the scientific literature examining the fitness costs and compensatory evolution of drug resistant M. 
tuberculosis originates from laboratory studies, which have provided strong evidence of the potential for compen-
satory mutations to overcome biological fitness costs of mutations conferring resistance to isoniazid, rifampin, 
and ethambutol22–24. Unfortunately, laboratory fitness assays are imperfect models of human transmission25, and 
evidence of the potential for changes in the transmission efficiency of MDR-TB remains sparse. In this model 
of South Africa and Vietnam, we found little support for scenarios in which the epidemiological transmission 
efficiency of MDR-TB has historically equaled that of DS-TB, though scenarios in which the transmission effi-
ciencies of MDR-TB and DS-TB converge over time were more plausible.

To empirically estimate the relative transmission efficiency of MDR-TB, we must rely primarily on indirect 
evidence from studies of incident and prevalent TB in human populations26. For example, studies of house-
hold TB contacts disagree whether more secondary cases arise from index MDR-TB or DS-TB patients27–29. 
Importantly, while the transmission efficiency of MDR-TB may increase due to evolutionary adaptation, it may 
also increase (or decrease) as a result of changes in contact rates, mixing patterns, and other population-level 
characteristics– and this transmission efficiency may be different in different settings (as allowed in our model 
between South Africa and Vietnam). For example, the clustering of MDR-TB in incarcerated populations and 
hospital settings (leading to increased transmission) is well documented30–32, and such clustering may change 
over time as diagnostic and treatment practices evolve; these changes in clustering may easily be differential 
across countries or other geographical regions.

Figure 5.  Calibration Performance for Vietnam. Simulated epidemics are weighted according to how well each 
reproduced empirical calibration targets (historical estimates of MDR in new and previously-treated TB cases). 
Recent TB diagnoses were used (instead of incident TB cases) to better represent the sampling methodologies 
used in national drug resistant surveys which were used for calibration. (The 1996 prevalence survey in 
Vietnam measured the proportion MDR in new cases only.) Recent diagnoses are defined as any populations 
transitioning from active, untreated TB into any diagnosis/treatment state. Red points represent median and 
95% confidence intervals for calibration targets drawn from national survey data. IQR represents 25th to 75th 
percentiles and the 90% range represents the 5th to 95th percentiles of posterior simulations.
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Additional studies may further increase our understanding of MDR-TB transmission efficiency in the future. 
Novel biomarkers and diagnostic assays may help determine the onset of TB infectiousness, evaluate the tra-
jectory of infectiousness over the course of disease33,34, and better document newly acquired infection35,36. 
Additional important sources of data will be the continuation and expansion of repeated national drug resistance 
surveys19–21. Without a clear understanding of trends in transmission efficiency, our results indicate that the 
future of MDR-TB epidemics will remain uncertain. Given the potential for dramatic expansion of MDR-TB epi-
demics, the inability of classical TB interventions to curtail MDR-TB transmission, and the tremendous economic 
and human burden imposed by MDR-TB, our results indicate that responses specifically designed to combat 
MDR-TB epidemics should be prioritized.

Our results offer an important complement to MDR-TB modeling projections published previously. Previous 
studies have projected that acquired drug resistance accounted for fewer than 10% of MDR-TB cases in 2013, 
consistent with the results presented here (see Fig. S8)6. Importantly, our No Deficit model was poorly supported 
by empirical data in South Africa and projected greater increases in the burden of MDR-TB than were reported 
in a previous model of MDR-TB dynamics that incorporated an assumption of no deficit in MDR-TB trans-
mission efficiency7. Parameter selection is a delicate task and even minor differences in prior distributions may 
affect long-term projections37. However, in comparing our results to those of a previous model assuming no 
historical deficit, it is likely that the average duration of TB disease before treatment initiation in South Africa is 
substantially shorter than 10 years38–40, as implicitly assumed in the prior model7 and as required by our model 
to replicate these previous findings. Therefore, similar compartmental models that assume no historical deficit 
in transmission efficiency may not be realistic representations of the MDR-TB epidemic in South Africa, though 
it remains plausible that this deficit has closed over time. However, evidence that some MDR-TB epidemics are 
expanding at a relatively slow pace1,41 is less consistent with our Shrinking Deficit model than our Constant 
Deficit model. These trends may therefore suggest that deficits in MDR-TB transmission efficiency are not shrink-
ing (or shrinking only very slowly) over time.

Our methodology is not without its limitations. South Africa and Vietnam are countries with unique TB epidem-
ics that were chosen based on the availability of repeated national drug resistance survey data. Our future projections 
had wide uncertainty ranges, reflecting uncertainty in both calibration data and the underlying natural history of 
MDR-TB. We also calibrated to available data in 2017; subsequent updates to these data have been made and may 
influence our final results42. Our model assumes an exponential age-structured population, which may overestimate 
the impact of TB treatment43 and therefore underestimate future absolute TB incidence; as the same age-structure 
was use in all three transmission efficiency scenarios, this was unlikely to influence comparisons between Constant 

Figure 6.  Replication of Previous Findings. The calibration results of an alternative (“Delayed Treatment”) 
scenario in South Africa – in which we assumed a median delay of 10 years prior to treatment initiation –are 
represented in panel A. Points represent median and 95% confidence intervals for calibration targets drawn 
from national survey data. For this scenario only, calibration excluded data on previously-treated TB patients, 
consistent with methods used in the replicated publication7. Simulated MDR-TB epidemics in South Africa 
under the Delayed Treatment scenario projected to 2040 are represented in panel B. IQR represents 25th to 75th 
percentiles and the 90% range represents the 5th to 95th percentiles of posterior simulations.
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and Shrinking Deficit model projections. Sensitivity analyses suggest that our results were largely robust to uncer-
tainty in these parameter values, but our estimates were influenced by parameters determining the infectious 
person-time of untreated MDR-TB. More precise estimates of these underlying data would reduce uncertainty in 
long-term projections from future modeling efforts. Additionally, in projecting future epidemics, we assumed that 
recent trends in the scale-up of MDR-TB diagnosis and second-line treatment will continue. As scale-up has been 
faster in South Africa than Vietnam, the projected relative incidence of MDR-TB increases more gradually in South 
Africa in all scenarios (see Appendix Fig. S5). If these trends either improve or stagnate over time (for example, with 
the release of novel all-oral regimens for MDR-TB), our projections of future MDR-TB burden will be inaccurate. 
Finally, in the absence of unambiguous empirical data describing changes in MDR-TB transmission efficiency, in 
the Shrinking Deficit model we assumed a linear increase over time (see Fig. 2); this temporal trend could take other 
shapes, with corresponding effects on our model’s projections.

Global efforts to control TB are likely to hinge on the future trajectory of MDR-TB epidemics. While MDR-TB 
is often described as carrying a fitness cost associated with drug resistance, this characterization may be inaccu-
rate. Alternative arguments suggest that the transmission efficiency of MDR-TB may equal that of DS-TB already 
or in the future. We investigated the importance of these assumptions in influencing projections of MDR-TB 
epidemics, finding strong evidence that MDR-TB has been characterized by lower epidemiological transmission 
efficiency than DS-TB in the past but no suggestion that this historical difference will necessarily continue into 
the future. A better understanding of these dynamics in human populations will improve our ability to predict 
(and possibly prevent) increases in the burden of MDR-TB. In the meantime, specific investment in responses 
specific to MDR-TB (such as expanded DST coverage, enhanced case finding, improved MDR-TB therapies, and 
focused political and economic commitment44) should be prioritized, given the potential for substantial spread 
in the future.

Figure 7.  Sensitivity Analysis – Influence of Key Model Parameters on Projections of MDR-TB Incidence in 
South Africa. The top 5 parameters which most strongly impact the distributions of MDR-TB incidence in 2040 
in projections of the epidemic in South Africa are displayed. Each boxplot represents the distribution of values 
for the primary outcome (the incidence of MDR-TB in 2040) within a given set of simulations. Pairs of boxplots 
represent groups of simulations categorized by values of a single input parameter: red boxplots represent 
the outcomes of those simulations with parameter values in the upper 20% of all simulations; blue boxplots 
represent the outcomes of those simulations with parameter values in the lower 20% of all simulations. More 
influential parameters demonstrate a greater separation of the distributions of outcome between simulations 
in the upper quintile and simulations in the lower quintile of parameter values. To the left of each panel are 
included the input parameter values corresponding to the accompanying quintile. In black is represented the 
overall distribution of the outcome across all simulations and the median estimate is drawn as a vertical dotted 
line. Boxes represent the median, 25th, and 75th percentiles of the distribution of outcomes; whiskers represent 
the 5th and 95th percentiles of the distribution of outcomes. In the Constant Deficit model, parameters 
involving the reduction in MDR-TB transmission efficiency deficit are excluded by definition.
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The datasets generated during and/or analyzed during the current study are available from the corresponding 
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