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Simple Summary: Angiogenesis, the formation of new blood vessels from preexisting ones, is a
complex and demanding biological process that plays an important role in physiological, as well as
pathological conditions, including cancer. During tumor growth, the induction of angiogenesis allows
tumor cells to grow, invade, and metastasize. Recent evidence supports endothelial cell metabolism
as a critical regulator of angiogenesis. However, whether and how tumor endothelial cells rewire
their metabolism in cancer remains elusive. In this review, we discussed the metabolic signatures of
tumor endothelial cells and their symbiotic, competitive, and mechanical metabolic interactions with
tumor cells. We also discussed the recent works that may provide a rationale for attractive metabolic
targets and strategies for developing specific therapies against tumor angiogenesis.

Abstract: Cancer is a leading cause of death worldwide. If left untreated, tumors tend to grow and
spread uncontrolled until the patient dies. To support this growth, cancer cells need large amounts of
nutrients and growth factors that are supplied and distributed to the tumor tissue by the vascular
system. The aberrant tumor vasculature shows deep morphological, molecular, and metabolic
differences compared to the blood vessels belonging to the non-malignant tissues (also referred
as normal). A better understanding of the metabolic mechanisms driving the differences between
normal and tumor vasculature will allow the designing of new drugs with a higher specificity of
action and fewer side effects to target tumors and improve a patient’s life expectancy. In this review,
we aim to summarize the main features of tumor endothelial cells (TECs) and shed light on the critical
metabolic pathways that characterize these cells. A better understanding of such mechanisms will
help to design innovative therapeutic strategies in healthy and diseased angiogenesis.

Keywords: tumor vasculature; tumor endothelial cells; endothelial metabolism in cancer

1. Introduction
1.1. Blood Vessel Formation

The vascular tree is a dense network of closed blood vessels that branch out along the
entire body. This vascular network carries oxygen and nutrients to the tissues and drains
waste products [1]. Although blood vessels in our body are very different in shape and size,
all share the same structure, such as a monolayer of endothelial cells (ECs) that delimits
their walls. Under physiological conditions, an adult vasculature is composed of quiescent
ECs that, under specific circumstances, can reactivate cell proliferation and migration,
becoming activated proliferating ECs. This reactivation and the formation of new blood
vessels from pre-existing vessels, is a process known as angiogenesis [2]. This process
occurs in physiological as well as pathological conditions [3]. In addition to embryonic
development, angiogenesis takes place in adult tissues such as during wound repair and
the female reproductive cycle. Angiogenesis can also occur during tumor growth, and the
induction of angiogenesis within solid tumors is a cancer hallmark [4]. The discovery of
the vascular endothelial growth factors (VEGFs) [5], and therefore the existence of surface
receptors capable of binding such ligands, which, due to their surface localization, are
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easily druggable, has led to the development of biological anti-angiogenic drugs capable of
targeting these receptors [6]. Nevertheless, the addition of these drugs to chemotherapy
has shown modest effects on patient survival: tumors often escape treatments and regain
angiogenic capacity or gain access to the bloodstream by co-opting non-malignant vessels
within themselves [7], resulting in a worse prognosis. This led to a paradigm shift in
anti-angiogenic therapeutic strategies, from starving the tumor by destroying tumor blood
vessels to “normalize” the tumor vasculature in order to better deliver anti-tumor drugs [8].
Another piece of the puzzle came from the discovery that tumor ECs are highly dependent
on metabolic processes, such as glycolysis [9]. This observation opened the innovative
hypothesis of being able to target the ECs’ metabolism to normalize the vasculature of
tumors and thus prevent their growth [10,11]. Understanding tumor EC metabolism is
mandatory to better design therapeutic strategies.

1.2. Tumor Vasculature

Tumor cells shape the tumor microenvironment (TME) [12]. Rapidly growing solid
tumors (e.g., carcinomas) incorporate various cell types such as fibroblasts and immune
cells into their parenchyma to secrete factors that confer survival benefits [13]. As the
volume of the tumor grows, the diffusion of oxygen (O2) decreases making the center
of mass hypoxic and necrotic. Low oxygen levels activate the hypoxia inducible factor
(HIF), which in turn leads to the expression of growth factors such as VEGF that trigger
angiogenesis [14]. This implicates that tumor mass volume is critical for the angiogenic
switch [15,16]. The uncontrolled hyper-release of pro-angiogenic factors causes abnormal
vessel growth. Unlike the normal vasculature, which has a high hierarchical organization
in vascular beds (veins, arteries, and capillaries), the tumor vasculature appears as a
disorganized tangle of vessels [17] often with a blind end. Tumor endothelial cells (TECs),
unlike normal endothelial cells (NECs), can grow in multilayers along the vessel wall [18].
Moreover, the reduction of cellular junctions [19], the decrease in mural cells (pericytes and
smooth muscle cells) [20], and a strong compromise of the basement membrane determine
vessel leakage. This generates an increase in the interstitial fluids pressure that in turn
causes the collapse of the less resistant vessels [21], while the blood flow within the tumor
vessels becomes chaotic [22]. The microhemorrhages of these vessels allow the deposition of
fibrin, which acts as an anchor for the tumor cells [23]. In addition, the increase in stiffness
of the parenchyma, in part, due to vessel leakage, makes the tumor poorly perfused and
resistant to chemotherapy treatments.

The vascular supply required by cancer cells to support their growth can be provided
by the hijacking of normal vessels from surrounding tissues, a process known as co-
option [7], or by the formation of new vessels within the tumor. The classic sprouting
angiogenesis model foresees that in response to pro-angiogenic cues, such as VEGF, FGF,
ANG-2, and several other chemokines, the basement membrane is locally degraded by
metalloproteases (MMPs) and the surrounding pericytes detach from the vessel wall. This
allows the ECs to resume proliferative activity. An EC engages an invasive phenotype,
extending filopodia and lamellipodia towards the chemokine gradient, and driving the
sprouting of the extending blood vessel [24].

1.3. Molecular Aspects of Tumor Endothelial Cells (TECs)

The structural differences of the tumor vessels are reflected both at the cellular and
molecular level on the morphological and physiological alterations of the ECs (Figure 1A).
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Figure 1. Overview of tumor endothelial cell (TEC) metabolism. (A) Phenotypically, TECs show a
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high replication rate coupled to invasiveness, over-expression of receptors, and pro-angiogenic
growth factors such as the vascular endothelial growth factor/vascular endothelial growth factor
receptor 2 (VEGF/VEGFR2) axis, cytogenetic alterations, stemness and chemotherapy resistance,
the ability to grow in serum-free media, and reduced senescence and apoptosis. (B) The main
metabolic pathways reported so far in the remodeling of endothelial cell metabolism in cancer con-
text. Proliferating TECs strongly depend on glycolysis and glucose uptake to produce adenosine
triphosphate (ATP). Glycolysis provides the energy necessary to guide TEC proliferation and migra-
tion; lactate present in tumor microenvironment is imported into TECs through monocarboxylate
transporter 1 (MCT-1) and can fuel vessel sprouting by two ways. By activating the nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB) pathway that up-regulates interleukin 8 (IL-8)
and leads to the IL-8 self-stimulation, or by converting into pyruvate that inhibits prolyl hydroxylase
(PHD2) activating hypoxia-inducible factor 1 alpha (HIF1α); Fatty acids oxidation (FAO) provides
intermediate metabolites and biomass to support sprouting vessels. The EC-specific deletion of
both carnitine palmitoyltransferase 1a and 2 (CPT1a and CPT2, respectively), genes that regulate the
carnitine shuttle, cause vessel leakage; gasotransmitters such as hydrogen sulfide (H2S) and nitric
oxide (NO) play a pleiotropic role by altering the proteome of cells and their pro-angiogenic action
affects metabolism; extracellular matrix stiffness promotes tumor vessels formation by yes-associated
protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) activation and leads to an-
giogenesis. The enzymes/transporters directly involved in tumor angiogenesis are highlighted in red.
(C) Metabolic interaction within individual pathways in TECs. The Figure was partly generated using
Servier Medical Art.Servier Medical Art by Servier is licensed under a Creative Commons Attribution
3.0 Unported License (https://creativecommons.org/licenses/by/3.0/, accessed on 30 March 2022).
↑: High. GLUT1: glucose transporter 1; HK2: hexokinase 2; PPP: pentose phosphate pathway;
HBP: hexosamine biosynthetic pathway; G6P: glucose-6-phosphate; PFKFB3: 6-phosphofructo-2-
kinase/fructose-2,6-biphosphatase 3; F2,6-BP: Fructose 2,6-bisphosphate; F6P: fructose 6-phosphate;
F1,6-BP: fructose 1,6-bisphosphate; OXPHOS: oxidative phosphorylation; FAs: fatty acids; FABP:
fatty acid binding protein; TCA cycle: tricaboxylic cycle; dNTPs: deoxyribonucleoside triphosphates;
SLC1A5: solute carrier family 1 member 5; GLS: glutaminase; NMDAR: N-methyl-D-aspartate recep-
tor; eNOS: endothelial nitric oxide synthase; ROS: reactive oxygen species; BH4: tetrahydrobiopterin;
GSH: glutathione.

Murine TECs isolated from different human tumor xenografts showed a high pro-
liferative and migratory rate, a greater response to VEGFs, and a higher expression of
VEGF receptors-1/2 compared to NECs [25]. Furthermore, these cells show cytogenetic
alterations [26] and overexpress stem cell factors such as Sca-1 (stem cell antigen-1) [25]
and MDR1 (multidrug resistance-1) [27], which increase their resistance to several types of
chemotherapeutic agents such as paclitaxel and 5-fluorouracil [27,28]. As cancer cells, the
human TECs from patients are resistant to apoptosis, do not undergo senescence, and can
grow under serum starvation [28].

At the molecular level, from a single-cell RNA sequencing (scRNA-seq) analysis con-
ducted on TECs isolated from lung cancer patients, it emerged that, compared to NECs,
TECs show a strong enriched signature in some signaling pathways such as the MYC path-
way and the PI3K/Akt/mTOR pathway [29]. The pivotal role of MYC during both blood
vessel formation in embryo development (vasculogenesis) and the angiogenic switch is
supported by in vivo evidence [30]. It has also been proven that the PI3K/Akt/mTOR path-
way plays a key role in tumor angiogenesis [31]. Surprisingly, Lambrechts and colleagues
found a strong down-regulation of the inflammatory response in TECs [29].

A broader transcriptomic analysis, conducted on ECs from human (hTEC), murine
(mTEC), and human cell culture (hcTEC) lung cancers, improved the molecular character-
ization of cellular phenotypes and identified new TEC markers in active sprouting [32].
It also emerged that the genes displaying higher expression in sprouting TECs are those
encoding collagens (e.g., COL4A1, COL4A2, and COL18A1) and collagen-modifying en-
zymes (e.g., PXDN and PLOD1) [32]. This suggests that the extracellular matrix synthesis
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pathways, and in particular collagen synthesis, may represent a new target for striking
growing tumor vessels.

2. Endothelial Metabolism during Angiogenesis

Adult vasculature is composed of quiescent ECs, also called phalanx cells. The quies-
cence state can be locally lost in favor of a proliferative state under pro-angiogenic stimuli.
The current model of sprouting angiogenesis predicts that proliferating ECs sprout from
a pre-existing vessel to anastomose with another newly formed sprouting vessel. Each
sprout is guided by a tip cell, which is an activated EC cell, followed by so-called stalk
cells [33]. This functional subdivision of ECs, based on the role played in angiogenesis,
shows molecular and metabolic signatures [34].

Metabolism plays a crucial role in maintaining the quiescent state [35]. In particular,
the forkhead box O (FOXO1) transcription factor has been reported as the gatekeeper of
endothelial quiescence. FOXO1 suppresses the MYC pathway and down-regulates both
glycolysis and oxidative phosphorylation (OXPHOS) [35]. Additionally, FOXO1 enhances
branched-chain amino acid catabolites, shutting down ECs’ proliferation and angiogenesis
in an MYC-independent manner [35]. Moreover, quiescent EC fatty acid consumption
through β-oxidation is threefold greater than in proliferating ECs [36]. This is not related
to the ATP production, which in any case remains mainly dependent on glycolysis, but
serves as an anaplerotic reaction to fuel the NADPH production [36]. Understanding the
molecular–metabolic mechanisms that trigger and maintain Ecs’ quiescence could provide
a new toolbox for anti-angiogenic therapies. From this perspective, metabolically-induced
quiescence could be used to impair tumor growth.

Following an imbalance between pro- and anti-angiogenic factors, phalanx cells can
reactivate the cell cycle and become proliferating. Specialization in tip and stalk cells is
a dynamic state that is dependent on receptors expressed on the EC surface [37]. The
proliferating EC that most activates VEGF-VEGFR1/2 signaling is selected as the tip and,
through overexpression in the NOTCH ligand DLL4, leads to the lateral inhibition of the
other ECs, which then acquire the stalk phenotype [38]. Tip cells are highly dependent
on glycolysis to produce the energy needed to support sprouting [9]. Despite the strong
dependence on glycolytic flux, proliferating ECs cannot abolish OXPHOS. Respiratory
chain complex III disruptions inhibits angiogenesis in vivo [39]. However, mitochondrial
respiration reduces EC proliferation, but not migratory activity, which is the phenotypic
hallmark of tip cells, suggesting a non-primary role of OXPHOS in tip–stalk differentiation.
On the other hand, the endothelium-specific knockout of glutamine synthetase (GLUL)
impairs angiogenesis by inhibiting migration [40]. Thus, the amino acid (AA) metabolism
could be the main metabolic actor in promoting the tip identity.

3. Rewiring of Endothelial Metabolism in Cancer
3.1. Glycolysis

ECs utilize anaerobic glycolytic metabolism to produce most of the ATP rather than
OXPHOS, regardless of living in an oxygen-rich environment [9]. Indeed, ECs produce
around 80% of ATP via anaerobic glycolysis entering into the TCA cycle only 1% of
glucose-derived pyruvate [41], lactate being the metabolic end-product of glycolysis in
ECs. Under pro-angiogenic stimuli in a tumor context, the endothelial glycolytic rate
increases and different glycolytic enzymes (e.g., hexokinase 2 (HK2) and pyruvate kinase
(PK)) relocate into migratory cell structures, such as lamellipodia and filopodia, favoring
cell migration [9]. Consistently, the endothelium-specific deletion of the SLC2A1 gene,
encoding glucose transporter type 1 (GLUT1), the main transporter of glucose uptake,
reduces the formation of new blood vessels [42].

Analyses of scRNA-seq have shown that glycolysis-related genes are overexpressed,
compared to NECs, in the transcriptomic signature of TECs (Table 1) [29,43]. Therefore, ECs
within tumors appear to be more dependent on glycolytic flux (Figure 1B,C). Both genetic
ablation and the pharmacological inhibition [44] of 6-phosphofructo-2-kinase/fructose-
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2,6-biphosphatase-3 (PFKFB3), a key enzyme in glycolysis regulation, inhibit blood vessel
formation in tumor xenografts (Table 1). In addition, the PFKFB3 haplodeficiency or
blockade induces tumor vessel normalization by tightening the EC barrier and promoting
pericyte quiescence (Table 1) [11]. Moreover, FGF2, another proangiogenic factor, has been
shown to increase glycolytic flux and regulate the glycolytic enzyme HK2 [45] via the
MYC pathway [29]. It is interesting to note that OXPHOS factors are still expressed at high
levels in TECs (Table 1) [29] and the inhibition of mitochondrial respiration prevents tumor
angiogenesis [46]. These data reinforce the knowledge that OXPHOS serves to feed the
growth of the tumor vasculature by anaplerosis more than producing energy.

While the effect of different glycolytic enzymes (e.g., PFKFB3, HK2, and PKM2) has
been addressed in tumor angiogenesis, the role of glycolytic-branching pathways still
remains largely unexplored, including hexosamine biosynthesis (HBP) and the pentose
phosphate pathway (PPP) in an angiogenic cancer context. Although, it has been reported
that there is an increased level of the PPP metabolite, sedoheptulose-7-phosphate (S7P)
(Figure 1C), in TECs compared with NECs, but whether and how PPP is regulated during
tumor angiogenesis is still unclear [11]. Moreover, recently a novel role of PPP in smooth
muscle cell recruitment by regulating elastin production in zebrafish and mouse models
in developmental angiogenesis has been published [47], but the potential role of this PPP
controlling vessel normalization is yet to be elucidated. On the other hand, it has been
described that the inhibition of HBP using azaserine increases flux throughout the TCA
cycle and PPP, showing an interlink between these pathways in ECs [48], but the role of
HBP in tumor angiogenesis remains unexplored.

Table 1. Direct in vivo evidence of TEC metabolic reprogramming that impairs tumor vasculature
and consequently cancer growth.

Metabolic
Pathway Molecular Mechanism Tumor Type Reference

Glycolysis PFKFB3 inhibition or haploinsufficiency normalize tumor vessel
reducing glycolysis. Melanoma, pancreatic tumor. [11,44]

Glycolytic genes over-expression. NSCLC,
Melanoma. [29,43]

Lactate
VEGF-A induces carbonic anhydrase 2 (CAII), which reduces
lactate acidosis in the tumor environment and enhances
TEC survival.

Melanoma. [49]

Cancer-produced lactate enter ECs by monocarboxylate transporter
(MCT-1) and fuels angiogenesis through NF-κB pathway, leading to
the autocrine stimulation of IL-8.

Colorectal, breast cancer. [50]

Within TEC, lactate can be converted into pyruvate, which exerts a
negative feedback on PHD2 triggering angiogenesis by
HIF1α activation.

Pulmonary Lewis lung
carcinoma. [51]

OXPHOS Mitochondrial respiration is necessary to sustain
tumor angiogenesis. Colorectal cancer, melanoma. [46]

OXPHOS genes over-expression. NSCLC. [29]

Hypoxia EC-specific HIF1α deletion prevents autocrine signaling of VEGF,
leading to reduction of vasculature.

Pulmonary Lewis
lung carcinoma. [52]

PHD2 haploinsufficiency in ECs reduces glycolysis normalizing
tumor vasculature. Melanoma. [53]
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Table 1. Cont.

Metabolic
Pathway Molecular Mechanism Tumor Type Reference

H2S CBS silencing and pharmacological inhibition of CTH in cancer
cells, the major H2S producers, reduce tumor angiogenesis. Breast cancer. [54]

CTH knockdown reduces lymphangiogenesis. Prostate cancer. [55]

CBS silencing reduces vasculature. Colon cancer. [55]

ECM
stiffness

Pharmacological inhibition of the stiffness of the ECM reduces
tumor angiogenesis. Breast cancer. [56]

EC-specific knockout of YAP/TAZ results in impaired tumor and
tumor vessel growth. Melanoma. [57]

3.2. Lactate

The high consumption of glucose followed by an incomplete oxidation within the
tumor, known as anaerobic glycolysis, leads to the production of lactate. The release of
lactate by tumor cells into the extracellular environment causes the acidification of TME and,
thus, hypoxia and acidification always go together in tumors. The decrease in pH due to the
accumulation of lactic acid, a toxic condition for NECs, stimulates TEC proliferation [49].
The expression of monocarboxylate transporter 1 (MCT1) in TECs allows to uptake lactate
from the TME. Lactate flow in TECs activates the NF-kB pathway (Figure 1B), leading to the
release of IL-8 that stimulates angiogenesis [50]. The pharmacological inhibition of MCT1
has been shown to reduce angiogenesis both in vitro and in vivo through the suppression
of HIF-1α levels [51] (Figure 1B,C). This finding indicates that lactate is one of the driving
forces of metabolic remodeling and tumor angiogenesis (Table 1).

3.3. Fatty Acid Oxidation

Lipids come from the diet or can be produced endogenously by the cells. In the
endothelium, the blockade of both the lipogenesis [52] and lipolysis [53] cause angiogenesis
defects. Specifically, ECs uptake fatty acids (FAs) by CD36 [54] and fatty acid transport
proteins (FATPs) [55]. Pro-angiogenic signals, such as VEGF-B, increase the FAs flow
by inducing the expression of FATPs [55], while the lymphatic endothelial cells (LEC)-
specific deletion of CD36 alters the VE-cadherin junction and the integrity of the lymphatic
vessels [56]. The accumulation of free FAs within the ECs triggers ROS generation com-
promising the integrity of the endothelium and triggering an inflammatory process [57].
Therefore, FAs should be continuously stored in membranes, degraded to produce energy
and biomass, or esterified to proteins. Inside the cell, fatty acid-binding proteins (FABPs)
bind and sort the FAs to the right compartment [58]. In ECs, VEGF signaling induces
FABP4 expression [59], leading to vessel sprouting.

FAs are burned into the mitochondria through the fatty acid β-oxidation (FAO) path-
way to generate energy and biomass. The rate-limiting step of this catabolic pathway is the
import of FAs by carnitine palmitoyltransferase 1a (CPT1a) (Figure 1B,C). The endothelium-
specific deletion of CPT1a reduces ECs proliferation [55]. Through the conditional knockout
of endothelial carnitine palmitoyltransferase II (CPT2), an enzyme that works in synergy
with CPT1a to regulate the carnitine shuttle, it has been shown that FAO is an endothelial-
to-mesenchymal-transition (EndoMT) regulator [60]. The EndoMT of ECs promotes tumor
aggressiveness by facilitating dissemination and rendering the vasculature insensitive to
anti-VEGFR treatments [61]. Thus EC-specific up-regulation of the FAO pathway should
antagonize EndoMT, ameliorating the survival rate. Thus, the up-regulation of the FAO
pathway specifically in the ECs should antagonize EndoMT, ameliorating the survival rate.
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3.4. Non-Essential Amino Acids

In recent years it has been become increasingly evident that amino acid (AA) metabolism
also plays a pivotal role in regulating angiogenesis [62]. AAs had traditionally been classi-
fied as nutritionally essential (EAA, indispensable) or non-essential (NEAA, dispensable)
depending on whether it is de novo synthesized or not. In this section we will discuss the
new findings regarding tumor vasculature formation and NEAAs metabolism.

3.4.1. Glutamine–Glutamate

Glutamine is the most abundant NEAA (~700 µM) in blood plasma being an indis-
putable source of nitrogen and carbon to support biosynthesis, energy, and anti-oxidant
defense for the cellular homeostasis [63]. Despite that glutamine is a NEAA, ECs are not
able to survive in absence of glutamine [64]. Indeed, ECs display a glutaminase (GLS)
activity about 20-fold higher than lymphocytes, which have a high potential for rapid
cell division [65]. Different works have described the crucial role of GLS in physiolog-
ical angiogenesis showing that glutaminolysis fuels proliferation more than migration
in ECs [64,66]. GLS blockade causes a drop of tricarboxilic acid (TCA) cycle intermedi-
ates and a subsequent decrease in macromolecular biosynthesis that leads to proliferation
arrest [64,67].

Endothelial glutamine metabolism reprogramming has been related to different tumor
extrinsic factors. Kaposi’s Sarcoma-associated Herpesvirus (KSHV), an oncogenic virus
and the etiologic agent of Kaposi’s Sarcoma, induces glutaminolysis in ECs. Specifically,
KSHV activates the MYC/MondoA-network to up-regulate the glutamine transporter,
SLC1A5, leading to an increased glutamine up-take [68] (Figure 1B). Moreover, advanced
tumors produce excessive amounts of TGFβ1, a cytokine associated with specific aspects
of tumor progression including epithelial–mesenchymal transition (EMT), tissue invasion,
and metastasis [69], which is able to induce GLS expression and promote endothelial cell
sprouting by Raf/MEK/ERK activation [70]. Furthermore, it has been recently described
that glutaminolysis drives tumor angiogenesis by controlling endothelial growth factor re-
ceptor 2 (VEGFR2) and fibroblast growth factor receptor 1(FGFR1) translation via mTORC1
activation [71] (Figure 1C).

Compared with glutamine, the concentration of glutamate in human plasma is lower
(around 50 µM). Together with glycine and serine, glutamate is able to activate N-methyl-
D-aspartate receptors (NMDAR) after binding the GRIN2D subunit, facilitating the cellular
calcium influx [72] (Figure 1B). Interestingly, it has been shown that targeting GRIN2D
in colorectal cancer by a vaccination approach leads to an inhibition of tumor growth
and vascularization [73]. In addition, it has been shown that ECs utilize NMDAR1 for
vasculature formation in gliomas, indicating a novel biological aspect of glutamate signaling
in tumor angiogenesis [74]. Moreover, glutamate can be converted into glutamine by the
glutamine synthetase enzyme (GLUL). ECs show negligible GLUL activity [68]. Eelen et al.
have shown that the genetic deletion of Glul in ECs impairs vessel sprouting during
vascular development, while minimally affecting healthy quiescent ECs. Mechanistically,
GLUL knockdown reduces membrane localization and activation of the GTPase RHOJ,
thereby inducing actin stress fibers and impeding endothelial cell motility [40]. Remaining
unexplored is the role of GLUL in tumor angiogenesis.

3.4.2. Aspartate–Asparagine

Aspartate participates in many reactions, including nucleotide and protein synthe-
sis [75]. Due to its low concentration in blood (0–15 µM) [76], aspartate synthesis is
crucial for cell survival. Aspartate biosynthesis is driven largely by glucose- or glutamine-
dependent refilling of the TCA cycle to replenish mitochondrial oxaloacetate (OAA), which
is subsequently converted to aspartate through the activity of mitochondrial glutamic-
oxaloacetic transaminase 2 (GOT2). In humans, GOTs exist as two distinct isoenzymes:
cytoplasmic GOT1 and mitochondrial GOT2. Both enzymes catalyze the same reaction
albeit with different kinetics, share a sequence homology of ~45%, and are thought to have
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evolved from a common ancestral gene [76]. It is known that GOTs have multiple metabolic
functions, including maintenance of the nicotinamide adenine dinucleotide/reduced nicoti-
namide adenine dinucleotide (NAD+/NADH) ratio in cells, α-keto acids production,
gluconeogenesis, hydrogen sulfide (H2S) production via the CAT/3-mercaptopyruvate
sulfotransferase pathway, and aspartate synthesis [77].

Even though the role of GOTs in physiological and pathological angiogenesis has been
never investigated, several pieces of evidence suggest a crucial role of these enzymes in
tumor angiogenesis. First, it has been shown that human recombinant VEGF-A induces the
up-regulation of GOT2 in a study of chicken microarray analyses [78]. Second, an increased
GOT2 level was addressed in angiogenic compared to non-angiogenic brain tumors in
human glioblastoma xenograft studies [79]. Third, the endothelial-specific genetic ablation
of mitochondrial complex III impairs tumor angiogenesis associated with a significant
decrease in aspartate levels [39]. Fourth, it has been shown that short- and long-term
hypoxia decreases aspartate availability in microvascular ECs [80]. Finally, the deletion of
GOT1 in TECs blocks vessel formation in plug angiogenesis assays [71].

Asparagine, a proteogenic AA, is present in circulation (~100 µM) [81], and it can be
synthesized by asparagine synthetase (ASNS), which converts aspartate and glutamine to
asparagine and glutamate in an ATP-dependent reaction [82]. The enzyme is ubiquitous
in mammals, but basal expression is relatively low in tissues other than the exocrine pan-
creas [83]. Human ASNS activity is highly regulated in response to cell stress, primarily by
increased transcription [83]. ASNS expression and asparagine metabolism have received
considerable attention in transformed cells, beginning with the observation that childhood
acute lymphoblastic leukemia is susceptible to treatment by the infusion of bacterial as-
paraginase (ASNase) [84]. The role of asparagine metabolism has not been as extensively
investigated in tumor angiogenesis. However, it has been shown that asparagine is crucial
in glutamine-deprived ECs to reactivate mTOR signaling and protein biosynthesis [67].

3.4.3. Serine

Serine is implicated in numerous metabolic processes such as antioxidant defense,
one-carbon metabolism, and de novo nucleotide synthesis [85] (Figure 1C). Indeed, many
cancers show an up-regulation of the biosynthetic enzymes involved in serine synthesis [86].
In fact, it has been reported that phosphoglycerate dehydrogenase (PHGDH) expression
accelerates tumor growth in mouse models of melanoma and breast cancer; however,
whether this acquired fitness advantage may induce the angiogenic process by secreting
serine, remains obscure. Ten years ago, Maralani and colleagues showed that a serine pre-
treatment (0.1–3.2 mM) protects ECs from hydrogen peroxide-mediated cell cytotoxicity and
leads to significant induction of NRF2 activity, HO-1 expression, and NOx production [87].
Accordingly, it was reported that mouse neonates with EC-specific PHGDH deficiency
suffer lethal vascular defects, due to reduced EC proliferation and survival. This phenotype
is associated with insufficient heme production and consequently with elevated ROS
levels due to cellular serine depletion [88]. In addition, recently it has been reported that
dimethyl fumarate, a drug with known anti-angiogenic properties, inhibits the serine
synthesis pathway by blocking PHGDH activity [89]. Despite serine having an active role
in angiogenesis, its function in tumor angiogenesis is still poorly understood.

3.4.4. Glycine

Glycine is involved in both angiogenesis and anti-angiogenesis. During angiogenic
development, low concentrations of glycine promotes intersegmental vessel formation
(ISVs), whereas high concentrations reduce angiogenesis in zebrafish embryos [90].

In a tumor context, glycine has been reported to suppress tumor angiogenesis. In
fact, it was reported that glycine (100 µM) inhibited angiogenesis by more than 50% in a
chorioallantoic membrane (CAM) assay. Dietary glycine supplementation reduces blood
vessels in a fibrin Z-chamber assay and tumor angiogenesis in a tumor Z-chamber (fibrin
with R3230 mammary adenocarcinoma cells) through the reduction of iNOS expression [91].
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Moreover, tumor growth and vessel density were decreased in rats fed with 5% glycine
compared without it in a WAG-Rij/CC-531 rat model of metastatic colorectal cancer [92].
On the other hand, glycine promotes angiogenesis in other pathological contexts. For
example, in a hindlimb ischemia model, glycine treatment significantly enhanced neovas-
cularization promoting the recovery of vascular flow via the GlyT1-glycine-mTOR-VDAC1
axis pathway [93]. Furthermore, glycine prevents the apoptosis of rat sinusoidal endothelial
cells caused by Blc-2 decrease following VEGF deprivation [94]. The seemingly inconsistent
results of these studies on glycine may be related to differences in the species, tissues, and
cells used, or may be attributed to different approaches (e.g., culture conditions, doses and
time of stimulation, animal models, and disease models). However, we cannot discard
glycine as a novel target for angiogenic and anti-angiogenic therapy.

3.4.5. Cysteine

Cysteine is a nutritional semi-essential AA that is present mainly in the form of cystine
(Cys–Cys dimmer) in the extracellular space [95,96]. The maintenance of relatively low
concentrations of cysteine in the body is critical because cysteine is toxic at high levels.
Yet, the level of cysteine must be high enough to allow its use for other purposes, such
as the formation of glutathione (GSH) and the synthesis of proteins (Figure 1C) [97]. In
culture, cysteine seems to be indispensable for EC growth and survival [98]. The uptake
of cystine in ECs is Na+-independent and inhibited competitively by glutamate being
mediated by system xCT [99]. Recently, it has been revealed that xCT and its substrate
glutamate specifically operate on ECs and promote neoangiogenesis [74]. Thus, targeting
xCT expression and glutamate secretion in gliomas provides a novel therapeutic roadmap
for normalizing tumor angiogenesis [74]. In addition, EC treatment with erastin, an
inhibitor of xCT, at a non-lethal level promotes EC proliferation, migration, and vessel-like
structures formation, concomitantly with a reduction of GSH and an increase in ROS. The
dual therapy using propranolol, which reverts the erastin-dependent activation of ECs, and
chrysin to induce cytotoxic to cancer cells, has been proposed [100].

On the other hand, the heterodimeric transporter LAT1/4F2hc mediates the transport
of essential (histidine, isoleucine, methionine, tryptophan, phenylalanine, leucine, cysteine,
and tyrosine) and non-essential (glutamine) AAs across the cell membrane, the affinity
of EAAs for LAT1 being higher compared NEAAs [101]. In human pancreatic ductal
adenocarcinoma xenograft mouse models, a significant increase in LAT1 expression in
TECs compared with NECs has been reported [102]. Molecularly, LAT1 is crucial to support
angiogenesis-mediated amino acid transport, which is indispensable for the VEGF-A-
dependent activation of mTORC1.

Cysteine seems to be an indispensable AA for ECs survival, reflecting a high require-
ment for antioxidants to protect ECs from oxidative stress [98]. In addition, it has been
described that in tumor cells, cysteine activates mTORC1 through the GCN2/ATF4/SESN2
axis, inducing cell growth [103]. The replenishment of cellular GSH with thiol-amino acids
counteracts the growth-inhibitory effect of TGF-β1 in ECs through a currently undefined
mechanism [104]. These findings support the crucial role of cysteine in both the survival
and growth of ECs.

3.4.6. Tyrosine

Mammals synthesize tyrosine from the EAA phenylalanine in a reaction catalyzed by
phenylalanine hydroxylase. This enzyme hydroxylates phenylalanine to tyrosine and is the
rate-limiting step in phenylalanine catabolism. Phenylketonuria (PKU) is an autosomal-
recessive inborn error of phenylalanine (Phe) catabolism, caused by the deficiency of
phenylalanine hydroxylase [105]. It has been reported that patients with PKU show en-
dothelial dysfunction [105] and increased aortic stiffness compared to healthy controls [106],
changes that could be associated with a secondary deficit in tetrahydrobiopterin (BH4)
(Figure 1C) [107]. Consistently, the oral supplementation with Phe is able to enhance
endogenous BH4 biosynthesis through the GCH1–GFRP protein complex, elevates ni-
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trite levels, reduces vascular ROS levels, and improves endothelium-dependent vascular
relaxation in a spontaneously hypertensive rat model [108]. Furthermore, it has been
demonstrated that BH4 synthesis via either the pterin salvage or the de novo pathway,
promotes endothelial cell proliferation, migration, and tubule formation in cultures and
induces angiogenesis in tumor xenografts [108].

3.5. Metabolic Interactions between Tumor Tissue and Endothelial Cells

Tumors exhibit an altered metabolism compared to non-transformed tissues [109].
The discovery and characterization of tumor reprogrammed metabolisms may provide
opportunities to predict endothelial behavior and prevent tumor angiogenesis by targeting
tumor–endothelial metabolic interactions.

Symbiotic and competitive metabolic interactions between tumor cells and microen-
vironmental cells have been reported in various cancers. For example, pancreatic stellate
cells (PSCs) utilize SLC1A4 to exchange and maintain extracellular alanine levels. More-
over, pancreatic ductal adenocarcinoma (PDAC) cells up-regulate SLC38A2 and increase
their alanine demand. PDACs lacking SLC38A2 fail to concentrate intracellular alanine
and undergo a profound metabolic crisis resulting in a tumor growth impairment [110].
In addition, metabolites profiling of melanoma interstitial fluids reveals uridine diphos-
phate as a potent immune modulator capable of limiting tumor growth by increasing
CD4+CD25+FoxP3− cells [111]. Lastly, targeting GLUL in cancer-associated fibroblasts
induces tumor regression in an orthotopic ovarian cancer model [112]. However, it re-
mains unanswered whether it could be possible target stromal metabolic pathways to find
therapeutic opportunities to block tumor angiogenesis.

Recently, the impact of breast cancer subtypes on LEC metabolism and lymphangio-
genesis was studied. Specifically, LECs co-cultured with breast cancer cell lines increased
glycolysis. Moreover, lactate levels were significantly increased, which correlated to the
up-regulation of lactate metabolism enzymes and transporters [113].

Emerging data have identified cooperative and competitive relationships between
cancer cells and TECs. Indeed, it has been shown that blocking the heme exporter Feline
Leukemia Virus subgroup C Receptor 1a (FLVCR1a) in TECs causes ketone bodies (KBs)
accumulation. TEC-derived KBs can be secreted producing a metabolic rewiring in the
cancer cells [114]. In addition, it has been reported that tumor-associated macrophages
(TAMs) can up-regulate the expression of REDD1, a negative regulator of mTOR, under
hypoxic conditions. REDD1-deficient TAMs are highly glycolytic cells that out-compete
ECs for glucose usage, which thwarts vascular hyperactivation and promotes the formation
of quiescent vascular junctions. Tuning down glycolysis in REDD1 knockout TAMs re-
establishes abnormal angiogenesis and metastases [115].

3.6. Gasotransmitters: Signals in the Air

Not all biologically active molecules have a solid nature. In fact, there are volatile
molecules capable of arousing functional responses in cells and tissues. These molecules,
known as gasotransmitters, can transduce signals and therefore influence cell activities [116].
An increasing body of evidence is starting to shed light on the roles played by gasotrans-
mitters, for example in the tumor context [117]. It is interesting to note that all known
gasotransmitters are in some way linked to the physiology of the vascular endothelium.
This is not surprising since the vascular system has evolved to facilitate gas exchange
between tissues, but this makes ECs an excellent model for investigating and dissecting the
gasotransmitter pathways. Here, we will briefly discuss the role of major gasotransmitters
on endothelial cell metabolism, a new emerging, and still largely unexplored field.

Nitric oxide (NO) is a gas produced by enzymes called nitric oxide synthases (NOSs),
which convert arginine into citrulline in a reaction involving oxygen and various coen-
zymes such as NADPH and BH4. The NOS family contains neuronal NOS (nNOS/NOS1),
inducible NOS (iNOS/NOS2), and endothelial NOS (eNOS/NOS3). In ECs, both eNOS
and iNOS are under the control of VEGF [118]. eNOS full knockout mice show a strong
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impairment in vascular development [119]. Gene therapy aimed at overexpressing eNOS in
an ischemic hindlimb rat model improves the perfusion of the tissue [120]. NO produced by
NOS acts in an autocrine and paracrine manner on the cells of the vascular system leading
to the direct activation of some signaling pathways [121] or through post-translational
modifications such as S-nitrosylation [122]. In ECs, the S-nitrosylation reduces the reserve
respiratory capacity, while stimulating glycolysis [123] (Figure 1B). The supplementation
of ECs with NO-donors leads to an increase in glucose uptake coupled to GLUT1 up-
regulation, and enhances HK activity [124]. This indicates that S-nitrosylation, NO-induced,
acts not only as an actor of metabolic reprogramming, but also as a possible driver of
glycolytic metabolism during angiogenesis. However, it has recently been found that eNOS
inhibits the glycolytic enzyme PKM2 through S-nitrosylation, which leads to an increase
in PPP activity to generate reducing equivalents. By this mechanism, NO protects the
vasculature from oxidative stress and exerts anti-inflammatory effects [125].

Another gasotrasmitter is the hydrogen sulphyde (H2S). H2S is an endogenous prod-
uct of sulfur AA metabolism (Figure 1B). It is released during the transsulfuration pathway
(TSP), the metabolic pathway that leads to the de novo synthesis of cysteine from the me-
thionine by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH) [126]. Cancer
cells express high levels of CBS and CTH and their genetic or pharmacological inhibition
leads to a reduction in tumor vasculature [125–127], suggesting that the TSP metabolic
reprogramming may be a promising therapeutic strategy for solid tumors (Table 1). Finally,
in ECs, H2S enhances glucose uptake and glycolytic ATP production, and at the same
time inhibits the complex IV (Figure 1B), leading to the reduction of mitochondrial OX-
PHOS [128]. Taken together, these data indicate TSP as a powerful driver of angiogenesis
and a putative target for anti-angiogenic therapy.

Not only can the presence of a gas have biological effects on metabolism, but also its
shortage. The best known and studied case is the lack of oxygen (O2), or hypoxia. All multi-
cellular living organisms consume O2 to support their own energy request. However, when
in each tissue, O2 level-decreased cells must adapt their metabolic needs to new conditions.
At the molecular level, the cell senses and transduces the signal through the hypoxia-
inducible factor pathway [129]. HIF-1α deletion in ECs impairs vessel growth within
cancers [129], highlighting the essential role of hypoxia in tumor angiogenesis. Surprisingly,
PHD2 haploinsufficiency in ECs bears tumor vascular normalization, resulting in a better
oxygenation and metastases reduction in a tumor xenograft model [130]. The transcriptomic
analysis of hypoxic ECs has shown the importance of HIF-1α in up-regulating the glycolytic
factors and down-regulating the mitochondrial metabolism [131]. In addition, glycolysis-
associated genes such as SLC2A3, PFKFB3, and HK2 belong to the early hypoxia-responsive
genes [78,131].

3.7. Extracellular Matrix Stiffness and Angiogenesis

The niche in which tumors develop and grow often becomes a fibrotic and extremely
rigid microenvironment, referred as desmoplastic stroma. The stiffness is associated with
the cancer aggressiveness [132]. This stiffness enhancement is due to the progressive re-
modeling of the extracellular matrix (ECM) induced by the tumor [132,133]. In addition,
to being embedded in a rigid desmoplastic stroma, highly aggressive tumors are usually
highly vascularized [3]. Consistent with this, it has been reported that the ECM stiffening
is able to trigger tumor angiogenesis (Figure 1B) [134]. The mechanical forces acting inside
a tumor play a central role in the formation of new vessels and can act in different ways.
For example, it has been reported that mechanical tension is able to induce the activation of
the VEGFR2 [135]. While the pressure induced by the stiffening of the matrix causes the
destruction of the cell–cell endothelial junctions [134], leading to the release and activation
of YAP/TAZ that regulates both physiological and tumor angiogenesis [136] (Table 1).
These factors are downstream targets of the VEGF pathway and are necessary to induce the
migratory phenotype in sprouting ECs [137,138]. Furthermore, a proteomic analysis based
on quantitative mass spectrometry showed how ECs cultured into different matrix stiff-
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nesses promote metastasis through a CCN1-dependent mechanism [139]. CCN1 signaling
promotes the adhesion between endothelial and tumor cells by inducing the expression of
N-cadherin [139], thus facilitating the dissemination of cancer cells. It is interesting to note
how during embryonic development the activation of YAP regulates GLUT1/2 expression,
increasing the consumption of glucose and nucleotides synthesis [140]. While in breast
cancer cells, matrix stiffness causes a metabolic shift from a predominantly glycolytic to
OXPHOS and FAO metabolism [141]. On the other hand, in pulmonary arterial ECs and
smooth muscle cells, an increase in glycolysis coupled by an increase in glutaminolysis
to fuel proliferation was observed [142]. This strongly suggests that matrix stiffening can
influence the metabolic reprogramming of ECs. Despite both the role of stiffness and
metabolism in promoting angiogenesis being widely documented, there is still a lack of
knowledge that connects these two fundamental aspects in the tumor context.

Another mechanical stress to which TECs are subjected is an irregular and turbulent
flow that reduces tumor perfusion, increasing its malignancy. In general, the laminar
flow into the adult vasculature helps to keep ECs quiescent by activating the cell cycle
checkpoints through the induction of p53 and p21 [143]. A disturbed flow activates the
mechano-transducers YAP/TAZ, promoting their dephosphorylation and translocation
into the nucleus, where they propel proliferation and an inflammatory phenotype [144].
A low fluid shear stress promotes the adhesion and extravasation of cancer cells to the
vascular endothelium [145]. Instead, a physiological-like flow activates the pro-quiescence
factor KLF2, which represses PFKFB3 gene expression and inhibits glycolytic metabolism.
However, it has been reported that an increased laminar flow in circulating cancer cells
enhances the transcription factor ATOH8, which, in turn, induces the expression of the
glycolytic enzyme HK2 [146]. This confers a proliferative advantage on metastatic cells.
Laminar flow appears to play a dual role in tumor progression, therefore further investiga-
tions are needed to better dissect the mechanisms induced on the metabolism of endothelial
and tumor cells.

4. Conclusions and Perspectives

Altogether these findings indicate that researchers are moving away from the only
VEGF-oriented model of angiogenesis, and start to realize that endothelial metabolism
cooperates with canonical signaling mechanisms to drive vascular morphogenesis and
differentiation. The next challenge will be to reveal the functional crosstalk among all these
conditions in normal and pathological conditions. This aspect is intriguing considering
that most metabolic pathways regulate the classical angiogenic signaling pathways such
as VEGF, FGF, or NOTCH signaling. Novel technologies, such as metabolic sensors (e.g.,
in vivo metabolite tracers) and single cell technology coupled to system biology are needed
to spatially and temporally decode these mechanisms and comprehend how angiogenic
signal networks are regulated in diseased angiogenic conditions. We strongly believe that
all these aspects will lead to important and unforeseen advances in the tumor angiogenic
field in the coming years.
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