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Abstract

The obesity epidemic is believed to be driven by a food environment that promotes consumption 

of inexpensive, convenient, high-calorie, palatable foods. Individual differences in obesity 

susceptibility or resistance to weight loss may arise due to alterations in the neurocircuitry 

supporting food reward and eating habits. In particular, dopamine signaling in the ventromedial 

striatum is thought to encode food reward and motivation, whereas dopamine in the dorsal and 

lateral striatum orchestrates the development of eating habits. We measured striatal dopamine D2-

like receptor binding potential (D2BP) using positron emission tomography (PET) with 

[18F]fallypride in 43 human subjects with body mass indices (BMI) ranging from 18–45 kg/m2. 

Opportunistic eating behavior and BMI were both positively associated with D2BP in the dorsal 

and lateral striatum, whereas BMI was negatively associated with D2BP in the ventromedial 

striatum. These results suggest that obese people have alterations in dopamine neurocircuitry that 

may increase their susceptibility to opportunistic overeating while at the same time making food 

intake less rewarding, less goal-directed, and more habitual. Whether or not the observed 

neurocircuitry alterations pre-existed or occurred as a result of obesity development, they may 

perpetuate obesity given the omnipresence of palatable foods and their associated cues.

Introduction

The rise in global obesity prevalence over the past several decades is believed to have been 

driven primarily by changes in the food environment that promote consumption of 

inexpensive, convenient, high-calorie foods (1). Palatable food cues and eating opportunities 
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have become practically omnipresent, with some individuals being more susceptible than 

others to overeat and become obese. Indeed, habitual susceptibility to opportunistic eating 

has been associated with obesity and forms the core component of a behavioral trait called 

disinhibition or opportunistic eating (2, 3).

Inter-individual variation of dopamine neurocircuitry may contribute to opportunistic eating 

and obesity since dopamine plays a central role in orchestrating the complex sequence of 

learning food-reward associations, action-outcomes, and forming automated habitual 

behaviors. In animal models, dopamine signaling in the dorsal and lateral striatum mediate 

habit formation (4–7) and dopamine accelerates the development of habit formation from 

previously goal-directed behaviors (8). Furthermore, suppressing dopamine signaling 

specifically in the dorsolateral striatum prevents or reverses habit formation (9–11). 

Therefore, if obesity is associated with habitual opportunistic overeating, one would expect 

a positive association with dopamine signaling in the dorsal and lateral striatum including 

regions of the caudate and putamen.

Another mechanism by which dopamine signaling may be altered in obesity involves hypo-

function of dopamine-mediated reward signaling (12). Under this mechanism, one would 

expect a negative association between obesity and dopamine signaling in the ventromedial 

striatum, and particularly in the nucleus accumbens, which mediates appetitive conditioning 

and motivation (13).

Therefore, we hypothesized that dopamine D2-like receptor binding potential (D2BP) in the 

dorsal and lateral striatum would be positively associated with obesity and opportunistic 

eating behavior whereas D2BP in the ventromedial striatum would be negatively associated 

with obesity. We investigated D2BP in 43 adults, 20 who were obese with body mass 

indices (BMI) ≥ 30 kg/m2 (Table 1), whose prior day’s food intake was strictly controlled to 

ensure energy balance while they were admitted to a metabolic ward. Positron emission 

tomography (PET) scans were conducted 2 hours following a standard breakfast and 

immediately following a bolus intravenous infusion of the D2-like receptor radiotracer 

[18F]fallypride.

Methods

Subjects

Non-smoking subjects between 18–45 years of age were recruited and screened to exclude 

those with diabetes, recent weight change, past or present history of drug abuse, 

neurological, or psychiatric disorders (including eating disorders such as binge eating) as 

assessed by an abbreviated Structured Clinical Interview for the Diagnostic and Statistical 

Manual of Mental Disorders. Women were studied in the follicular phase and were excluded 

if they were pregnant, breastfeeding, or post-menopausal. Twenty-two men and twenty-one 

women provided informed consent to participate in a study approved by the NIDDK 

Institutional Review Board (NCT00846040) and were admitted to the NIH Clinical Center 

where they had body fat measured by dual energy x-ray absorptiometry (Lunar iDXA, GE 

Healthcare, Madison, WI). Thirty four subjects completed the Three-Factor Eating 

Questionnaire (TFEQ) (14) and thirty-three had fasting blood draws for measurement of 
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insulin resistance which was calculated using the homeostasis model assessment of insulin 

resistance (HOMA-IR) (15). The TFEQ disinhibition score was renamed “opportunistic 

eating” as recently suggested (3) to better reflect the characteristics of this eating behavior 

whose core component has been identified as “habitual susceptibility” but also involves 

components of “emotional susceptibility” and “situational susceptibility” (2). All subjects 

were provided with an energy-balanced diet and consumed all meals as inpatients on the 

metabolic ward for at least one day prior to measuring D2BP.

Positron Emission Tomography

A morning PET scan (HRRT, Siemens Healthcare, Malvern, PA) began 2 hours after a 

standard breakfast comprising 20% of each subject’s daily caloric needs as measured by 

indirect calorimetry. A bolus of 5 mCi of [18F]fallypride was infused intravenously using a 

Harvard® pump. The specific activity was approximately 2000 mCi/µmol at time of 

injection and the radiochemical purity of the radiotracer was > 99%. The PET scan was 

carried out for 3.5 hours in three sessions separated by two 10 minute breaks. Thirty three 

volumes were acquired at times 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 4.5 , 5, 

6, 7, 8, 9, 10, 12.5, 15, 20, 25, 30, 40, 50, 60, 90, 110, 130, 170, 200 min. During each scan 

session, the room was quiet and dimly lit and each subject was instructed to keep their head 

as still as possible, relax, and try to avoid falling asleep. The image reconstruction process 

corrected for head motion which was tracked throughout each scan.

Each scan consisted of 207 slices (slice separation = 1.22 mm). The fields of view were 31.2 

cm and 25.2 cm for transverse and axial slices, respectively. A transmission scan was 

obtained with a 137Cs rotating pin source before radiotracer injection and before the 

emission scan to correct for attenuation. The PET images were aligned within each scan 

session with 6-parameter rigid registration using 7th order polynomial interpolation and each 

session was aligned to the volume taken at 20 min of the first session. The final alignments 

were visually checked, with translations varying by <2 mm and the rotations by <2 degrees.

Magnetic Resonance Imaging

The day prior to PET scanning, high resolution anatomical MRI images were acquired with 

a HDx General Electric 3 Tesla scanner (TE = 2.7ms, TR 7.24 ms, flip angle 12°, voxel size 

0.937*0.937*1.2mm) for each subject. The aligned PET images were coregistered to the 

anatomical MRI by minimizing a mutual information cost function for each individual 

subject. The final coregistration was visually checked. The anatomical MRI images were 

parcellated with FreeSurfer software to obtain region of interest (ROI) binary mask volumes 

for each subject in the putamen and caudate, accumbens area, and the whole cerebellum as a 

reference region. All individual ROI masks were visually checked and, if necessary, edited.

Statistical Analyses

The time-activity curves for [18F]fallypride concentration in the ROIs were extracted and 

kinetic parameters were fit to a four-compartment model (with the cerebellum used as the 

reference tissue) to determine the D2BP (16). In voxel-wise analysis, the anatomical MRI 

images were transformed into the Talairach space. The transformation matrix was then 

applied to the PET images which were also smoothed with a 5-mm of full-width half-max 
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Gaussian kernel. The individual subject’s D2BP maps were included in a regression analysis 

in AFNI’s 3dttest++ to identify clusters where D2BP across subjects were correlated with 

adiposity, opportunistic eating, and insulin resistance. Since high D2BP occurs mainly in 

striatum, small volume corrections were implemented within each hemisphere where D2BP 

>1.5. A two-sided voxel-wise threshold of p < 0.1 was used, and cluster size threshold to 

achieve correction for multiple comparisons at p<0.05 was implemented via Monte Carlo 

simulations in AFNI’s 3dClustSim.

To compare our results with those of previous investigators, we performed ROI analyses and 

used two-sided t-tests were used to compare the mean D2BP within each ROI between the 

obese and non-obese groups. Pearson correlation coefficients were calculated to test for 

associations between D2BP within each ROI and body fat and opportunistic eating scores. 

Statistical analyses were performed using SAS Statistical Software (version 9.3, Cary, MC).

Results

Striatal correlation patterns of D2BP with adiposity

We found a striking correlation pattern between striatal D2BP and BMI, with positive 

associations in the dorsal and lateral striatum and negative associations in the ventromedial 

striatum (Fig. 1A). After correcting for multiple comparisons, Figure 1B shows that there 

were positively associated clusters stretching bilaterally from the head of the caudate, 

posteriorly through the lateral putamen to the level of the anterior commissure on the right, 

and approximately 1.5 cm posterior to the anterior commissure in the left hemisphere (Table 

2). Bilateral negatively associated clusters were found stretching posteriorly from the medial 

wall of the caudate posteriorly through the ventral striatum, the ventral pallidum, and into 

the globus pallidus.

While the obese subjects were significantly older and more insulin resistant (Table 1), age 

was not significantly correlated with HOMA-IR (r=0.19, p=0.3) or BMI (r=0.29, p=0.06). 

Furthermore, our results regarding D2BP correlations with BMI, body fat and insulin 

resistance were similar with or without adjusting for age which was not significantly 

correlated with D2BP in our relatively young cohort (Supplementary Figs. 1–6).

Striatal correlation patterns of D2BP with opportunistic eating

Figure 2A shows that the correlation pattern between D2BP and opportunistic eating 

behavior was remarkably similar to the BMI pattern. After correcting for multiple 

comparisons, Figure 2B shows that D2BP was positively associated with opportunistic 

eating in two bilateral clusters stretching posteriorly from the head of the caudate, back 

through the lateral putamen to approximately 5 mm posterior to the anterior commissure 

(Table 2). After correcting for BMI, the right cluster survived correction for multiple 

comparisons (Fig. 2C) suggesting that the relationship between opportunistic eating and 

D2BP in the lateral striatum was not driven solely by its positive correlation with BMI 

(r=0.59, p=0.0002).
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Caudate and Putamen D2BP are positively correlated with adiposity

In the ROI analyses, we found that BMI was significantly positively associated with D2BP 

in the caudate and putamen (Fig. 3A and 3B) (caudate: r=0.45, p=0.002, β=0.26 m2/kg; 

putamen: r=0.45, p=0.002, β=0.27 m2/kg), but not in the accumbens area (Fig. 3C) 

(r=8×10−9, p=0.3, β=0.099 m2/kg). We found similar results when using body fat as the 

adiposity index (Supplementary Fig. 7). However, no significant D2BP correlations were 

observed in any ROI with respect to opportunistic eating, age, or sex.

The obese subjects had significantly increased D2BP in the caudate and putamen, but no 

significant difference was found in the accumbens region (Table 1). While the obese 

subjects were significantly older, we found and the D2BP differences in the caudate and 

putamen between obese and non-obese remained after adjusting for age. Insulin resistance 

was significantly higher in the obese subjects and was positively correlated with BMI 

(r=0.69, p<0.0001).

Discussion

Human eating behavior is highly complex and a myriad of factors influence food intake (17, 

18). Several times every day, we decide when, where, what, with whom, and how much to 

eat. Many of these eating decisions are likely habitual and were formed through repeated 

actions that were previously goal-directed. Opportunistic eating has been associated with 

obesity, reduced efficacy of weight loss interventions, and subsequent weight regain (3). Our 

results demonstrated that opportunistic eating and obesity were positively associated with 

D2BP in the lateral striatum, a region that supports habit formation (4–7). Therefore, 

variations in dopamine neurocircuitry in the lateral striatum may play a role in the 

development of obesity by potentiating an individual’s habitual susceptibility to 

opportunistically overeat in an obesigenic food environment.

Another hypothesized role for dopamine in obesity centers on the theory of reward hypo-

function where obese individuals overeat to compensate for attenuated reward signaling 

(12). Our results also offer some support for this theory since the ventromedial striatum, and 

the nucleus accumbens in particular, is thought to support appetitive conditioning and 

motivation (13). Thus, the observed negatively correlated regions between D2BP and BMI 

in the ventromedial striatum may reflect reward hypo-function or decreased motivation 

which is a feature in common with addiction (19). While we failed to observe a statistically-

significant correlation within the accumbens ROI mask, this may have been due to the fact 

that parts of the accumbens straddle a transition zone between regions of strong negative and 

positive association between D2BP and adiposity (Supplementary Fig. 8). In fact, voxel-

wise analyses revealed that D2BP was significantly negatively correlated with BMI in 

regions within the ventromedial striatum, including portions of the accumbens (Fig. 1).

Previous studies investigating associations between striatal D2BP and BMI have produced 

variable results, with some investigators finding no significant D2BP differences in striatal 

regions of interest between obese and non-obese subjects (20–22), while others found 

positive 20, 21 or negative (12, 23, 24) associations with BMI. Our results may help account 

for these variable previous findings since we demonstrated distinct striatal regions where 
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D2BP was positively or negatively associated with obesity. Past studies that averaged within 

anatomically defined striatal regions of interest may have included variable contributions 

from regions that positively and negatively correlate with BMI (Supplementary Fig. 8).

Whereas our subjects exhibited a continuous BMI range from lean to class III obesity, 

previous studies sometimes had large gaps in the BMI distribution which complicates the 

interpretation of correlation analyses. In particular, the classic study of Wang et al. (12) 

found no relationship between D2BP and BMI in 10 subjects with BMI < 30 kg/m2, but 

demonstrated a significant negative association between striatal D2BP and BMI in 10 class 

III obese individuals, 9 of which had BMI values in excess of 45 kg/m2 which was greater 

than all subjects in the current study. Therefore, we cannot rule out a different D2BP 

correlation pattern in very obese subjects.

Previous studies whose results were in apparent contrast to the current study (12, 20, 21, 23, 

24) also used different radiotracers that vary in their affinity to dopamine D2-like receptors. 

The fallypride tracer used in the present study binds with higher affinity than raclopride and 

is less sensitive to competition with endogenous dopamine that may be influenced by prior 

meal consumption (25) which was often uncontrolled in previous raclopride studies 

investigating obesity (12, 23). Caravaggio et al. (20) recently found positive D2BP 

associations with BMI in the ventral striatum but no significant associations in the caudate 

or putamen using the dopamine receptor agonist tracer PHNO, which is highly selective for 

D3 over D2 receptors and even more susceptible to competition with endogenous dopamine 

than raclopride (26). While the use of different tracers may help explain the discrepancies, it 

is important to note that Carravaggio et al. studied a comparatively narrow BMI range that 

did not include obese subjects whereas the present study investigated a continuous range of 

subjects from the lower end of normal weight through class III obesity., . Finally, Eisenstein 

et al. (21) found no relationship between striatal D2BP and obesity when using the 

dopamine receptor antagonist tracer N-methyl benperidol which has greater specificity for 

dopamine D2 over D3 receptors and is not displaceable by endogenous dopamine. Thus, 

variability within the D2-like receptor family may contribute to different conclusions about 

the role of D2BP and obesity.

A fundamental limitation of PET is that differences in D2BP might be interpreted as 

resulting from changes in endogenous dopamine in competition with the radiotracer for 

receptor binding. While this is an important methodological limitation, we believe that our 

results cannot be explained by putative differences in baseline endogenous dopamine. 

Pharmacological depletion of baseline endogenous dopamine in humans increases striatal 

D2BP by only about 10% (27) suggesting that 10% of dopamine D2-like receptors are 

occupied by endogenous dopamine at baseline, with 90% available to bind with tracer. 

Subsequent stimulation of endogenous dopamine can therefore displace a large fraction of 

the tracer and result in a substantial decrease in D2BP. However, given a constant receptor 

number, D2BP can only increase from baseline if endogenous dopamine is decreased and 

this is limited by the baseline 10% fraction of the receptors occupied by endogenous 

dopamine. However, we observed >10% increase in caudate and putamen mean baseline 

D2BP between obese and non-obese subjects (Table 1) and an approximately 30% increase 

in baseline caudate and putamen D2BP from the lowest to highest degree of adiposity 
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(Figure 3). Furthermore, we used the high-affinity dopamine D2-like receptor antagonist 

fallypride which is known to be less sensitive to competition with endogenous dopamine 

than the more common raclopride tracer (28). Therefore, we interpreted the observed striatal 

variations in D2BP with obesity as reflecting regional differences in dopamine signaling 

potential.

Another limitation of our study is that it is cross-sectional and therefore cannot demonstrate 

causality. There are likely many pathways to obesity, including a sedentary lifestyle as well 

as variations in the neurocircuitry responsible for homeostatic food intake regulation. While 

the observed alterations of dopamine signaling potential may have predisposed individuals 

to obesity, it is also conceivable that these variations in striatal D2BP were adaptations to 

prolonged increased availability and consumption of food. Indeed, the reduced D2BP in the 

ventromedial striatum could be interpreted as an adaptive down-regulation of dopamine 

receptors as a consequence of repeated exposure to palatable foods (29, 30). Furthermore, it 

is possible that dopamine receptor expression in the dorsolateral striatum was up-regulated 

due to a possible reduction in endogenous dopamine signaling in this region which is also 

involved in reward evaluation (25). Longitudinal studies of striatal D2BP dynamics are 

required to identify their relationship to various pathways of obesity progression.

We have highlighted the potential role of dopamine signaling in the processes of habit 

formation in the dorsolateral striatum and reward evaluation and motivation in the 

ventromedial striatum. However, it is important to emphasize that a direct linkage of these 

psychological processes to eating behavior and obesity has not been demonstrated in this 

study and these striatal regions likely support additional processes outside habit formation, 

reward and motivation. Nevertheless, the most straightforward interpretation of our results is 

that food intake becomes less rewarding, less goal-directed, and more habitual with the 

development and/or persistence of obesity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A) Striatal correlation pattern of dopamine D2-like receptor binding potential (D2BP) with 

body mass index (BMI) as represented by t-maps showing positive correlations in dorsal and 

lateral striatum and negative correlations in ventromedial striatum. B) Striatal associations 

between D2BP and BMI as represented by β-maps within significant clusters after correcting 

for multiple comparisons.
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Figure 2. 
A) Striatal correlation pattern of D2BP with opportunistic eating behavior as represented by 

t-maps showing positive correlations in the lateral striatum and negative correlations in the 

ventromedial striatum. B) Positive associations between D2BP with opportunistic eating 

behavior as represented by β-maps within significant clusters in the lateral striatum after 

correcting for multiple comparisons. C) Positive association between D2BP and 

opportunistic eating behavior corrected for BMI as represented by β-maps in significant 

clusters after correcting for multiple comparisons.
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Figure 3. 
Correlations between dopamine D2-like receptor binding potential (D2BP) and BMI within 

striatal regions of interest. Positive correlations were found in (A) caudate, and (B) putamen, 

but not in (C) the accumbens area.
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Table 1

Characteristics of obese and non-obese subjects and the dopamine D2-like receptor binding potential (D2BP) 

in striatal regions of interest: caudate, putamen, and accumbens area. Opportunistic Eating was measured in 17 

subjects from each group; Insulin Resistance was measured in 20 non-obese and 13 obese subjects. Mean 

(95% CI)

Non-obese
BMI < 30 kg/m2

Obese
BMI ≥ 30 kg/m2

p-value p-value
(age
adjusted)

N 23 20

Sex (M/F) 12/11 10/10

Age (years) 28 (25.1, 30.4) 35 (31.9, 38.8) 0.0008

Weight (kg) 67.5 (62.03, 73.96) 107.4 (99.80, 114.9) <.0001 <.0001

BMI (kg/m2) 22.4 (21.30, 23.49) 36.1 (33.96, 38.30) <.0001 <.0001

Body Fat (%) 23.2 (19.77, 26.69) 40.0 (35.94, 44.03) <.0001 <.0001

Fat Mass (kg) 15.7 (12.78, 18.72) 43.0 (37.50, 48.57) <.0001 <0.001

Caudate D2BP 24.9 (22.95, 26.92) 28.2 (26.48, 29.86) 0.014 0.0323

Putamen D2BP 27.0 (25.14, 28.93) 30.7 (28.61, 32.70) 0.0099 0.0056

Accumbens D2BP 16.7 (14.16, 19.29) 18.3 (16.60, 19.94) 0.30 0.37

Opportunistic Eating 3.9 (2.95, 4.93) 6.8 (5.38, 8.27) 0.0016 0.0022

Insulin Resistance (HOMA-IR) 1.5 (1.13, 1.96) 3.1 (2.0, 4.17) 0.01 0.0053
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