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Whole-genome transcriptomic insights into protective
molecular mechanisms in metabolically healthy obese African
Americans
Amadou Gaye 1, Ayo P. Doumatey1,2, Sharon K. Davis1, Charles N. Rotimi1,2 and Gary H. Gibbons1,3

Several clinical guidelines have been proposed to distinguish metabolically healthy obesity (MHO) from other subgroups of obesity
but the molecular mechanisms by which MHO individuals remain metabolically healthy despite having a high fat mass are yet to be
elucidated. We conducted the first whole blood transcriptomic study designed to identify specific sets of genes that might shed
novel insights into the molecular mechanisms that protect or delay the occurrence of obesity-related co-morbidities in MHO. The
study included 29 African-American obese individuals, 8 MHO and 21 metabolically abnormal obese (MAO). Unbiased
transcriptome-wide network analysis was carried out to identify molecular modules of co-expressed genes that are collectively
associated with MHO. Network analysis identified a group of 23 co-expressed genes, including ribosomal protein genes (RPs), which
were significantly downregulated in MHO subjects. The three pathways enriched in the group of co-expressed genes are
EIF2 signaling, regulation of eIF4 and p70S6K signaling, and mTOR signaling. The expression of ten of the RPs collectively predicted
MHO status with an area under the curve of 0.81. Triglycerides/HDL (TG/HDL) ratio, an index of insulin resistance, was the best
predictor of the expression of genes in the MHO group. The higher TG/HDL values observed in the MAO subjects may underlie the
activation of endoplasmic reticulum (ER) and related-stress pathways that lead to a chronic inflammatory state. In summary, these
findings suggest that controlling ER stress and/or ribosomal stress by downregulating RPs or controlling TG/HDL ratio may
represent effective strategies to prevent or delay the occurrence of metabolic disorders in obese individuals.
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INTRODUCTION
Obesity is a common complex trait with heterogeneous etiologies
and manifestations as illustrated by the fact that not all obese
individuals develop known metabolic consequences such as
insulin resistance, type 2 diabetes and dyslipidemia. This observa-
tion has led to the notion that “not all obese humans are created
equal”1 and the classification of subjects with obesity into at least
two major subgroups: the metabolically healthy obese (MHO) and
metabolically abnormal obese (MAO). The prevalence of MHO,
which is heavily influenced by age and ethnicity, varies widely
from a low of about 10% to a high of about 75% across studies.2

Recently, Doumatey et al. described this phenotype in a well-
characterized population-based cohort of African Americans
enrolled from Washington, DC as part of the Howard University
Family study (HUFS). The prevalence of MHO was 28% in HUFS3

and these subjects displayed paradoxical hyperadiponectinemia
(higher than normal adiponectin levels), high HDL-C and normal
triglycerides, glucose, and insulin levels.3

Although a number of studies have proposed clinical guidelines
—similar to those used to define metabolic syndrome4,5—to
distinguish MHO from other subgroups of obesity, these guide-
lines do not explain the molecular mechanisms by which MHO
individuals remain metabolically healthy despite having a high fat

mass. The challenge is to elucidate molecular mechanisms that
protect or delay the occurrence of obesity-related co-morbidities
in MHO. Previous studies have focused on candidate genes or
pathway driven approaches in the attempt to providing insight
into the biology of MHO.6 In addition, a number of hypotheses
have been evaluated in animal models.7 Insights gained from
these studies include the observation that adiponectin transgenic
and leptin deficient ob/ob mice had higher serum adiponectin
level and normal insulin sensitivity in the presence of morbid
obesity compared to their ob/ob littermate. Additionally, these
mice had a much higher proportion of subcutaneous adipose
tissue and low systemic inflammation.5,8 Interestingly, persons
with MHO also display more subcutaneous adipose tissue and less
abdominal fat compared to those with MAO.9,10 While these
studies have provided some insights into molecular mechanisms
associated with the MHO phenotype, new opportunities are
presented with increasing access to high throughput molecular
tools, especially the “omics” as exemplified by the few published
mechanistic studies of the MHO phenotype.11–13 However, most of
these studies were conducted in adipose tissue, an important
tissue in metabolic disorders but not easily obtainable. Therefore,
it is important to investigate the biological mechanisms
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underlining MHO using minimally invasive samples such as
peripheral blood.
In this study, we investigated the existence of specific set of

genes in whole blood with different expression profiles in MHO
compared to MAO. We hypothesized that these genes may play a
role in protecting individuals with obesity from developing
metabolic disorders or in delaying the onset of these disorders.
We propose a global and unbiased approach of whole genome
mRNA analysis using the most comprehensive MHO definition and
leveraging three statistical methods with particular emphasis on
network analysis given the interplay of cellular systems and
molecular pathways governing metabolism in obese individuals.14

RESULTS
Weighted gene co-expression network analysis
Weighted Gene Co-expression Network Analysis (WGCNA) was
conducted to identify network modules (i.e., clusters of co-
expressed genes) that are associated with MHO. Gene ontology
(GO) enrichment and Ingenuity Pathway analyses were carried out
to determine biological pathways and GO terms enriched in the
modules significantly associated with MHO.

Network modules correlated with MHO status. Quality control
measures (QC) applied to the input data, including graphs and
evidence of scale-free topology network for the WGCNA, are
described below in the methods section and in the Supplemen-
tary Material S1 (Figures S1 and S2). After QC, 29 samples and
14,973 of the initial 27,939 genes were taken forward for further
analyses. A total of 36 modules (i.e., clusters of co-expressed
genes) were identified after hierarchical clustering and merging of
network modules with similar expression profiles (Section 1,
Figures S3 and S4, Supplementary Material S1). Correlation
coefficients between MHO status and each of the 36 modules in
the network were evaluated with p-value and false discovery rate
(FDR) provided for each estimate. The relationship between a
module and MHO is reported as significant if (1) FDR≤ 0.05 and (2)
the correlation between Module Membership (MM) and Gene
Significance (GS) is positive and has a p-value≤ 0.05 (MM and GS
are explained in paragraph 3 of WGCNA description in the
methods section).
Two modules that included respectively 23 co-expressed genes

(lightpink module) and 50 co-expressed genes (khaki4 module)
were significantly negatively correlated with MHO status after
adjusting for gender and multiple testing. These modules which
included 18 ribosomal protein genes were under-expressed in the
MHO group (MAO, the reference, is coded as 0 and MHO is coded
as 1). MM-GS correlation, a metric to check biological plausibility
of the association between module and phenotype (see methods
section), is 0.6 (p-value = 0.0025) for the lightpink module and 0.53
(p-value = 0.000075) for the khaki4 module. The list of genes and
their MM and GS values for each of the two modules are provided
in Supplementary Table T1.

Gene ontology terms and pathways enriched in modules associated
with MHO status. A total of 149 gene ontology (GO) terms were
significantly enriched in the lightpink module. Notably, the top 10
of the 149 enriched GO terms are involved in mRNA translation
processes. No GO term was significantly enriched in the khaki4
module (Supplementary Table T2).
A core analysis conducted in QIAGEN’s Ingenuity® Pathway

Analysis (IPA) revealed three pathways enriched in the lightpink
module: EIF2 signaling (p-value = 2.08 × 10−34), regulation of eIF4
and p70S6K signaling (p-value = 7.82 × 10−11) and mTOR signaling
(p-value = 4.14 × 10−10). We a observed strong evidence of
inhibition of EIF2 signaling (z-score = −3.32) pathway in contrast
to the mTOR signaling and the regulation of eIF4 and p70S6K
signaling pathways that did not display evidence of activation or

inhibition. No known pathway was significantly enriched in the
khaki4 module.
In the same IPA analysis, the genes MYCN (p-value = 2.94 ×

10−22) and MYC (p-value = 3.29 × 10−3) were identified as sig-
nificantly enriched upstream regulators. MYCN regulates 14 of the
ribosomal genes in the lightpink module while MYC regulates 5
ribosomal genes in the same module. MYCN and MYC were more
expressed in the MHO group, particularly MYCN (log2 fold change
= 0.75). Both differential expressions were not statistically
significant but it is known that an upstream transcription factor
does not necessarily need to exhibit a large magnitude differential
expression to have a major effect on downstream target.

Differential expression analysis
While the aggregated expressions of specific sets of genes were
associated with MHO status in the network module analysis, not
all genes in the networks are differentially expressed between
MHO and MAO. We therefore evaluated differential expression of
each gene in the MHO associated modules. We evaluated the
statistical power to detect differential expression (DE) using equal
numbers of cases (eight MHO) and controls (eight MAO). The
results of that power analysis showed power≥ 0.76 (FDR < 0.15) is
achieved to detect an absolute log fold change≥ 0.14 for genes
with an average expression≥ 80 read counts (Figure S5 and Table
S1, Section 2, Supplementary Material S1). Reassuringly, the
differentially expressed genes in the modules associated with
MHO status were all in the expression level where power is ≥0.80.
A total of 17 genes out of the 23 in the lightpink module and 32

out of the 50 in the khaki4 module were significantly (FDR≤ 0.05)
differentially under-expressed in the MHO group. Notably, the top
15 genes, by FDR, in lightpink module and the top gene (RPL37A)
in the khaki module were all ribosomal protein genes (Fig. 1). The
full DE results are reported in Supplementary Table T3.

Technical validation of the differential expression analysis. To
confirm the expression changes identified by sequencing, we
carried out a quantitative RT-PCR of the top eight DE transcripts
and one of the two upstream regulators in a subset of subjects
(three MHO and nine MAO) for whom RNA samples were still
available after RNA-seq. Clinical and anthropometric character-
istics of the validation set are provided in Table S2, Section 2,
Supplementary Material S1. Overall, the direction and magnitude
of the normalized expression fold change (FC) obtained from qRT-
PCR were comparable to those obtained by RNA-seq (Figure S6,
Section 2, Supplementary Material S1). Additionally, a scatter plot
between FC (qRT-PCR) and FC (RNA-seq) displayed a linear relation
with all data points falling within the 95% confidence interval
(Figure S7, Section 4, Supplementary Material S1).

Gene expression and protein levels of ADIPOQ—an anti-
inflammatory gene. We analyzed differences in gene expression
and circulating protein levels of ADIPOQ between MHO and MAO
to validate the working hypothesis that obesity promotes
endoplasmic reticulum (ER) stress which promotes decrease in
adiponectin mRNA expression as well as decreased multimeric
adiponectin. The anti-inflammatory function of the gene is well-
documented in the context of obesity and metabolic disorders.
This protective function involves the ER stress pathways including
EIF2 signaling15 that was enriched in our lightpink module. The
results showed that MHO subjects under-expressed ribosomal
proteins which are key players in the pathophysiology of ER stress.
Our linear regression analyses with adjustment for gender
revealed higher ADIPOQ gene expression (log fold change =
0.38, p-value = 0.02) in MHO compared to the reference group,
MAO (Figure S8, Section 2, Supplementary Material S1). The levels
of both total (geometric mean of 5419.8 ng/ml vs 5188.1 ng/ml)
and high-molecular weight, HMW, (geometric mean of 2921.1 ng/
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ml vs 2601.1 ng/ml) adiponectin were higher in the MHO group
compared to the MAO groups. Consistent with expectation, total
and HMW adiponectin protein levels and ADIPOQ gene expression
were negatively correlated with TG/HDL (Figure S9, Section 2,
Supplementary Material S1).

Random forest (RF) analysis
We conducted random forest (RF) analyses to evaluate how well
genes in the two MHO associated modules can predict MHO. First,
we ran RF analyses that included all genes as predictors separately
for each module for all 29 subjects. Then, we excluded genes that
displayed no predictive power (i.e., variable importance measure,
VIM≤ 0). We subsequently ran variable selection using random
forest (VSURF) to identify the smallest subset of genes that
achieved the largest area under the curve (AUC; Figure S10,
Section 3, Supplementary Material S1). Finally, we were mindful of
the fact that our comparison group included unequal number of
subjects (MAO >MHO) by applying an RF method that balanced
the prediction error.

Random forest results for the lightpink module. The 23 genes in
the module predicted MHO status with AUC = 0.73, out-of-bag
(OOB) error = 0.31, sensitivity = 0.62, and specificity = 0.76. A
subset of 15 genes with VIM > 0 predicted MHO status with
AUC = 0.8, OOB error = 0.24, sensitivity = 0.75, and specificity =
0.76. These results along with the receiver operating curve and the
ranking of the 15 genes are displayed in Fig. 2a. Variable selection
using VSURF identified a smaller subset of 10 genes that predicted
MHO status with model performance values AUC = 0.8, OOB = 0.2,
sensitivity = 0.75, and specificity = 0.76. These performance values
are identical to values obtained from the analyses that included
the larger set of 15 genes (Fig. 2b).

Random forest results for the khaki4 module. The 50 genes in this
module predicted MHO status with the following performance
values: AUC = 0.68, OOB error of 0.28, sensitivity of 0.50, and
specificity of 0.81. The analysis of a subset of 27 genes with VIM >
0 resulted in moderately improved prediction values (AUC = 0.72,
OOB error = 0.24, sensitivity = 0.50, specificity = 0.86). Furthermore,
variable selection using VSURF identified a subset of 19 of the 27
genes, that predicted MHO status with AUC = 0.74, OOB error =
0.24, sensitivity = 0.50, and specificity = 0.86. Compared to the

lightpink module, genes in the khaki4 module did not perform as
well in predicting MHO status. However, it is important to note
that the top predictor (RPL37A) in the khaki4 module was
consistent across all 3 RF runs.

Evaluation of metabolic parameters driving the observed association
between the lightpink module and MHO phenotype. Since the
definition of MHO is a composite of four parameters including
inflammation (CRP), lipids (TG/HDL ratio), fasting glucose, and
insulin resistance (HOMA-IR), we conducted nested random forest
regression analyses to identify which of these parameters is the
primary driver of the expression of the 23 genes in the lightpink
modules. The lipid component (TG/HDL ratio) was by far the best
predictor of the expression of all but two of the genes in the
lightpink module (Table S3, Section 3, Supplementary Material S1).
The TG/HDL ratio was also the best predictor of MHO with an AUC
of 0.93 (Fig. 3) compared to an AUC of 0.85 for the model that
included all the MHO components (Figures S11 and S12, Section 3,
Supplementary Material S1).

DISCUSSION
We analyzed genome-wide transcriptome sequenced data from
whole blood to identify networks of co-expressed genes display-
ing different expression profile between obese individuals without
metabolic complications (MHO) and MAO individuals. We
discovered two network modules one with 23 genes (lightpink
module) and the other with 50 genes (khaki4 module) that were
significantly downregulated in MHO subjects. GO analysis revealed
an enrichment of terms related to mRNA translation in the
lightpink module where 18 of the 23 genes are ribosomal protein
genes (RPs). Three pathways were significantly enriched in the
lightpink module, EIF2 signaling, regulation of eIF4 and p70S6K
signaling, and mTOR signaling. Two genes, MYCN and MYC, were
identified as upstream regulators of 14 and 5 RPs genes
respectively in the lightpink module. Furthermore, differential
expression analyses of each gene revealed that 17 (16 RPs) of the
23 genes within the lightpink module and 32 of the 50 genes in
the khaki4 module were significantly differentially expressed
between MHO and MAO subjects.
Given that the signals with MHO were statistically stronger for

the lightpink module, we focused further discussion on these

Fig. 1 Plots of the normalized expression of the top 7 DE genes in the lightpink module and the top gene (RPL37A) in the khaki4 module
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findings. The TG/HDL ratio, an index of insulin resistance, was the
best predictor of the expression of genes in this module and
seems to be the primary driver of the relationship between this
module and the MHO phenotype. Moreover, a subset of 10 co-

expressed RPs genes in this module was highly accurate in
predicting MHO status with AUC = 0.8. These findings provide
plausible biological mechanisms for the MHO phenotype.
RPs are key players in the translational machinery of mamma-

lian cells and participate in ribosomal biogenesis. They are
biologically active during cell growth, proliferation, and develop-
ment.16 While evidence is available for their role in disease
etiology including cancer, their role in human metabolic diseases
is not well established. However, some insights have been gained
from mouse model with the homozygous RPL29-knockout mice
displaying low body weight at birth and global skeletal growth
defects.16,17

The involvement of RPs in immune signaling especially in the
context of inflammation in innate immune response is particularly
relevant in the context of the present investigation. Obesity is
characterized by a dynamic adipose tissue remodeling including
hyperplasia (increased number of adipocyte), hypertrophy (enlar-
gement of adipocytes) and chronic low-grade inflammation.18 The
increase in cell mass that occurs during extensive cell proliferation,
such as adipocyte hyperplasia and hypertrophy, requires
increased protein synthesis, a process that depends on a steady
supply of ribosomes; hence the coupling of ribosome biogenesis
and protein synthesis in cell cycle.19,20 Our results indicate an
upregulation of several RP genes among the subjects with
metabolic disorders (MAO) suggesting a mechanism developed
by the body to cope with the increased cellular and metabolic
stresses associated with obesity. Increased protein synthesis and
activities have shown to result in rapid accumulation of misfolded
proteins that can trigger ER and ribosomal stresses16,21,22 with
detrimental effects to the cell or organism.23 Ribosomal and ER
stress can trigger inflammation, a natural process, through which

Fig. 3 Prediction of gene expression using individual components
of MHO definition: TG/HDL ratio is the best predictor of MHO status

Fig. 2 Model performance and ranking of (a) 15 genes from the lightpink module and (b) a subset of 10 genes identified through variable
selection that collectively predict MHO with the same performance

Whole-genome transcriptomic insights...
A Gaye et al.

4

npj Genomic Medicine (2018)  4 Published in partnership with the Center of Excellence in Genomic Medicine Research



the body attempts to remove pathogens and cell debris. However,
ineffective control of these processes can lead to chronic
inflammatory state with serious metabolic consequences.23

Our observation of a higher expression of RPs and dysregulation
of ER-associated canonical pathways (i.e., EIF2 signaling, mTOR
signaling, regulation of eIF4 and p70S6K signaling) indicate
increased ribosomal and ER stress and higher inflammation in
the unhealthy obese group (MAO). In contrast, we observed lower
expression of RPs, lower inflammation and higher anti-
inflammatory status as measured by higher ADIPOQ expression
and serum adiponectin levels among the healthy obese subjects.
These observations suggest that MHO subjects may be more
physiologically effective in modulating both ER and ribosomal
stress with an attenuation of the inflammatory state characteristic
of MAO individuals. This observation is consistent with the results
of a study conducted in Saccharomyces cerevisiae which showed
that reduced translation or deficiency in ribosomes protects
against ER stress.24 Furthermore, it has been reported that ER
stress leads to reduced adiponectin secretion with resulting
increased inflammation in human adipocytes.15

We note that TG/HDL ratio appears to be a major driver of the
change in the expression profile of the RPs between MHO and
MAO subjects. Hence, we postulate that increased TG/HDL ratio,
an indicator of insulin resistance, likely represents a deterministic
stimulus in the triggering of ER and ribosomal stresses with
inflammatory consequences in obesity. Indeed, the TG/HDL ratio is
2.3 times lower in MHO than in MAO. Thus, our findings not only
support the role of inflammation in the development of metabolic
disorders in obesity, but also provide novel insight into the
etiologic pathways that link obesity, perturbations in cellular
metabolism, and chronic inflammation.
Upstream analysis identified conserved transcription factors

(TFs), MYCN and MYC as regulators of RPs. These TFs are known to
modulate cell proliferation and regulate ribosome biogenesis and
protein synthesis,25 and there is evidence now they may be
involved in metabolic reprogramming through lipid metabolism.26

Down-regulation of RPs seems to be a homeostatic protective
mechanism that appears to be intact in MHO; but perturbed in
MAO such that there is chronic inflammation with its MAO-related
consequences.
This study has several strengths including major efforts to avoid

the potential of false positive signals by implementing different
statistical methods/techniques (WGCNA, RF, and DE), and strin-
gent QC measures. This robust and well-integrated analytical
framework represents the first such attempt to identify plausible
pathways related to MHO. Although analysis of whole blood
provides a good overview of physiologic activities in many tissues,
it is however important to note that signals from some tissues may
not or may only be partially captured from peripheral blood.
Nevertheless, whole blood is a reasonable tissue for the
investigation of complex conditions such as metabolic disorders

that involve multiple tissues, pathways and cell types. Finally, we
recognize that this cross-sectional study cannot infer causality,
thus functional assays as well as replication in other populations as
more “omics data” become available are warranty.

CONCLUSION
The molecular biology technique (RNA-sequencing) implemented
in this study to shed novel insights into the molecular basis of
MHO in African Americans identified a set of RPs which predicted
MHO status with high accuracy. Our findings support previously
identified role of inflammation in the development of obesity-
related co-morbidities. Notably, we provided novel insights into
potential mechanisms by which inflammation is triggered in
obesity. Furthermore, we provided evidence in support of the role
of ER and ribosomal stresses via RPs in the onset of inflammation
in the obesity state. The high TG/HDL-C ratio seen in MAO may
suggest activation of ER and related-stress pathways that
ultimately lead to chronic inflammatory state. Controlling ER
stress and/or ribosomal stress by downregulating RPs with
chemical agent(s) or keeping TG/HDL ratio in a “normal range”
may represent effective strategies to prevent or treat metabolic
consequences in obese individuals. Finally, the set of RPs
identified in this study may represent an objective classifier of
MHO status following validation in independent studies.

MATERIALS AND METHODS
Cohort description
The Minority Health Genomics and Translational Research Bio-Repository
Database (MH-GRID) project is a study of severe hypertension in African
Americans aged 30–55 years. The data included in this analysis consist of
whole blood RNA from a subset of the MH-GRID cohort. Details of inclusion
and exclusion criteria for the MH-GRID study are provided in Section 4 of
Supplementary Material S1. All participants signed a written informed
consent before their participation in the study. The study was approved by
the Morehouse School of Medicine, Kaiser Permanente, Grady Health
System Research Oversight Committee, and the National Institutes of
Health Institutional Review Boards.
MHO subjects were defined based on the third and most comprehensive

definition outlined in Table 1. This definition adds inflammatory status to
the modified definition by Wildman et al.27 MAO subjects were defined as
obese (BMI≥ 30) individuals not meeting the MHO definition. The baseline
characteristics of the 29 subjects, matched for age, included in our analysis
are reported in Table 2.

RNA sequencing data
RNA extraction: Total RNA extraction was carried out using MagMAXTM for
Stabilized Blood Tubes RNA Isolation Kit as recommended by vendor (Life
Technologies, Carlsbad, CA).
Library preparation: Total RNA samples were converted into indexed

cDNA sequencing libraries using Illumina’s TruSeq sample kits. After PCR

Table 1. Definitions commonly used in the literature for MHO

Definition 1 Definition 2 Definition 3

Basic MHO definition Modified Wildman et al. definition Includes inflammatory status

∙ No hypertension (BP≤ 130/85mmHg, no BP
medication)

∙ No hypertension (BP≤ 130/85mmHg, no BP
medication)

∙ Definition 2+

∙ No diabetes (glucose≤ 126mg/dl) ∙ No pre-diabetes or diabetes (glucose≤ 100mg/dl) ∙ hsCRP≤ 0.3 mg/dl)

∙ HDL-C≥ 40mg/dl for male ∙ HOMA≤ 5.1 ∙ Karelis et al. (cut off for CRP)
HDL-C≥ 50mg/dl for female ∙ TG/HDL≤ 1.65 for male ∙ All conditions must be met

∙ All conditions must be met TG/HDL≤ 1.32 for female

∙ All conditions must be met

Whole-genome transcriptomic insights...
A Gaye et al.

5

Published in partnership with the Center of Excellence in Genomic Medicine Research npj Genomic Medicine (2018)  4 



amplification, the final libraries were quantitated by qPCR (KAPA Library
Quant Kit, KAPA Biosystems).
Sequencing strategy: Illumina paired-end 100 base pair sequencing was

performed on HiSeq 2000 analyzer (Illumina, USA) with a sequencing
depth of 75 million reads per sample. Twelve samples were pooled in
equimolar ratios; the quality control of the pooled samples and
determination of the loading concentration were performed on MiSeq
(Illumina, USA).
Expression quantification: The quantification of mRNA expression was

done in three steps; (i) adapter trimming was conducting with FastqMcf28

to remove remnants of sequencing primers/adapters and low-quality
regions from the raw RNA-Seq read data, and improve subsequent
alignment rates; (ii) reads were aligned to the transcriptome, using
BowTie229 and the relevant reference genome (hg38); (iii) finally, the
expression levels were measured using the RNA-Seq by expectation
maximization method.30 The mRNA sequencing data of 29 samples across
27,939 transcripts were analyzed. More details about RNA extraction,
library preparation and expression quantification are available in Section 5
of the Supplementary Material S1.

Quality controls
The expression data were normalized using the weighted trimmed mean
of M-values method,31 an optimal method for the normalization of mRNA
sequencing data. Transcripts that did not achieve 1 count per million (CPM
= count/sum [counts] x 1million) in at least three samples were excluded to
remove genes with very low expression that are likely to be noise. Principal
component analysis was conducted to identify sample outliers.

Protein measurement
CRP, total and HMW adiponectin were measured per manufacturer’s
specifications using magnetic bead-based multiplex assays from R&D
systems (Minneapolis, MN) on a Luminex IS100 instrument (Luminex Corp.
Austin, TX). The analytes were grouped into panels by the manufacturer
based on their abundance in “normal” human serum. The data were
analyzed using Bio-Plex Manager Pro 6.1 analysis software (Bio-Rad,
Hercules, CA).

Statistical analyses
Three complementary statistical approaches were used to define the most
robust molecular signature of metabolically healthy obesity. The chart in
Fig. 4 shows the series of analyses conducted and the methods used to
achieve the most reliable results. The three methods are described below.

Weighted gene Co-expression Network Analysis (WGCNA). The aim of this
analysis is to investigate the interplay between genes to identify modules

(clusters of genes whose expressions are highly correlated) and the
relationship between those modules and MHO phenotype. This analysis
was conducted following the WGCNA methodology, in the R environment
and in three steps detailed elsewhere.32 Because the network analysis is
essential to this project, the WGCNA analysis steps are described in more
details below.

(1) Network construction: The network consists of all the genes that
passed quality control (QC) filters. In the network, each gene is a
node and closely related genes (i.e., co-expressed genes) form a
module. First, a co-expression similarity matrix, sij, that holds
correlation values between genes is computed. Then sij, is
transformed into an adjacency matrix, aij, a matrix that tells whether
any two genes have a correlation≥ τ, a threshold to determine if two
genes are connected (close). In un-weighted networks aij takes the
values 0 or 1, as shown in the mathematical expression below, and τ
is then called a “hard” threshold.

if sij � τ ! aij ¼ 1 elseaij ¼ 0

However, such hard threshold does not reflect the continuous nature
of biology. Therefore, weighted networks which allow for aij to take
any values between 0 and 1 represent a more appropriate
framework; τ is then called a ‘soft’ threshold. A critical decision is
the choice of an appropriate τ. An adequate threshold τ is one that
leads to a scale-free topology network (i.e., a structured network with
central (hub genes) and peripheral nodes as opposed to a random
network). A characteristic of a scale-free topology network is that the

Table 2. Baseline characteristics of the phenotype data by MHO and MAO status

Characteristics Metabolically healthy and obese (MHO) Metabolically abnormal and obese (MAO)

N 8 21

BMI 34± 6 (30, 47)* 37± 5 (30, 45)

Glucose (mg/dl) 87± 6.57 (77, 98) 92.62± 9.59 (78, 121)

CRP (mg/dl) 0.13± 0.09 (0.04,0.3) 0.36± 0.21 (0.07, 0.72)

HOMA-IR 1.99± 1.49 (0.3, 4.56) 4.21± 2.97 (0.94, 13.12)

TG/HDL ratio 0.98± 0.27 (0.52, 1.3) 2.25± 1.21 (0.88, 5.14)

Hypertension (Control/case) 8/0 8/13

HMW adiponectin (ng/ml) 3565± 2497.5 (1120,8080) [2921.1**] 3453.5± 2733.2 (808.82, 10200) [2601.1**]

Total adiponectin (ng/ml) 5878.7± 2615.48 (2920,10900) [5419.8**] 5491.4± 2042.6 (2960,10600) [5188.1**]

Age (years) 41.88± 6.08 (34, 54) 42.33± 5.97 (34, 54)

Gender (Female/Male) 3/5 14/7

Current smoker (No/Yes) 4/4 11/10

Regular alcohol drinker (No/Yes) 5/3 15/5

*The minimum and maximum values are between brackets
**Geometric mean

Fig. 4 Graphical depiction of the three complementary analytical
strategies implemented in this study
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probability that a node has k connections follows a power law P(k)~k-
γ. For a perfect scale-free topology network the correlation between P
(k) and k is 1. In this analysis, the choice of the threshold was verified
to ensure the requirement of a scale-free topology network is
fulfilled: ρP (k), k≥ 0.8.

(2) Identification of network modules: After choosing an appropriate
threshold, modules were identified through hierarchical clustering
using the Unweighted Pair Group Method with Arithmetic Averaging
method33 to build a dendrogram, a diagram that hierarchically nests
genes into increasingly more inclusive clusters. The clustering is
based on information from a topology overlap matrix, a matrix that
combines co-expression information from the adjacency matrix and
topological similarity.34,35 The minimum size of the modules was set
to 10 to ensure that small as well as large modules are detected.
Subsequently, modules with very similar expression (those very close
in the dendrogram) were merged.

(3) The relationship/association between the modules identified in the
previous step and MHO were then investigated. The aggregated
expression of each module, the first principal component of the
reduced data, termed module eigengene, is computed and its
correlation with MHO status determined. The relationship between a
module and MHO is reported as significant if 2 conditions are
fulfilled:

a. The false discovery rate (FDR) adjusted p-value of the correlation is
≤0.05.

b. The correlation between Module Membership (MM) and Gene
Significance (GS) is >0 with a p-value≤ 0.05. MM is the correlation
between the expression profile of a gene and the module eigengene
(aggregated expression of all genes in a module, the 1st principal
component); MM takes values between 0 and 1 and tells “how well a
gene belongs to a module”; hub genes have an MM value closer to 1.
GS is the absolute value of the correlation between a gene and the
outcome, MHO. The correlation between a module and MHO status is
in fact a correlation between the module eigengene and MHO status.
Therefore, in a biologically plausible module-phenotype association,
hub genes would be more correlated with MHO than genes at the
fringes of the module and this leads to a positive correlation between
MM and GS.

After identifying modules associated with the outcome of interest, GO
enrichment analysis was performed, using the R library limma, to identify
GO terms over-represented in each of the modules. The function used
computes one-sided hypergeometric tests equivalent to Fisher’s exact
test.36 The modules were further investigated for the presence of known
pathways and upstream regulators, in QIAGEN’s Ingenuity® Pathway
Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity).

Differential expression analysis. The R library edgeR (24) was used to
examine differential expression between MHO and MAO. EdgeR fits a
negative binomial model to transcripts read counts (i.e., expression) and
computes likelihood ratio tests for the coefficients in the model. The DE
analysis included genes in modules identified as associated with MHO
phenotype in the WGCNA analysis. Genes with an absolute log fold
change > 0 and FDR≤ 0.05 are reported as differentially expressed. A
deviance of goodness of fit test was run to identify genes with poor model
fit indicating that the dispersion estimate of the gene was markedly far
from the common dispersion. Dispersion outliers were carefully inspected,
because outlying dispersion can indicate either low quality or large
expression difference due to artefactual effects.
Power analysis was conducted using the R library PROPER37,38 to

estimate the power to detect the lowest significant log fold change in the
list of differentially expressed genes, with 8 MHO and 8 MAO samples.

Differential expression analysis validation. Technical validation of the DE
results was carried out with quantitative real-time polymerase chain
reaction (qPCR) using three MHO and nine MAO samples, a subset of the
initial samples for which RNA was still available. A summary of the
characteristics of these 12 samples is available in Section 2 of
Supplementary Material S1 (Table S2). Eight of the top differentially
expressed genes, based on adjusted p-value, were assayed in addition to
the upstream regulator MYCN.
RNA samples were reverse transcribed using Invitrogen SuperScript IV RT

cDNA synthesis kit with random hexamer primers following the
manufacturer’s instructions (ThermoFisher Scientific, Waltham, MA). The
qPCR assay was then carried out on Bio-Rad CFX96 system (BIO-RAD,

Hercules, CA) using previously synthesized cDNA and TaqMan gene
expression assays which include two unlabeled PCR primers and one FAM®
dye-labeled TaqMan® MGB probe (ThermoFisher Scientific, Waltham, MA).
A PCR reaction of 2 μl was used for all assays and contained 10 μl of
TaqMan® Fast Advanced Master Mix (2×), 1 μl of TaqMan gene expression
assay mix (20×) and 9 μl of cDNA diluted in RNase-free water. All samples
including the controls (no template controls and reverse transcriptase
controls) were run in triplicates. The thermal cycling conditions were as
follow: 50 °C for 2 min, 95 °C for 20 s, and [95 °C for 3 s, and 60 °C for 30 s] ×
40 cycles.
The qPCR data was analyzed using Relative Expression Software Tool

(REST 2009), a stand-alone software developed by Pfaff and Qiagen (http://
www.REST.de.com) and uses the ΔΔCt method. The expression values were
normalized to two reference genes, GAPDH and ACTB (ThermoFisher
Scientific, Waltham, MA). Transcripts were considered validated if the
direction and magnitude of the normalized expression ratios (FC) are
consistent between the methods (i.e., RNA-seq and q-PCR).

RF analysis. RF is a machine learning technique that makes no
assumptions about the relationship (e.g., linear) between the predictors
and the outcome and can capture interactions that cannot be easily
included in regression models. Genes in each module associated with MHO
status were used as predictor variables in a random forest analysis to
assess how well they collectively predict MHO. It is reasonable to expect
modules or subset of modules correlated with the MHO phenotype to
predict MHO status with a high accuracy. For instance, some genes in the
modules would each have some predictive power to predict MHO and
they collectively could provide a reasonably good classification of MHO.
For this analysis the R library randomForest, an R implementation of the
algorithm developed by Breiman and Cutler,39 was used. In RF, cross-
validation is not necessary; technically speaking there are no training and
test datasets: for each tree, a subset of all the samples, is drawn by
sampling with replacement (bootstrap) and the rest of the data are left out;
a large forest of 10,000 trees (ntree) was generated for robust prediction
estimates. For each tree, the number of predictor variables sampled (mtry)
as candidates at each split is p

2 where p is the total number of genes. The
samples left out represent the out-of-bag (OOB) set used to get an
unbiased estimate of the misclassification error of the tree.39

RF provides a Variable Importance Measure (VIM), a score that denotes
the variable’s predictive power. VIM is obtained as follows: for each tree,
the misclassification rate (error rate) in the OOB set is evaluated (errOOB1);
then the values of the variable are permuted and after classification, the
error rate for that perturbed OOB set (errOOB2) is computed. Finally, the
error rate in the perturbed set, is subtracted from that of the un-perturbed
OOB set; this operation is carried out across all the trees. The VIM formula
can be written mathematically as described below where VIMk is the raw
VIM score of a variable k, ntree is the number of trees and errOOBk2, the
misclassification error on the perturbed OOB set when the values of the
variable k are permuted. In our analysis, the number of permutations
(nPerm) was set to 1000.

VIMk ¼
P

errOOBk2 � errOOB1
ntree

Although RF ranks the predictor variables (here genes) by VIM, not all
the variables with some predictive power (VIM > 0) are truly important;
some are noise. Since this project focuses on the most robust molecular
signatures, we subsequently searched for the true predictors, a process
called variable selection. Variable selection was carried using a method by
Genuer et al. implemented in the R programming language and described
elsewhere.28,40 This method has the particularity of using a heuristic
approach where the threshold to sift out noise predictors is derived from
the data and is hence not an arbitrary cut-off independent of the data.28

Protocol approval. The study was performed in accordance with relevant
guidelines and regulations and approved by the Morehouse School of
Medicine, Kaiser Permanente, Grady Health System Research Oversight
Committee, and the National Institutes of Health Institutional Review
Boards.

Participants anonymity
Patient identifiers have been removed within the text, tables, figures, and
images. All reasonable measures have been taken to protect patient
anonymity.
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