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Hydrocephalus is mainly characterized by excessive production or impaired

absorption of cerebrospinal fluid that causes ventricular dilation and

intracranial hypertension. Astrocytes are the key response cells to

inflammation in the central nervous system. In hydrocephalus, astrocytes

are activated and show dual characteristics depending on the period of

development of the disease. They can suppress the disease in the early

stage and may aggravate it in the late stage. More evidence suggests that

therapeutics targeting astrocytes may be promising for hydrocephalus. In

this review, based on previous studies, we summarize different forms of

hydrocephalus-induced astrocyte reactivity and the corresponding function

of these responses in hydrocephalus. We also discuss the therapeutic effects

of astrocyte regulation on hydrocephalus in experimental studies.
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Highlights

– Astrocytes are understudied in hydrocephalus but plays an essential role in
the condition.

– Their specific pathologic contributions and targeting astrocytes as a therapy
for hydrocephalus are summarized for the first time.

Introduction

Hydrocephalus is a cerebrospinal fluid (CSF) functional disorder that causes
ventricular dilation and intracranial hypertension (sometimes, it may not be associated
with it). Hydrocephalus is commonly caused by craniocerebral trauma, intracranial
space-occupying lesions, or intracranial infection. Periventricular gliosis, including
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astrocytes, microglia hypertrophy, and hyperplasia, has been
reported in human and animal models of hydrocephalus (Del
Bigio, 2001; Deren et al., 2010; Eskandari et al., 2011; Zhan et al.,
2020); this suggests that gliosis is a significant neuropathological
feature of hydrocephalus. Changes in glial cells, especially
astrocytes, may play an essential role in the pathogenesis of
hydrocephalus.

Astrocytes are the most widely distributed type of cells
in the mammalian brain and the most numerous type of
glial cells (Zhou et al., 2019). They play an important role
in various physiological activities, such as maintaining ion
homeostasis and participating in cerebrospinal fluid circulation
(Volterra et al., 2014; Plog and Nedergaard, 2018; Lafrenaye and
Simard, 2019). They can regulate their own metabolic activities
and control the synthesis and reuptake of neurotransmitters
and neurotrophic factors through the transduction of various
receptors and signaling pathways (Pekny and Pekna, 2014; Li-
Na et al., 2017; Durkee and Araque, 2019). Moreover, their
ability to regulate inflammatory cytokines and free radical
release play an important role in the pathological process
of central nervous system (CNS) diseases (Sofroniew, 2015;
González-Reyes et al., 2017; Cabezas et al., 2019). Research
showed extensive gliosis in communicating hydrocephalus,
which is related to the pro-inflammatory role of astrocytes
(Xu et al., 2012b; Xu et al., 2015). Reactive astrocyte
proliferation is a repair and healing response to brain tissue
injury, mainly manifested as fibrous astrocyte proliferation,
which eventually becomes a glial scar with strong positive
staining for glial fibrillary acidic protein (GFAP). Moreover,
the CNS responds to different injury situations by causing
different changes in astrocytes, suggesting that astrocytes are
important response cells in CNS injury. Therefore, targeting
astrocytes for the treatment of hydrocephalus may show some
promise.

In this manuscript, based on prior experimental studies,
we first described the morphological characteristics of
astrocytes under physiological conditions and their changes in
hydrocephalus. We then focused on the astrocyte responses to
hydrocephalus and the consecutive functions of these responses
in hydrocephalus development. They finally briefly discussed
the therapeutic effects of regulating astrocytes on hydrocephalus
in animal model studies.

Astrocytes in the central nervous
system

Astrocytes are distributed throughout the CNS and are
involved in structural support, blood–brain barrier (BBB)
formation, extracellular environment maintenance, anti-
oxidative stress, and many other activities (Pekny and Nilsson,
2005). Astrocytes give off many long, branching processes from
the cell body, which extend and fill the space between the cell

body and its processes. Astrocytes can be divided into two types:
fibrous astrocytes and protoplasmic astrocytes (Borggrewe et al.,
2021). Fibrous astrocytes are mostly distributed in the cortex of
the spinal cord with elongated protrusions and few branches.
Protoplasmic astrocytes are mainly distributed in gray matter,
with stubby cell projections and many branches (Miller and
Raff, 1984).

The ends of the protuberance are often enlarged to form
the end feet and attach to the adjacent capillary wall or
the inferior membrane of the ependyma. Three-dimensional
electron microscopy reconstruction of the endings of vessels in
the rat hippocampus revealed that the end feet interdigitated
without leaving any slits between them (Mathiisen et al., 2010).
Astrocytes have extensive gap junctions composed mainly of
connexins (CXs). These gap junctions are enriched in the
endfeet of astrocytes, which enwrap the blood vessels’ walls
and provide a perivascular route (Liu and Chopp, 2016). Small
molecules can pass through gap junctions and participate in
cell-to-cell communication.

The mitochondria in endfeet differ markedly in size
and shape. The 3D reconstructions found two main types
of mitochondria: small/ovoid and elongated (Mathiisen
et al., 2010). Others show very complex shapes. Different
mitochondria intertwine and form large bundles that fit tightly
into the endfoot membranes around the blood vessels.

Astrocytes are the key response cells in CNS injuries
since they respond to inflammatory stimuli by releasing pro-
inflammatory molecules. Therefore, they are greatly involved
in the development of hydrocephalus. They are associated with
neuroinflammation by producing various pro-inflammatory
molecules (Cekanaviciute et al., 2014b; Pekny and Pekna,
2014). They are also involved in fluid regulation because over-
expressing aquaporin 4 (AQP4) can regulate cell swelling or
reduce volume (Petzold et al., 2006). Besides, they can provide
antioxidant protection by secreting neurotrophic factors and
antioxidants (Sofroniew, 2015).

The above briefly describes the main functions of astrocytes,
which are closely related to the pathogenesis of hydrocephalus
and are the focus of our research and will be described
in detail below.

Abnormal astrocytes in
hydrocephalus

In hydrocephalus, factors such as hypoxia promote the
activation of astrocytes. In patients with hydrocephalus, the
astrocytes show significant edema and phagocytic activity
(Castejon, 1994; Castejón, 2010). Furthermore, active astrocytes
express more intermediate filament proteins, including glial
fibrillary acidic protein (GFAP), vimentin, nestin, and many
other altered molecules (Petzold et al., 2006; Liu and Chopp,
2016; Eide and Hansson, 2018). Reactive astrocytes were
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mainly found in periventricular white matter and cortical gray
matter (Del Bigio, 2010). Activated astrocytes can recruit other
astrocytes to migrate to the site, forming a glial scar (Pekny
and Nilsson, 2005). The number of reactive astrocytes may
be reduced after shunt, but they cannot return to normal
conditions for a long time (Eskandari et al., 2011). Therefore,
surgical treatment cannot completely reverse the reaction even
in the long term (Figure 1).

Interestingly, neuroinflammation-induced reactive
astrocytes exhibit the property of secreting neurotoxins that
promote the death of neurons and oligodendrocytes (Liddelow
et al., 2017). In contrast, ischemia-induced reactive astrocytes
increased neurotrophic factor expression and exhibited more
neuroprotective properties (Zamanian et al., 2012).

The functional role of the glial scar is also controversial.
On the one hand, it can secrete molecules such as chondroitin

sulfate proteoglycans that inhibit axon regeneration (McKeon
et al., 1991). On the other hand, it acts as a barrier to prevent
the spread of inflammatory cells and factors into healthy tissue
(Burda et al., 2016). Loss of proliferating astrocytes leads
to significantly increased levels of amyloid-β, indicating that
reactive astrocytes are involved in the clearance of amyloid
peptides (Katsouri et al., 2020).

Endoependymal exfoliation in hyh mutant mice caused
adjacent astrocytic proliferation. These astrocytes expressed
specific glial markers and formed a layer of surface cells to
replace the lost ependyma (Roales-Buján et al., 2012). Reactive
astrocytes on the removed ependymal surface showed a small
but significant increase in AQP4 compared with the ependymal
of wild-type mice (Roales-Buján et al., 2012). This may be an
adaptive change in response to ependymal damage. Whether
this change is due to the direct effect of ependymal damage

FIGURE 1

Functions of astrocytes. LPS activates microglia to secrete cytokines, such as IL-1β and TNF-α, which increase the amount of GFAP. In addition,
LCN2 also promotes the increase in GFAP. The increased GFAP activates astrocytes via NF-κB, which, in turn, recruits macrophages through the
release of nitric oxide or prostaglandins. Lipid peroxide can also affect macrophages via Wnt/β-catenin in this process, and reactive oxygen
species can also influence the production of nitric oxide and prostaglandin by promoting NF-κB and then affecting macrophages. Macrophages
can inhibit normal cilia, and cilia abnormalities can occur, encouraging the interaction of microglia and astrocytes and the appearance of glial
scars. On the one hand, this can produce a barrier. On the other hand, it can inhibit axonal neurotransmission and, most importantly, contribute
to the overexpression of AQP4, causing hydrocephalus. In addition, astrocytes have the function of secreting glutathione and scavenging
amyloid. LPS, Lipopolysaccharide; lL-1β, Interleukin-1β; TNF-α, Tumor necrosis factor-α; GFAP, glial fibrillary acidic protein; LCN2, Lipoprotein 2;
ROS, Reactive oxygen species; GSH, glutathione; Aβ, amyloid protein; NO, nitric oxide; AQP4, aquaporin 4.
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or the mechanical compression of hydrocephalus needs to be
studied.

Electron microscopy was used to analyze cerebral cortex
slices from 30 idiopathic normal pressure hydrocephalus
(iNPH) patients. The results showed that the number of
normal mitochondria decreased significantly in the astrocytic
endfeet of iNPH patients compared to normal individuals,
accompanied by a significant increase in the number of
pathological mitochondria (Hasan-Olive et al., 2019a). These
changes were obviously related to the degree of astrogliosis.
This indicates an energy metabolism disorder in the astrocytes
of patients with iNPH (Wang et al., 2020). Also, pathological
mitochondria were significantly and negatively correlated with
the perivascular expression of AQP4 and dystrophin-71 (Hasan-
Olive et al., 2019a).

Astrocytes regulate
neuroinflammation in
hydrocephalus

Many neurological diseases, including hydrocephalus, are
associated with neuroinflammation, but the exact mechanisms
are not fully understood. In the CNS, astrocytes play a major
role in inflammation (Sun et al., 2021). In animal models,
significant inflammatory responses have been demonstrated
in all stages of hydrocephalus, in which reactive astrocytes
may play a central role (Lopes Lda et al., 2009; Deren et al.,
2010; Olopade et al., 2012). After intraperitoneal injection of
lipopolysaccharide (LPS), the expression of pro-inflammatory
cytokines in microglia was found to peak 2–4 h after injection,
but the peak of pro-inflammatory cytokine expression in
astrocytes occurred 12–24 h after injection (Norden et al.,
2016). This might indicate that microglia are involved in
activating astrocytes by secreting pro-inflammatory factors in
the inflammatory response of the CNS. Astrocytes can be
activated by various pro-inflammatory mediators, such as IL-
1β (John et al., 2004). Microglia are the main source of IL-1β,
mainly expressed in astrocytes and perivascular macrophages
4 weeks after hydrocephalus induction (Olopade et al., 2019).
At the same time, astrocytes can produce a variety of pro-
inflammatory molecules, such as prostaglandins and nitric
oxide (NO), to amplify neuroinflammation (Sofroniew, 2015;
Michinaga and Koyama, 2019).

Astrocyte signaling pathways appear to be regulated
by common downstream transcriptional regulators during
inflammation (Linnerbauer et al., 2020). Nuclear factor-κB
(NF-κB) is greatly involved in the response of astrocytes to
inflammatory stimuli and other injuries. NF-κB is a major
regulator of cell survival, differentiation, and proliferation, as
well as innate and adaptive immunity. The NF-κB signal of
astrocytes can be directly activated by various pro-inflammatory

factors such as TNF-α, IL-1β, and TLR signals (Kawai
and Akira, 2007; Shih et al., 2015). Activation of NF-κB
in astrocytes induces the expression of pro-inflammatory
mediators, leading to the recruitment of macrophages,
thereby inhibiting ependymal cilia formation and, ultimately,
hydrocephalus formation (Lattke et al., 2012). However, in
this study, activation of NF-κB caused hydrocephalus only
in the developing brain and did not show significant lateral
ventricular dilation in mature rats. However, NF-κB may
promote hydrocephalus through mechanisms other than
inhibiting ependymal cilia formation, such as promoting the
secretion of other pro-inflammatory factors.

A study has shown that neuroinflammation is found in
ventricular dilation in rats with hydrocephalus and suggests
that it is involved in the upregulation of IL-1β secreted by
astrocytes in the early stages of the disease (Olopade et al.,
2019). In this study, IL-1β was significantly increased at weeks
1 and 4, followed by downregulation at week eight, which
seems to be consistent with the clinical characteristics of
posthemorrhagic hydrocephalus in premature infants (Schmitz
et al., 2007). It suggests that neuroinflammation in the later
stage of hydrocephalus is relieved. In some disease models,
astrocytes secrete transforming growth factor-β to reduce
disease-associated inflammatory responses (Cekanaviciute et al.,
2014a,b). However, transforming growth factor-β is closely
related to subarachnoid fibrosis in the development of
hydrocephalus (Cherian et al., 2004; Zhan et al., 2020; Wang
et al., 2021). In subarachnoid hemorrhage, the body responds
to the injury by releasing various factors through many different
pathways to activate astrocytes, which, in turn, repair the BBB.

Lipoprotein 2 (LCN2) is an iron-carrier binding protein
that plays a role in endogenous iron chelation. It is an acute-
phase protein expressed by astrocytes after ischemic stroke,
cerebral hemorrhage, and neuroinflammation (Dong et al.,
2013; Ni et al., 2015). It is reported that LCN2 knock-out mice
injected with hemoglobin showed less ventricular dilation and
fewer activated astrocytes and amoeba microglia compared with
control mice (Shishido et al., 2016). Another recent study has
demonstrated that LCN2 deficiency reduces neuroinflammation
by reducing glial and microglial cell activation in a model of
systemic inflammation (Jin et al., 2014). Previous studies have
also shown that LCN2 increases glial fibrillary acid protein
(GFAP) expression and promotes activation of astrocytes and
microglia (Xing et al., 2014).

Astrocytes regulate abnormal
expression of aquaporins in
hydrocephalus

Aquaporins (AQPs) are non-selective bidirectional channel
proteins that allow water to diffuse passively and thus allow
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net fluxes of water driven by concentration gradients. There are
three main types of AQPs in the CNS: AQP1, AQP4, and AQP9
(Potokar et al., 2016). AQP4 is mainly located in the endfeet of
astrocytes, with a severalfold higher density of the membrane
domains facing capillaries than membranes facing the neuropil
(Nielsen et al., 1997). This polarization depends on the α-
syntrophin, an intracellular component of the dystroglycan
complex (Neely et al., 2001). This spatial distribution may be
beneficial in improving the efficiency of CSF-interstitial fluid
exchange. Astrocytes overexpressing AQP4 have a greater ability
to regulate cell swelling or reduce volume (Lisjak et al., 2017).
Also, basal brain water content was increased in mice with a
complete loss of AQP4 water channels (Vindedal et al., 2016).
These suggest that AQP4 in astrocytes may be involved in
fluid regulation in the brain. AQP4 may also be involved in
astrocyte migration. The leading edge of AQP4 expression was
increased in migrating astrocytes, and the ability of AQP4-
null migration was significantly reduced compared to wild-type
astrocytes (Saadoun et al., 2005). Inhibition of glial scarring was
also observed in AQP4-null mice, which may be related to the
inhibition of astrocyte migration by AQP4 reduction (Auguste
et al., 2007).

Moreover, AQP4 may be involved in the regulation of
inflammation. Astrocyte cultures from wild-type mice released
more tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-
6) than those from AQP4-null mice. In animal models,
lipopolysaccharide (LPS)-treated AQP4-inactivated mice also
showed a smaller inflammatory response (Li et al., 2011). It
is also reported that deletion of AQP4 is associated with a
distinct inflammatory response of the retina (Pannicke et al.,
2010). Thus, AQP4 may play different roles in the regulation of
inflammation under different pathological conditions.

The expression of AQP4 by the endfeet of astrocytes
changes dynamically in hydrocephalus. In kaolin-induced
hydrocephalus rats, the abundance of AQP4 in the
periventricular area and cortex was significantly decreased
on day two after treatment with kaolin on day one but increased
significantly after week 2 (Skjolding et al., 2010). On the
other hand, Mao et al. investigated the effect of obstructive
hydrocephalus on the expression of AQP4 in rats and found
that the mRNA levels of the AQP4 channel were changed (Mao
et al., 2006). But surprisingly, this was not accompanied by an
increase in protein levels. The most likely explanation is that a
major redistribution of AQP4 occurs in hydrocephalus rather
than an increase in overall abundance. This redistribution may
be a protective mechanism against the accumulation of CSF.

Normally, AQP4 is expressed primarily in the terminal
foot of astrocytes. However, in the case of hydrocephalus,
this polarization may change. Immunogold cytochemical
analysis of AQP4 in cortical brain biopsies from 30 iNPH
patients and 12 reference individuals showed that AQP4
density was reduced in astrocytic endfoot membranes along
cortical microvessels of the iNPH brain compared to the

control group (Hasan-Olive et al., 2019b). As β-dystroglycan-
immunopositivity in brain vessels coincides with the reactive
glial reaction; this depolarization may be due to the activation of
astrocytes (Szabó and Kálmán, 2008; Kálmán et al., 2011). This
may indicate an obstruction of perivascular CSF-interstitial fluid
circulation.

Interestingly, the expression profile of AQP4 in rat
brain tissue seems to differ from that in human tissue. In
human hydrocephalus samples, AQP4 fluorescence signals were
present throughout the astrocyte membrane. In rats with
hydrocephalus, the fluorescence signal of AQP4 was strongly
polarized to the perivascular foot of astrocytes (Skjolding et al.,
2013). One possible explanation is that this may be due to
diseases having different characteristics in different species.
Therefore, AQP4 depolarization occurs in the mouse model
of iNPH (Kress et al., 2014). Moreover, because progressive
AQP4 depolarization occurs throughout the physiological aging
process of mice, further age-matched human studies are needed
to determine whether the AQP4 pathological depolarization is
a characteristic response of iNPH rather than a feature of aging
(Kress et al., 2014).

Overexpression of AQP4 in CSF may also be present in
patients with congenital hydrocephalus. CSF samples were
collected from the lateral ventricles of 13 full-term t infants.
Western-blot analysis showed that AQP4 expression was higher
in traffic hydrocephalus than in the control group but was
not significant in obstructive hydrocephalus (Castañeyra-Ruiz
et al., 2013). This AQP4 movement may be a consequence
of ependyma denudation. Loss of communication between
ependymal cells leads to ependymal dissection and entry of
AQP4 into the CSF. The ependymal deletion was accompanied
by microglia and astrocyte reactions. Subependymal astrocytes
proliferate to form a glial scar covering the ventricle surface, and
the replacement of the ependymal reduces the chance of AQP4
entering CSF (Páez et al., 2007; Roales-Buján et al., 2012).

Astrocytes regulate oxidative
stress in hydrocephalus

As the brain consumes more energy than any other organ
in the body, it produces large amounts of free radicals, such as
reactive oxygen species (ROS) or reactive nitrogen. However,
oxidative damage can occur when the production of free
radicals outstrips the brain’s ability to clear them. Although the
role of oxidative stress in hydrocephalus has not been clearly
understood, more studies suggest that oxidative stress may
be one of the causes of hydrocephalus (Socci et al., 1999; Li
et al., 2014; Guzelcicek et al., 2020). Oxidative stress produces
large amounts of ROS and lipid peroxidation products, which
may cause great damage to proteins, lipids, and DNA. ROS
have also been found to be involved in crosstalk with NF-κB
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signaling, which links neuroinflammation to oxidative stress
(Morgan and Liu, 2011). Lipid peroxidation products may
also induce reactive astrocyte proliferation in hydrocephalus
by activating the Wnt/β-catenin pathway (Xu et al., 2015;
Suryaningtyas et al., 2020). Wnt/β-catenin signaling also plays
an important anti-inflammatory and pro-inflammatory role.
The regulation of the NF-κB pathway may be involved in this
effect (Ma and Hottiger, 2016).

There is also evidence that the overproduction of NO may
be involved in the pathological process of hydrocephalus (Del
Bigio et al., 2012). In the CNS, NO is mainly produced by
neuronal NO synthase, inducible NO synthase produced by
activated microglia, and endothelial NO synthase (Barnham
et al., 2004). Although NO can alleviate hypoxia by dilating
blood vessels, NO may also be oxidized into peroxynitrite
ONOO, causing serious damage to cells. Furthermore, the
increase of ROS during neuroinflammation may lead to the
activation of NF-κB, which, in turn, induces the overexpression
of NO synthase in astrocytes and microglia, especially
inducible NO synthase, leading to the production of superoxide
(González-Reyes et al., 2017).

A sustained increase in ventricular volume was observed in
rat pups reared under chronic sublethal hypoxia (Ment et al.,
1998). Nerve cell-specific hypoxia-inducible factor-1α deficient
mice showed severe hydrocephalus with memory loss (Tomita
et al., 2003), suggesting that hypoxia may contribute to the
development of hydrocephalus. Cortical compression caused
by ventricular enlargement may cause local tissue ischemia
and hypoxia, producing free radicals. The detection of hypoxia
and free radical production markers in hydrocephalus rats also
suggests that hypoxia mechanisms play a role in hydrocephalus
brain injury (Del Bigio et al., 2012). However, no upregulation of
antioxidant enzymes was detected in this model. The protective
effect of antioxidant enzymes in hydrocephalus after hypoxia
seems negligible. However, there was an increased vascular
endothelial growth factor (VEGF) immune response in reactive
astrocytes (Del Bigio et al., 2012). Increased expression of
VEGF has also been reported in CSF of posthemorrhagic
hydrocephalus in premature infants (Ballabh et al., 2007). Thus,
VEGF-induced angiogenesis may be an alternative mechanism
for hypoxic tissue protection. VEGF has been proposed as a
treatment for hypoxia. However, in animal models, injections
of VEGF have been shown to cause ventricular enlargement
(Harrigan et al., 2002; Shim et al., 2013).

In the case of brain injury, astrocytes provide antioxidant
protection, such as the secretion of neurotrophic factors,
antioxidants, and so on (Cabezas et al., 2019). Astrocytes contain
high concentrations of antioxidants such as glutathione(GSH),
which can remove excess ROS (Dringen, 2000). There is also
evidence that astrocytes release glutathione precursors, which
neurons use for glutathione synthesis (Dringen et al., 1999).
IL-1β may stimulate the production of GSH in astrocytes
through a process dependent on NF-κB, thereby enhancing

the antioxidant capacity of tissues (He et al., 2015). When
GSH depletion occurs, astrocytes and neurons are affected,
with the latter being greatly influenced (González-Reyes et al.,
2017). This neurotoxicity reflects the antioxidant dependence of
neurons on astrocytes.

In iNPH, Aβ deposition appears in the cerebral cortex (Tan
et al., 2021). Recent studies on astrocytes have shown that
astrocytes can also secrete Aβ (Frost and Li, 2017; Sanchez-Mico
et al., 2021). Increases in pro-inflammatory cytokines seem to
gradually lead to significant increases in post-translational levels
of amyloid precursor protein and secreted Aβ (Zhao et al., 2011).
This suggests that the persistent presence of inflammatory
mediators may lead to dysfunction in astrocyte metabolism
and production of Aβ, thereby aggravating oxidative stress
(Figure 2).

Therapeutic targeting of
astrocytes for the treatment of
hydrocephalus

At present, the mainstay of hydrocephalus treatment is
surgery, and the research on non-surgical treatment has
not achieved good results (Del Bigio and Di Curzio, 2016).
Astrocytes can be involved in the pathological process of
hydrocephalus in various ways, but there are still few
studies targeting astrocytes. Current studies on astrocytes
have mainly focused on the regulation of astrocyte-mediated
neuroinflammation, abnormal expression of water channels,
and oxidative stress.

Astrocyte-mediated neuroinflammation plays a role in the
development of hydrocephalus, and some anti-inflammatory
drugs seem to have a certain therapeutic effect. Minocycline
is the second-generation tetracyclines. Minocycline is a highly
lipophilic compound that can easily penetrate the BBB (Yong
et al., 2004). Minocycline as a neuroprotective agent has been
widely studied (Garrido-Mesa et al., 2013). Minocycline is
reported to inhibit reactive gliosis and ventricular dilation in rat
models of hydrocephalus (Xu et al., 2012a; Guo et al., 2015; Gu
et al., 2019) and may provide additional benefits when used as
a supplement for the ventricular shunt. However, considering
that the studies on minocycline mainly focus on its inhibition
of microglia activation and thus inhibit inflammation and other
responses (Garrido-Mesa et al., 2013), the inhibitory effect of
minocycline on reactive astrocytes in hydrocephalus might be
caused by the regulation of expression of the pro-inflammatory
factor of microglia.

Increasing AQP4 expression to accelerate CSF clearance
appears to slow the development of hydrocephalus.
Erythropoietin (EPO) treatment upregulated AQP4 expression
and reduced ventricular dilation in kaolin-induced rat models
of obstructive hydrocephalus (Rizwan Siddiqui et al., 2018;
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FIGURE 2

Physiological functions of astrocytes and their uses as targets in the treatment of hydrocephalus. The physiological functions of astrocytes
include neurotrophic, neurotransmitter, and cellular signal transduction. It has been found that abnormal astrocytes are closely associated with
the formation of hydrocephalus, and for some of the mechanisms identified so far, they can be involved in the development of
neuroinflammation; therefore, anti-inflammatory therapies that use astrocytes as targets can be one of the means by which we treat
hydrocephalus. Astrocytes are capable of causing abnormal overexpression of AQP4, which in turn leads to excessive accumulation of
cerebrospinal fluid and causes hydrocephalus. Therefore, using astrocytes as a target to regulate the expression of AQP4 can also regulate the
production of cerebrospinal fluid, which in turn can be used to treat hydrocephalus. In addition, astrocytes are also associated with oxidation,
which contributes to hydrocephalus. Thus, it is safe to say that antioxidant therapy associated with them may be an effective treatment. AQP4,
aquaporin 4.

Suryaningtyas et al., 2019). EPO might decrease the expression
of miR-130a and increase the expression of miR-668
(Rizwan Siddiqui et al., 2018). Upregulation of AQP4 may
be a way to accelerate CSF clearance to treat hydrocephalus.
However, maintaining AQP4 polarization in the endfeet of
astrocytes may also be as therapeutic as simply increasing the
abundance of AQP4.

The duality of astrocytes in oxidative stress makes them
a good target for regulating the oxidative stress response.
Edaravone is an excellent antioxidant that inhibits the
production of free radicals, thereby preventing cell death caused
by oxidative stress (Wang et al., 2011; Kikuchi et al., 2017).
It is reported that treatment with edaravone for 14 days after
hydrocephalus induction can reduce the activity of astrocytes on
the corpus callosum and germinal matrix (Garcia et al., 2017).
However, the dose of the drug used did not show antioxidant

ability. There is also evidence that edaravone can inhibit the
development of hydrocephalus by activating the Nrf2/HO-1
signaling pathway to protect ependymal cilia and neurons from
oxidative stress damage (Zhang et al., 2018). Some natural
extracts with antioxidant properties have conflicting therapeutic
benefits (Catalão et al., 2014; Sampaio et al., 2019). Interestingly,
the oral antioxidant mixture α-tocopherol, L-ascorbic acid,
coenzyme Q10, reduced glutathione, and reduced lipoic acid
showed no therapeutic benefits for juvenile rats with kaolin-
induced hydrocephalus (Di Curzio et al., 2014). Further, there
was no evidence in this study suggesting that the antioxidant
treatment reduced the astrocyte response. This may be due
to lower peak levels of oral therapy than after parenteral
administration. In other studies, hydrocephalic young rats
treated with hyperbaric oxygen therapy performed better on
behavioral tests than untreated rats, although there was no
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significant effect on ventricular dilation (da Silva et al., 2018).
Silva et al. suggested that hyperbaric oxygen therapy may
promote functional recovery of the CNS by inhibiting the
activation of astrocytes and forming an extensive fibrillar
network, in addition to its own antioxidant stress effect (da Silva
et al., 2018; Supplementary Table 1).

In addition to the known therapeutic measures mentioned
above, based on the analytical elaboration of the role of
astrocytes above, we can use this as a target to consider
the choice of therapeutic measures in future studies. For
example, developing drugs to act on astrocytes to clear
neuroinflammation, targeting astrocyte AQP4 expression to
address cerebrospinal fluid problems, and using certain
antioxidants to clear free radicals may be possible. These could
be the focus of research into new measures for the astrocyte-
based treatment of hydrocephalus.

Conclusion

Astrocytes play a key role in maintaining the normal
function of the CNS. Astrocytes maintain the normal
metabolism of the brain, regulate synaptic transmission
and plasticity, and prevent neurons from producing toxic
compounds. Recent studies have shown that the response of
astrocytes in hydrocephalus is twofold and depends on its
appearance period and specific signaling mechanisms. In the
early stage of hydrocephalus, astrocytes can inhibit the spread
of inflammation, show adaptive changes to the accumulation of
CSF to enhance absorption, and release antioxidant substances
to fight oxidative stress. However, as the disease progresses,
reactive astrocytes release inflammatory mediators and promote
oxidative stress. The abnormal expression of AQPs is also
gradually harmful. Therefore, reactive astrocytes may be a
potential target of therapeutic strategies for hydrocephalus.
Despite that, the dual role of astrocytes complicates the study
of their therapeutic effects. Stimulating glial activity in the
early stages may yield good results. Notwithstanding, this
activation in the late stages may worsen the disease. Therefore,
grasping the right time window is the key to achieving its
optimal effects.

Although we have searched for new astrocyte-based
treatments for hydrocephalus and explored new approaches
based on existing measures, we still do not know anything about
the molecular mechanisms behind them, which may limit our
thinking and thus require us to study them in depth.

In conclusion, we have discovered the important role of
astrocytes in three aspects: participation in neuroinflammation,
regulation of water molecule proteins, and antioxidation, which
are also factors in the pathogenesis of hydrocephalus; thus,
astrocytes can be used as targets for us to investigate new
methods of drug treatment for hydrocephalus, and as a result,
numerous highly effective drugs can be developed.
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