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Respirable crystalline silica in mineral dust, wood dust, diesel engine

exhaust emissions and welding fumes are among the most common pro-

cess-generated substances to which millions of workers are exposed daily.

The composition of process-generated substances can vary substantially,

depending on the parameters of the underlying processes; for example, the

composition and intensity of diesel motor emissions differs among the vari-

ous generations of diesel engines and working environments (e.g. surface

or underground mining). We illustrate how common these occupational

exposures are and discuss challenges in estimating their global prevalence

and their contribution to the burden of occupational cancer. Estimates of

the number and proportion of workers exposed in most countries and on a

global scale are generally scarce. A remarkable exception is based on the

proactive bottom-up estimates generated within the European Network for

Silica. Actions to reduce exposures and research to fill gaps in knowledge

adapted to local settings are warranted to mitigate the occupational cancer

burden, especially in under-researched settings including low- and middle-

income countries.

1. The burden of cancer related to
occupational exposures

Cancers caused wholly or partly by exposure to car-

cinogenic agents at work or by circumstances at

work can be referred to as occupational cancers. The

most frequent occupational cancers are lung cancer,

mesothelioma and bladder cancer. Figure 1 shows the

numbers of cancers attributable to occupational

exposures in the total population and stratified by

sex in three nationwide studies in Great Britain,

Canada and France [1–3]. Occupational cancers are

preventable by eliminating hazardous substances or

enhancing the protection of workers and reducing

exposures.

In epidemiology, the ‘population attributable frac-

tion’ (PAF) is estimated to assess the public health

impact of specific risk factors and to rank them. The

PAF, usually presented as a percentage, represents the

estimated proportion of cases that would not have

occurred if the exposure had not been present. The

PAF is directly determined by the magnitude of risk
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associated with the exposure and the prevalence and

level of the exposure in the working population [4].

The overall cancer burden attributable to occupa-

tional exposures has most often been estimated

between 2% and 5% since the 1980s [1–3,5]. Figure 2

shows the PAFs for occupational exposures (total and

stratified by sex) for selected cancers in Great Britain,

Canada and France [1–3]. Mesothelioma is mainly

associated with exposure to asbestos [6]. Lung cancer

is associated with many occupational exposures includ-

ing asbestos, crystalline silica, diesel engine exhaust

and welding fume [6–8]. Nasopharyngeal cancer is

associated with wood dust and formaldehyde [6,9].

Urinary bladder cancer is associated with exposure to

aromatic amines, diesel engine exhaust and exposures

in painting and the rubber industry [9]. Nonmelanoma

skin cancer (NMSC) is associated with exposure to

solar radiation, coal tars and pitches, mineral oils and

arsenic [6,10]. The figure shows a marked difference in

PAFs by cancer site with mesothelioma having the

highest occupational PAF, followed by lung cancer,

nasopharyngeal, bladder and NMSC. There are also

large differences in occupational PAFs by sex, with

generally larger PAFs among men. Men are indeed

4–5 times more likely to work in primary production

jobs with higher occupational exposures compared

with women [11,12]. Finally, it is noticeable that not

all cancer types are included in all studies; for exam-

ple, NMSC is not included in the French study.

PAFs are not easily comparable across studies due

to differences in the selection of exposure-cancer com-

binations, the use of varying criteria to define preva-

lence and level of exposures encountered, differences

in the selection of risk estimates associated with the

exposures, etc. For example, the French study included

only IARC Group 1 substances (n = 25), the study

from Great Britain included in addition Group 2A

substances (n = 41) and the Canadian study included

44 exposures whereof two Group 2A (creosotes and

night shift work) [1–3]. The French project was study-

ing the burden of cancer attributable to all modifiable

risk factors and therefore assigned ‘second-hand

smoke’ to ‘cancers attributable to tobacco smoking’

rather than occupational exposures. Moreover, solar

radiation was considered as a risk factor for cutaneous

melanoma attributable to solar ultraviolet radiation,

together with the use of sunbeds. NMSCs were not

included in the French study or the Global Burden of
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Fig. 1. Number of cancer cases

attributable to occupational

exposures at selected cancer sites

in Great Britain [1], Canada [2] and

France [3] in the total population

and by gender.
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Disease project, possibly because NMSCs often are

not systematically registered and therefore may be

severely under-reported [13–15]. Other reasons to

exclude exposures or exposure-cancer combinations

from the estimation are the lack of exposure preva-

lence data, or that exposures are no longer relevant or

thought to be present (e.g. after asbestos use bans)

[16].

The methodology for estimating PAFs has evolved

to account for relevant risk exposure periods (REP)

defined by the cancer latency for solid tumours

(0–50 years) and for haematopoietic cancers (0–
20 years), workers turnover (which might differ con-

siderable between industries and especially over time)

and proportion of workers exposed to high- versus low

levels of exposure (however without a clear definition

of high and low levels of exposure). Nonetheless, study

bias and uncertainty are present. The choice of risk

estimates and the employment turnover was identified

as the largest contributors to the occupational PAF

estimates in the British study [17].

Smoking patterns among workers should be incor-

porated in the methodology for estimating of the occu-

pational cancer burden in the future. The reason is

that many occupational exposures confer stronger

effects among smokers. In the SYNERGY project – a

large pooled analysis of case–control studies on inter-

actions of smoking and occupational exposure risks

relating to lung cancer incidence – an additive scale

was used to calculate the relative excess risk due to

interaction (RERI) by fitting linear odds ratio (OR)

models [18]. The RERI measures the extent to which

the effect of both exposures (e.g. smoking and having

worked as a painter) combined exceeds the sum of the

effects of each considered separately, and a RERI > 0

indicates a positive additive interaction, where the

effect of both exposures together exceeds the sum of

the two exposures considered separately. Given that

smoking is a strong risk factor for lung cancer, this

marked difference in smoking habits between men and

women especially in the past may, at least partly,

explain why we often see less effect of occupational

exposures in exposed women than in exposed men

[18–21]. A recent paper by Kulh�anov�a et al. [22] shows

that the tobacco-related cancer burden in Europe dif-

fers across countries and genders; the largest and the

lowest PAF due to smoking in males occurred in East-

ern Europe (35% of all cancer cases) and Northern
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Fig. 2. Cancer burden (%) attribu-

table to occupational exposures at

selected cancer sites, in Great

Britain [1], Canada [2] and France [3]

in the total population and by

gender.
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Europe (21%), while among women this pattern was

reversed (16% in Northern Europe and 6% in Eastern.

Consequently, it would be beneficial to account for

smoking patterns at the relevant period by sex in each

country, when estimating the occupational cancer bur-

den.

In this review, we discuss the contribution of pro-

cess-generated substances to the occupational cancer

burden, with a focus on occupational exposure to crys-

talline silica, wood dust, diesel engine exhaust and

welding fumes. Our aim is to illustrate how common

these exposures have been and still remain, to a large

extent, in the working environment, and to discuss

their contribution to the global occupational cancer

burden. We also address the challenges in estimating

the global prevalence of these occupational exposures

and the subsequent burden of occupational cancer.

2. Process-generated substances

Process-generated substances are generated as emis-

sions from combustion or heating processes, abrasion

and other processes that physically or chemically mod-

ify or degrade the starting material(s) and are, thus,

present in various workplaces. Respirable crystalline

silica in mineral dust, wood dust, diesel engine exhaust

emissions, welding fumes, flour dust, bitumen fumes

and rubber curing fumes are some examples of com-

mon process-generated substances affecting millions of

workers daily. While a clear definition is not readily

available, these process-generated substances often

exist as mixtures and can be of chemical or biological

nature. They are by their nature more complex than

single chemical substances or single biological species,

and they are not seen as manufactured products that

can be traded and tracked along a supply chain.

Therefore in the EU, these substances are not regu-

lated by the Registration, Evaluation, Authorisation

and Restriction of Chemicals (REACH) of the Euro-

pean Union (EU) REACH regulation in the EU [23],

but they are part of the Carcinogens and Mutagens

Directive 2004/37/EC [24]. Since 2019, the Risk Assess-

ment Committee of the European Chemicals Agency

(ECHA) provides scientific opinions on occupational

exposure limits after it took over this responsibility

from the Commission’s Scientific Committee on Occu-

pational Exposure Limits (SCOEL).

The composition of a process-generated substance

can vary substantially, depending on the parameters of

the underlying process. For instance: differences in

recipes for rubber compounding may produce vulcan-

ization or curing fumes that differ dramatically not

only in composition, but also in levels of the individual

chemicals present in these fumes [25]. Similarly, the

composition of organic dusts can differ dramatically

when working with organic material with different

moisture content [26]. For process-generated sub-

stances such as diesel motor emissions, the composi-

tion and intensity will differ among the various

generations of diesel engines and environments where

human exposure occurs (e.g. surface or underground

mining) [27].

For many process-generated substances, exposed

populations are considerably larger when compared to

single (chemical) substances. Kauppinen et al. (2000)

generated in a Europe Against Cancer project called

CAREX (CARcinogen EXposure) the number of

workers exposed in the then 15 EU member states in

the early 1990s. The CAREX project covered all

agents, groups of agents and process-generated sub-

stances which were considered by the International

Agency for Research on Cancer (IARC) as known or

suspected carcinogenic agents as of February 1995

[28]. The prevalence estimates from the CAREX paper

indicated that the number of workers exposed to cer-

tain process-generated substances make up for the

majority of exposures to known or suspected carcino-

genic chemical agents [29]. The four most prevalent

exposures to substances described within the CAREX

project included the following process-generated sub-

stances: environmental tobacco smoke > 75% of work-

ing time, crystalline silica, diesel engine exhaust and

wood dust. These four process-generated substances

resulted in an estimated total of slightly more than 16

million exposed workers in 15 member states, which

represented 55% of the total number of workers

exposed to 80 known or suspected carcinogenic sub-

stances considered.

The CAREX approach has consequently been

applied and adapted to national circumstances by

experts in industrial hygiene, other experts and data

sources in individual countries including Costa Rica,

Estonia, Czech Republic, Latvia and Lithuania [30–
32]. In Costa Rica, CAREX was renamed TICAREX

and included self-employed persons and working fam-

ily members older than 12 years to reflect the national

working situation more accurately. The top-10 sub-

stances in TICAREX were largely overlapping with

the original CAREX, but it also provided separate

numbers for men and women [32]. In the Baltic coun-

tries, there were some differences noted such as that

exposure to wood dust being more prevalent in Esto-

nia due to large wood and furniture industries, while

for Lithuania, the prevalence of benzene exposure was

more prevalent due to the presence of oil refineries

[30].
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A more recent and refined carcinogen surveillance

project modelled on the original European CAREX,

called CAREX Canada, showed similar prevalence of

carcinogen exposures for the year 2006 [33]. The pro-

cess-generated substances diesel engine exhaust, crys-

talline silica, polycyclic aromatic hydrocarbons (PAHs)

and wood dust were again located at the top of the list

of 40 known or suspected carcinogenic chemical agents

considered, and as in Europe, these agents represented

half of the workers’ exposures.

A study in Quebec made use of CAREX Canada

but refined the estimates by including additional work-

place monitoring data, research projects, a population

survey and radiation protection data [34]. The Euro-

pean and the Costa Rican CAREX methodology was

applied with modifications in Nicaragua and Panama

and included in addition relevant pesticides. Popula-

tion censuses provided industry- and sex-specific work-

force numbers and experts from governmental

agencies, workers’ organizations and employers’ repre-

sentatives estimated activity- and sex-specific propor-

tions of exposed workers [35].

The SHEcan project, sponsored by EC DG Employ-

ment in Luxembourg and carried out between 2009

and 2011, investigated the socioeconomic, health and

environmental impact associated with a range of policy

options for amendments to Directive 2004/37/EC (Car-

cinogens or Mutagens at work) [36]. The purpose of

the assessment was to enable the European Commis-

sion to initiate informed discussions with stakeholders

about potential impacts of changes in legislation. The

SHEcan reports included estimates of the number of

workers exposed [36].

The relatively recent Australian Work Exposures

Study (AWES) conducted a cross-sectional survey

including about 5000 respondents (53% response

fraction) from a random sample of the population.

Data were collected by trained interviewers using a

computer-assisted telephone interview. An automated

expert assessment method (OccIDEAS) assigned

exposure to carcinogens based on the general job

information and when justified job-specific modules

[37]. The prevalence figures were thereafter extrapo-

lated to the Australian working population by sex.

OccIDEAS allows modifying definitions of exposure,

for example to define ‘substantial exposure’ of a sub-

stance resulting in an alternative prevalence of expo-

sure [38].

Table 1 provides an overview of estimates of num-

ber of workers (men and women) and percentages of

the workforce exposed to crystalline silica, wood dust,

diesel engine exhaust and welding fumes in different

regions/countries in different periods.

2.1. Respirable crystalline silica

From Table 1, it is clear that the prevalence of occu-

pational exposure to respirable crystalline silica (RCS)

is estimated to be between 2% and 3% of the working

population, but estimates for Panama, Nicaragua and

Australia are much higher at 6–7%. This might be the

consequence of different methodological approaches.

In Europe, fifteen industry sector organizations and

their counterpart trade union federations negotiated a

multisectoral social dialogue agreement on (exposure

to) crystalline silica that was signed by all parties in

October 2006 [39]. This unique agreement resulted

among others in a bottom-up exercise of reporting

numbers of workers exposed to crystalline silica at

6200 sites (85% of the total number of sites) of 19

industrial sectors. In the 2018 report of the European

Network on Silica (NEPSI), it was estimated that

180 000 workers were exposed to RCS [40]. This is

considerably lower than the 320 000 estimated by

Kauppinen et al. [29] for the early 1990s, but is most

likely due to the large construction and agricultural

sectors not being part of NEPSI where exposure to

respirable crystalline silica does occur [41,42].

Evidence of long-term trends in levels of RCS expo-

sure is abundant. Peters et al. [43] reported an overall

downward time trend in RCS exposure levels in Europe

of �6% per year across all industries over a time period

covering 1976–2009. Analyses of the European Indus-

trial Minerals Association Dust Monitoring Program

(IMA-DMP) that started in 2000 showed overall down-

ward temporal trends of�9.0% and�3.9% per year for,

respectively, respirable dust and respirable quartz. No

downward trends and even a slight increase were seen

within the IMA-DMP during the most recent global eco-

nomic crisis between 2008 and 2012. After this period,

exposure concentrations started to decline again [44].

The National Institute for Occupational Safety and

Health in the United States (NIOSH) estimated the

numbers and percentages of workers exposed to res-

pirable crystalline silica at levels of at least 1, 2, 5 and

10 times the NIOSH recommended exposure limit

(REL 50 µg�m�3), based on the Occupational Safety

and Health Administration (OSHA)’s compliance

inspection sampling data from 1979 to 2015. Approxi-

mately 100 000 workers were exposed to crystalline sil-

ica above the REL, and most (~ 80%) worked in the

construction industry [45].

2.2. Wood dust

From Table 1, the estimates of prevalence of exposure

to wood dust vary between 1.4% and 5.5% of the
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workforce. Local differences in construction and avail-

ability of wood as construction material as well as dif-

ference in definition (only hardwood exposure

considered in some estimates) will be underlying these

considerable differences in prevalence estimates.

Quite a considerable number of studies on long-term

trends in wood dust exposure concentrations exist.

Galea et al. [46] reported an annual decrease of �8%

during over a 20-year period (1985–2005) in wood-

treating industries. An almost similar annual trend of

�7% was derived from two cross-sectional studies in

the furniture industry in Denmark over the turn of the

century (1997–2004) [47]. Long-term annual trends of

�11% in wood dust exposure concentrations were

reported for different industries based on data in

OSHA’s Integrated Management Information System

(1979–1997). A recent study from Sweden in the wood

pellet production showed an even steeper decline of

�20% per annum [48].

2.3. Diesel engine exhaust emissions

Estimates of the number of workers exposure to diesel

engine exhaust emissions vary wildly, with earlier esti-

mates varying between 1% and 3% of the workforce,

later estimates around 4–5% and most recent estimates

providing unlikely extremely high prevalence estimates

of 18–27%. Most likely, methods applied and defini-

tions of what occupational exposure to diesel engine

exhaust entails will be accountable for this. The

Table 1. Overview of studies and other resources estimating number of workers (men and women) and percentages exposed to respirable

crystalline silica, wood dust, diesel engine exhaust and welding fumes.

Study [Reference] Location Year(s)

Number of workers and percentages (%) of exposed to selected

process-generated substances

Total working

population

Respirable

crystalline silica Wood dust

Diesel

engine

exhaust

Welding

fumes

CAREX [29] EU-15 1990–

1993

3 200 000 (2.3) 2 600 000 (1.9) 3 000 000

(2.2)

- 139 000 000

Occupational cancer in

Britain [56]

UK 1990–

1993,

1979

564 787 (2.0) 433 834 (1.5) 473 062 (1.6) 172 418

(welders)

28 768 000a

CAREX [30] Estonia 1997 19 000 (3.1) 34 000 (5.5) 21 000 (3.4) 620 689

Latvia 1997 19 000 (2.0) 35 000 (3.8) 20 000 (2.2) 928 571

Lithuania 1997 40 000 (2.4) 47 000 (2.8) 37 000 (2.2) 1 678 571

Czech

Republic

1997 170 000 (3.4) 180 000 (3.6) 130 000 (2.6) 5 000 000

TICAREX [32] Costa Rica 2000 27 100 (2.1) 32 200 (2.5) 278 000

(21.4)

1 300 000

CAREX/SALTRA

program [35]

Panama 2006 66 274 (6.9) 22 091 (2.3) 258 374

(26.9)

960 500

Nicaragua 2007 31 213 (1.5) 47 860 (2.3) 407 856

(19.6)

2 080 899

CAREX Canada [33] Canada 2006 382 000 (2.3) 338 000 (2.0) 781 000 (4.6) 16 800 000

CAREX Canada [34] Quebec 2006 57 600 (1.6) 101 600 (2.8) 152 900 (4.2) 3 600 000

Australian Work Exposures

Study (AWES) [37]

Australia 2011–

2012

586 900 (6.5) 478 320 (5.3) 1 599 700

(17.9)

8 933 000

SHECAN (http://www.occ

upationalcancer.eu/projre

sults.html)

EU-25 2006 5 300 000 (2.6) Hardwood

3 000 000

(1.4)

3 600 000

(1.7)

206 700 000b

IARC Monographs on the

Evaluation of Carcinogenic

Risks to Humans Volume

118. Welding,

Molybdenum Trioxide and

Indium Tin Oxide [51]

Worldwide 2017 110 000 000

(3)

3 500 000 000

a

UK Commission for employment and skills. Working Futures 2010–2020: Main Report. August 2012, page 83.
b

EUROSTAT Euro-indicators 37/2007 14 March 2007.

758 Molecular Oncology 15 (2021) 753–763 ª 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd

on behalf of Federation of European Biochemical Societies.

Occupational exposure to process-generated substances and cancer A. Olsson and H. Kromhout

http://www.occupationalcancer.eu/projresults.html
http://www.occupationalcancer.eu/projresults.html
http://www.occupationalcancer.eu/projresults.html


authors explained that very few exposure measure-

ments have been conducted in Nicaragua and Panama,

and therefore, they relied heavily on expert judgment

(n = 25 in each country) from relevant authorities [35].

A few long-term trends in levels of exposure to die-

sel engine exhaust emissions exist. For the U.S. truck-

ing industry, sharp declines in exposure to elemental

carbon (as a marker for diesel engine exhaust emis-

sions) were estimated which were job group specific

[49]. Exposure levels differed between and within job

groups as well as between types of trucking terminal,

and regions of the United States. Two large studies in

the mining industry also showed diverse trends and

large difference between job groups and between sur-

face and underground work [27,50].

2.4. Welding fumes

Welding-related exposures were recently classified a

human carcinogen by IARC, and it was estimated by

the working group during the review process that

11 million workers are exposed as (full-time) welders,

while the total number of workers (part-time) exposed

to welding fumes was estimated to be around 110 mil-

lion (3% of the worldwide economically active popula-

tion) [51].

Studies on long-term trends in exposure to welding

fumes are hard to find. For the European Community

Respiratory Health Survey (ECRHS) II study, a weld-

ing fume algorithm was developed based on a database

of 1233 welding fume personal measurements from the

Netherlands collected over a 20-year period [52,53]. A

relatively minor 2–3% annual decrease in welding

fume concentrations (halving of concentrations after

20–35 years) was observed. Within the ECRHS study,

cumulative exposures in Northern Europe were lower

than in Southern Europe most likely as result of differ-

ences in welding techniques, available control measures

and/or hours welding per day/week, since no difference

was seen in average number of years welding in North-

ern and Southern Europe.

3. Conclusions

The PAF for lung cancer due to occupational exposure

has been estimated to be between 18 and 25% in men

and 2–6% in women, resulting in lung cancer being

the most prevalent occupational cancer [1–3]. Gener-

ally, occupational exposure to asbestos is considered

to be contributing the most to the occupational PAF

for lung cancer, followed by occupational exposures to

respirable crystalline silica, diesel engine exhaust emis-

sions and welding fumes. Table 2 shows examples of

occupational PAFs for lung cancer for the selected

process-generated substances and confirms the ranking

although the PAFs vary slightly by study and study

type. Together exposure to respirable crystalline silica,

diesel engine exhaust emissions and welding fumes

account for half of the occupational PAF for lung can-

cer. If employers succeed in controlling workplace

exposures to process-generated substances, the fraction

of lung cancers attributable to occupational exposures

would be reduced dramatically.

Kauppinen and coworkers should be applauded for

inclusion of suspected carcinogenic agents in the origi-

nal CAREX project carried out 35 years ago, because

the number of known occupational carcinogens has

increased over time to 47 agents identified as known

occupational carcinogens in 2017, compared with 28 in

2004 [54]. Three of the four selected process-generated

substances discussed in this paper, namely crystalline

silica, diesel motor exhaust and welding fumes, were

Table 2. Overview of studies estimating the occupational lung cancer burden (PAFs) related to selected process-generated substances and

the source of the estimated exposure prevalence in different types of studies.

Reference Where, when

Population attributable fractions (%)

Source of proportion exposed

Respirable

crystalline

silica

Welding

fumes

Diesel engine

exhaust

Men Women Men Women Men Women

Boffetta et al. [16] France, 2000 0.5 0.07 SUMER 1994 survey

Olsson et al. [66] CEE, 1998–2002 4.9 2.2 IARC CEE case–control study

De Matteis et al. [67] Italy, 2002–2005 5.7 – EAGLE case–control study

Rushton et al. 2010 [68] GB, 2005 4.2 0.4 0.7 0.1 3.0 0.5 CAREX 1990–1993, Labour Force Survey

Labr�eche et al. [3] Canada, 2011 4.4 0.2 2.4 0.08 4.3 0.2 CAREX Canada

Marant Micallef et al. [4] France, 2015 1.5 0.1 1.4 0.1 SUMER 2003 survey
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classified by IARC as lung carcinogens (Group 1) only

after the creation of CAREX. Welding fume is most

often excluded from studies calculating PAFs related

to occupational exposures, because it was classified as

carcinogenic to the lung only in 2017 and the preva-

lence of the occurrence of this exposure is not easy to

assess. However, exposure to welding fumes will have

partly overlapped with other exposures such as hex-

avalent chromium in several studies.

The original CAREX has inspired many consequent

projects to estimate numbers and proportions of work-

ers exposed to carcinogenic agents, and to adapt these

estimates for various countries [16,32–35,55,56]. Never-

theless, CAREX is still being used more than 35 years

after its creation, notably in the Global Burden of Dis-

ease Project [13,57]. This may be sufficient if the objec-

tive is only to conclude that occupational carcinogens

continue contributing to the global cancer burden and

to justify the need for ongoing prevention and control

initiatives [58]. However, if the objective is to set the

departure for controlling hazardous exposures in the

workplaces, it is important to conduct workplace

exposure studies in more countries than what is cur-

rently done. Also, employers, worker’s associations

and management are more likely to ‘act on what they

see’ in local, regional or national studies, and dust

monitoring in itself might result already in lower expo-

sure concentrations [59].

Despite evidence of declining exposure in European

and North American workplaces [60], comprehensive

studies of the effectiveness of workplace interventions

for reducing hazardous exposure remain scarce [61].

Recently, Ohlander et al. [61] observed an improvement

in the frequency and quality of intervention studies tar-

geting exposure to chemicals and biological agents in

the workplace over the last six decades and concluded

that it is important to expand the evidence on (cost-)

effectiveness and transferability of interventions to

reduce exposure and health effects, in order to reduce

occupational ill-health caused by these exposures.

The prevalence of process-generated substances and

others in the majority of countries including low- and

middle-income countries is largely unknown because

few studies have been conducted locally [13,62,63]. A

review discussing the increasing cancer burden in

Africa revealed suboptimal implementation of occupa-

tional health standards notably in the informal sector,

use of outdated technologies in industry and lack of

awareness of potential hazards in specific employment

structures may give rise to high levels of occupational

exposures. Exposures in mining and exposure to pesti-

cides in agriculture and agents arising from the mis-

management of hazardous waste from local, industrial

and transboundary sources are of particular concern

[64,65].

Process-generated substances are by far the most

prominent and prevalent occupational exposures to

substances even today in Europe, Canada, Australia

and a few other countries, where systematic research

has been done to estimate the prevalence of occupa-

tional exposure. Unfortunately, due to this limited

insight, precise estimates of the number of workers

exposed (on a global scale) and turnover rates in glo-

bal workforces are generally not available, and there-

fore, the estimates of the global burden of cancer due

to these exposures will remain rather imprecise and

will either overestimate or (more likely) underestimate

the importance of carcinogenic exposure in the work-

place. Actions to reduce exposures and research to fill

gaps in knowledge adapted to local settings are war-

ranted to mitigate the occupational cancer burden,

especially in low- and middle-income countries.
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