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Abstract 

Objectiv es Alopecia ar eata ( AA ) is an autoimm une-r elated non-cicatricial alopecia, with complete alopecia ( AT ) or generalized alopecia 
( A U ) as se v er e forms of AA. Howev er, ther e ar e limitations in early identification of AA, and intervention of AA patients who may 
pr ogr ess to sev er e AA will help to impr ov e the incidence rate and prognosis of sev er e AA. 

Methods We obtained two AA-related datasets from the gene expression omnibus database, identified the differ entiall y expr essed 

genes ( DEGs ) , and identified the module genes most related to severe AA through weighted gene co-expression network analysis. 
Functional enrichment analysis, construction of a protein–protein interaction network and competing endogenous RNA network, and 

immune cell infiltration analysis were performed to clarify the underlying biological mechanisms of severe AA. Subsequently, pivotal 
immune monitoring genes ( IMGs ) were screened through multiple machine-learning algorithms, and the diagnostic effectiveness of 
the pi v otal IMGs w as v alidated by r ecei v er oper ating c har acteristic. 

Results A total of 150 sev er e AA-r elated DEGs wer e identified; the upr e gulated DEGs w er e mainl y enriched in imm une r esponse, while 
the downregulated DEGs were mainly enriched in pathways related to hair cycle and skin de velopment. F our IMGs ( LGR5, SHISA2, 
HOXC13, and S100A3 ) with good diagnostic efficiency were obtained. As an important gene of hair follicle stem cells stemness, we 
verified in vivo that LGR5 downregulation may be an important link leading to sev er e AA. 

Conclusion Our findings provide a comprehensive understanding of the pathogenesis and underlying biological processes in patients 
with AA, and identification of four potential IMGs, which is helpful for the early diagnosis of severe AA. 

Ke yw ords: alopecia ar eata, imm une r esponse, machine learning, imm une monitoring genes, diagnosis 
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Introduction 

Alopecia areata ( AA ) is an autoimmune-related non-cicatricial 
alopecia that often manifests as r ounded patc hes of alopecia 
( AAP ) , and will gr aduall y de v elop into total alopecia ( AT ) that in- 
volves hair loss on the entire head, or universal alopecia ( AU ) that 
involves hair loss all over the body in se v er e cases.1 AT and AU 

belong to the pr ogr essiv e type of AA ( se v er e AA ) , whic h ar e r e-
fractory hair diseases and seriously damage the morphology of 
patients. Although AA is not life-threatening, it has a huge impact 
on the patient’s image and can be a significant influence on men- 
tal illnesses such as anxiety and depression.2 The etiology of AA 

is still unclear, but sc holars belie v e that it is caused by genetics,
pathogen infection, and autoimmunity.3–5 Previous studies have 
r eported that imm une cells infiltr ating ar ound the hair follicles 
of AA patients and secr eting man y cytokines such as interferon- γ ,
interleukin 17 ( IL-17 ) , and IL-2 leads to the collapse of the immune 
privilege, miniaturization of the hair follicle, and hair loss.6 , 7 

T hus , immune disorders pla y an important role in the onset 
of AA. 
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lassical Bayesian method in limma, and identified the mod-
le genes most related to severe AA through weighted gene co-
xpression network analysis ( WGCNA ) . Functional enrichment
nalysis, construction of a protein–protein interaction ( PPI ) net-
ork and competing endogenous RN A ( ceRN A ) netw ork, and im-
une cell infiltration analysis were performed to clarify the un-

erlying biological mechanisms of severe AA. Subsequently, piv-
tal IMGs were screened through multiple machine-learning al-
orithms, including least absolute shrinkage and selection oper-
tor ( LASSO ) , r andom for est ( RF ) , and short time-series expr es-
ion miner ( STEM ) algorithms, and the dia gnostic effectiv eness of
he pivotal IMGs was validated by r eceiv er oper ating c har acteris-
ic ( ROC ) . This study will help identify potential diagnostic mark-
rs related to immunity in severe AA patients. 

aterials and methods 

icroarr ay da ta collection 

he r esearc h flowc hart of this study is shown in supplementary
ig. S1, see online supplementary material. The gene expression
atasets were collected from the GEO public database ( https://ww
.ncbi.nlm.nih.go v/geo ) .10 T he AA-related datasets ( GSE68801,
SE45512, and GSE80342 ) were download from GEO for further
nalysis . T he AA-related datasets were based on the GPL570 plat-
orm ( Affymetrix Human Genome U133 Plus 2.0 Array ) , in which
SE68801 includes samples from 36 normal controls, 54 AAP pa-

ients , 9 AT patients , and 23 AU patients . T he imm une-r elated
enes were obtained from the ImmPort and MSigDB databases.
he details of datasets are shown in supplementary Table S1, see
nline supplementary material. 

robe re-annotation and identification of DEGs 

nd DE-lncRNAs 

he affymetrix was used to obtain all chip probe sequences, the
uman r efer ence genome ( GRCh38 ) w as do wnloaded from the
ENCODE database, and seqma p softwar e was used to compare
ll probe sequence ratios with the reference genome. First, the
nique ma p pr obe was r etained, and then its position on the c hr o-
osome and positive and negativ e c hain information was used

o obtain the corresponding gene of each probe according to the
uman gene annotation file ( release 25 ) provided by GENCODE.11 

he probe with the annotation information of “protein_coding” as
he corr esponding pr obe of mRNA, and the pr obes with the an-
otation information of “antisense”, “sense_intronic”, “lincRNA”,
sense_ov erla pping”, or “pr ocessed_tr anscript” wer e r eserv ed as
he corr esponding pr obe of long non-coding RN A ( lncRN A ) . Finally,
y m utual matc hing between the pr obe number and gene symbol,
he probes that do not match to the gene symbol were removed,
nd for different probes mapping to the same gene, the av er a ge
 alue of differ ent pr obes was taken as the final expr ession v alue
f this mRN A/lncRN A. 

T he classical Ba yesian method in “limma” R pac ka ge was per-
ormed for the differential analysis of datasets. For GSE68801, AAP,
T, and AU wer e uniforml y r egarded as disease gr oups. Gene ex-
r ession pr ofiles of the disease and control groups in the datasets
er e compar ed to identify DEGs and DE-lncRNAs. A gene with a
 -value < 0.05 and a fold-change value > ± 0.585 ( 1.5-fold change )
as defined as a DEG and DE-lncRNA. In this study, the intersec-

ion of DEG and DE-lncRNA of GSE45512 and GSE68801 was per-
ormed to obtain the common upregulated and downregulated
EGs and DE-lncRNA for follow-up analysis. 
GCNA 

GCNA is a systems biology method to c har acterize patterns of
ene association between different samples and can be used to
dentify highl y syner gistic sets of genes and the most r ele v ant

odular genes based on the endogeneity of the gene set and the
ssociation between gene sets and phenotypes.12 The median ab-
olute deviation ( MAD ) of each gene in the dataset was first deter-
ined, and the top 50% of genes with the smallest MAD were ex-

luded. The goodSamplesGenes function of the “WGCNA” R pack-
ge was used to remove unqualified genes and samples, and a fur-
her scale-free co-expression network was constructed. The “soft”
hreshold po w er ( β) calculates the adjacenc y betw een genes and
ransforms the adjacency into a topological overlap matrix ( TOM ) ,
hich is used to measure network connectivity and similarity.
ased on the TOM dissimilarity and the minimum genome size
f the gene number map ( n = 30 ) , genes with similar expression
r ofiles ar e classified as gene modules using the av er a ge linka ge
ier arc hical clustering and dynamic tree-cutting function detec-
ion module. To further analyze the module, the dissimilarity of

odule eigen genes was calculated, and a cut line for module den-
r ogr am was c hosen, and some modules wer e combined. In this
tudy, important modules related to AT and AU were identified for
ollow-up investigation. 

nrichment analysis of DEGs 

ene ontology ( GO ) and Ky oto Enc yclopedia of Genes and
enomes ( KEGG ) pathway enrichment analyses were performed
y the DAVID database ( https:// david.ncifcrf.gov/ ) . GO annotation
nric hment anal ysis involv es simple gene annotations of molecu-
ar function ( MF ) , biological process ( BP ) , and cell component ( CC ) .
 P -value < 0.05 was considered significant. 

eRN A inter action netw ork construction 

he matched sample mRN A and lncRN A data w ere used to cal-
ulate the Pearson correlation coefficient of each of the DEGs and
E-lncRNAs, r espectiv el y. Then, the corr elation test was carried
ut to screen DEG and DE-lncRNA relationship pairs that may
ave a synergistic effect. The correlation coefficient value ( r ) >
.05 and a P -value < 0.05 were considered to have a synergis-
ic effect. The construction of lncRN A–mRN A co-expression net-
 ork w as visualized b y Cytosca pe ( v ersion 3.7.2 ) . Subsequentl y,
iR W alk2.0 was used to synthesize the results of the four

atabases ( miR W alk, miRanda, RNA22, and Targetscan ) to predict
he miRN A–mRN A relationship . 13 If the pr edicted r esults a ppear
n the above databases, it is considered that the corresponding

iRNA regulates the corresponding mRNA. The miRanda ( v3.3a )
oftw are w as used to predict miRNAs targeted by lncRNA and fil-
er out miRN A–lncRN A relationship pairs with score ≥ 140, en-
rgy ≤ −20.14 The lncRN A–mRN A and miRN A–lncRN A relation-
hip pairs were combined and further screened to construct the
eRN A netw ork and visualized with Cytoscape. 

PI network construction and integration 

nalysis 

he complex regulatory network between proteins constructed by
TRING version 11.5 database ( https:// cn.string-db.org/ ) was used
o expand the PPI network. The PPI netw orks w ere visualized b y
ytoscape, and the hub genes were calculated by using the cyto-
ubba plug-in. In order to reduce the bias caused by a single algo-

ithm, five common algorithms, including MCC, Degree , Closeness ,
adiality, and EPC in the cytoHubba plug-in were used to calculate
nd identify the hub genes. 

https://www.ncbi.nlm.nih.gov/geo
https://david.ncifcrf.gov/
https://cn.string-db.org/
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Ev alua tion of immune cell infiltr a tion 

CIBERSORTx analytical tool was used to e v aluate the input gene 
expr ession pr ofiles and 22 imm une cell enric hment abundances,
and LM22 ( 22 immune cell types ) and 1000 permutations were se- 
lected as the signature matrix file for significance analysis. Pear- 
son correlation analysis was used for immune cell infiltration cor- 
relation and a P -value < 0.05 was filtered. In addition, the sin- 
gle sample Gene Set Enrichment Analysis ( ssGSEA ) algorithm was 
used to detect the immune infiltration status of 28 kinds of im- 
m une cells enric hment abundances in AA patients . T he relation- 
ship between hub genes and infiltrating immune cells was per- 
formed by Pearson correlation analysis, and the results were vi- 
sualized by “ggplot2” R pac ka ge. 

Machine learning and STEM algorithm 

The Lasso r egr ession method, RF method and STEM algorithm 

were performed to filter monitoring genes for se v er e AA dia gno- 
sis. Based on the IMGs related to AA screened from the ImmPort 
database, we divided the GSE68801 dataset into two features: AAP 
and se v er e AA. Subsequentl y, we used the “glmnet” R pac ka ge 
to integrate the gene expression data and performed r egr ession 

analysis using the Lasso–Co x method. Ad ditionally, we also set 
up 5-fold cr oss-v alidation to obtain the optimal model.15 RF has 
better sensitivity and specificity and can be used to predict se- 
lection continuous variables.16 Based on the above data grouping, 
the IMGs can be classified by using the “r andomFor est” R pac ka ges 
and all IMGs are used as a training set. After comparison, it is de- 
termined that the gene belongs to AAP or se v er e AA. The STEM al- 
gorithm arranges the number of changes in genes in the process of 
disease tr ends, r andoml y disrupts the time point, r e-anal yzes the 
trend, counts the number of genes in each trend, and performs a 
large number of random rearrangements.17 After a large number 
of random rearrangements, a desired number of genes can be ob- 
tained in eac h tr end, and finall y the hyper geometric distribution 

algorithm is used to calculate the P -value of the tr end; a P -v alue < 

0.05 was considered significant. STEM software performed trend 

analysis of the IMGs. Notably, the intersection genes of LASSO, RF,
and STEM were considered as monitoring genes in se v er e AA di- 
agnosis. 

Analyses of diagnostic value and 

genetic-targeted drug 

The dia gnostic effectiv eness of biomarkers was performed b y R OC 

anal ysis, and the v alue of ar ea under curv e ( AUC ) was used to 
e v aluate the dia gnostic effectiv eness in se v er e AA. The Drug Gene 
Interaction Database ( DGIdb ) ( https:// dgidb.org/ ) was used to ex- 
plore the drug–gene interaction or potentially druggable category. 
The query score and the interaction score were utilized to assess 
the confidence of gene and drug interactions; higher values of 
both scores indicate higher correlation between genes and drugs.

Construction of AA model and 

imm unohistoc hemistry 

Imiquimod cream ( Mingxin Pharmaceutical Co., Ltd, Sichuan, 
China ) was used in C3H/HeJ mice to generate AA as our pr e vi- 
ous study described.18 In brief, a total of four 6-week-old male 
C3H/HeJ mice were used to establish the AA model, and a clean- 
ing cotton sw ab w as used to dip about 0.05 g of imiquimod cream 

and e v enl y smear it on the mouse neck skin ( an area ≈1.5 cm 

× 1.5 cm, three times a week ) . After 3 weeks of administration,
the mouse neck skin sho w ed obvious depilation, indicating that 
the model was successful. The control group ( n = 4 ) was treated 
ith a mixture of vaseline and lanolin in equal proportion, and
he treatment method was the same as that of the AA group. All
nimal experiments have been a ppr ov ed by the ethics committee
f the Naval Medical University. 

One week after the formation of obvious depilation in the AA
r oup, the full-thic kness skin of the depilated area was taken, and
he full-thickness skin of the same area was taken in the con-
r ol gr oup. The skin samples wer e fixed with 4% paraformalde-
yde and embedded in par affin. Then, par affin embedded with the
kin sample was cut into 10 micron tissue slices and stained with
ematoxylin-eosin ( HE ) . Imm unohistoc hemistry was performed 

s pr e viousl y r eported.19 The primary antibodies used in immuno-
istoc hemistry wer e LGR5 ( 1:800, Abcam, USA ) and CK19 ( 1:800,
bcam, UnSA ) . Photomicr ogr a phs wer e collected under an opti-
al microscope ( Leica, Germany ) . Four areas in each section were
 andoml y selected and analyzed by Image-Pro Plus 6. 

ta tistical anal ysis 

omparison between the two group was performed by using Stu-
ent’s sample t-test, and a P -value < 0.05 was considered signifi-
ant. 

esults 

dentification of DEGs and DE-lncRNAs 

 total of 644 upregulated ( 308 in GSE68801 and 336 in GSE45512 )
nd 633 downregulated ( 231 in GSE68801 and 372 in GSE45512 )
EGs were identified ( supplementary Fig. S2A, C, E and G ) . A to-

al of 61 upregulated ( 41 in GSE68801 and 20 in GSE45512 ) and 68
ownregulated ( 18 in GSE68801 and 50 in GSE45512 ) DE-lncRNAs 
ere identified ( supplementary Fig. S2B, D, F and H, see online

upplemenatary material ) . After the intersection of the Venn di-
 gr am, 88 common upr egulated DEGs and 172 common down-
 egulated DEGs wer e obtained ( supplementary Fig. S3A, see on-
ine supplemehntary material ) , and 6 common upregulated DE- 
ncRNAs and 10 common downregulated DE-lncRNAs were ob- 
ained ( supplementary Fig. S3B ) . 

GCNA and key module identification 

GCN A w as used to identify the modules in AA that were most
 ele v ant to se v er e AA. Based on scale independence and av er a ge
onnectivity, β = 20 ( scale-free R 

2 = 1.24 ) was selected as the best
soft” threshold ( supplementary Fig. S4A, B, see online supplemen- 
ary material ) , and supplementary Fig. S4C shows the clustering
endr ogr am of normal, AAP, AT, and AU. Based on this po w er, 12
ene co-expression modules ( GCMs ) of different colors were pro- 
uced ( supplementary Fig. S4D, E ) . The correlation between dif-
erent clinical phenotypes of AA and GCMs is shown in supple-

entary Fig. S4F, and the purple ( AT, correlation coefficient = 0.19,
 = 0.04; AU, correlation coefficient = 0.49, P = 1.1 ×10 −8 ) , dark
r een ( AT, corr elation coefficient = 0.22, P = 0.01; AU, correla-
ion coefficient = 0.2, P = 0.03 ) , dark grey ( AT, correlation coef-
cient = 0.26, P = 3.6 ×10 −3 ; AU, correlation coefficient = 0.33,
 = 2.0 ×10 −4 ) and light c y an ( AT, correlation coefficient = 0.21,
 = 0.02; AU, correlation coefficient = 0.31, P = 4.4 ×10 −4 ) modules
er e significantl y positiv el y corr elated with se v er e AA, and the
rown module ( AT, correlation coefficient = −0.32, P = 4.0 ×10 −4 ;
U, correlation coefficient = −0.57, P = 9.3 ×10 −12 ) was significant
egativ el y corr elated with se v er e AA, and the genes in these mod-
les were regarded as pivotal genes for subsequent analysis. 

https://dgidb.org/
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unctional correlation analysis of severe 

A-related DEGs 

o understand the biological functions and pathways involved in
e v er e AA-r elated DEGs, a total of 31 common upregulated se-
 er e AA-r elated DEGs and 119 common downr egulated se v er e AA-
 elated DEGs wer e obtained thr ough a Venn dia gr am ( Fig. 1 A ) . For
iological process ( BP ) ( Fig. 1 B ) , the upregulated severe AA-related
EGs wer e mainl y enric hed in imm une r esponse, ada ptiv e im-
 une r esponse, and cellular defense r esponse, while the down-

 egulated se v er e AA-r elated DEGs wer e mainl y involv ed in inter-
ediate filament or ganization, ker atinization, and epithelial cell

ifferentiation. For cell component ( CC ) ( Fig. 1 C ) , the majority of
pr egulated se v er e AA-r elated DEGs wer e components of cell sur-

ace, external side of plasma membrane, and plasma membrane,
her eas the downr egulated se v er e AA-r elated DEGs wer e mainl y

omponents of keratin filament, intermediate filament, and cy-
osol. For molecular function ( MF ) ( Fig. 1 D ) , the upregulated se-
 er e AA-r elated DEGs wer e mainl y involv ed in pr otein binding, IL-
5 rece ptor acti vity, and IL-2 binding, wher eas the downr egulated
e v er e AA-r elated DEGs wer e mainl y involv ed in pr otein binding,
tructural constituent of epidermis, and structural molecule ac-
ivity. In terms of KEGG pathway ( Fig. 1 E ) , the upregulated severe
A-related DEGs were significantly enriched in allograft rejection,
h1 and Th2 cell differentiation, and graft-versus-host disease,
hile the downr egulated se v er e AA-r elated DEGs wer e mainl y in-

olved in the estrogen signaling pathway and Staphylococcus aureus
nfection. At the same time, the enrichment analysis results of se-
 er e AA-r elated DEGs and common DEGs wer e basicall y similar,
ainly showing that the upregulated genes participate in a vari-

ty of imm une r esponses, while the downregulated genes were en-
iched in the process of skin development and hair development
 supplementary Fig. S3C–F ) . Figure 1 F and G r espectiv el y show the
mm une-r elated pathways and BPs involving specific upregulated
e v er e AA-r elated DEGs and the BPs of skin de v elopment involving
ownr egulated se v er e AA-r elated DEGs. 

PI network construction and hub genes 

dentification of severe AA-related DEGs 

PI network is an important means of understanding functional
inks between proteins . T he PPI networks of se v er e AA-r elated
EGs was constructed by Cytoscape ( supplementary Fig. S5A,
, see online supplementary material ) . Hub genes are regula-
ory genes with high node degree in the PPI network. In this
tudy, the top 10 hub genes were calculated using five algo-
ithms in the cytoHubba plug-in and intersected by Venn dia gr am
 supplementary Fig. S5C, D ) , and the expr ession le v els wer e v er-
fied in the GSE80342 dataset ( supplementary Fig. S5E, F ) . A to-
al of 6 upregulated hub genes ( CD8A, CD2, GZMB, PRF1, GZMA,
nd ITGAL ) and 6 downregulated genes ( KR TAP11-1, KR TAP7-
, KRTAP19-3, KRT82, KRTAP2-2, and KRTAP8-1 ) were identified
 Fig. 1 A ) . 

onstruction of the ceRNA regulatory network 

ccording to the set threshold value, a total of 103 synergisti-
all y expr essed mRN A-LncRN A relationships w er e scr eened, in-
luding 80 mRNAs and 3 lncRNAs ( Fig. 2A, B ) . Enrichment anal-
sis was performed to each mRNA with synergistic effects of
ncRNA. Compar ed with AAP gr oup, RP11-315F22.1 was signifi-
antly lo w er expr essed in se v er e AA gr oup, with its syner gistic
RNAs mainl y enric hed in hair cycle, ker atin filament and struc-

ural constituent of epidermis. RP11-25K19.1 and RP1-93H18.6
er e significantl y higher expr essed in se v er e AA gr oup ( Fig. 2C ) .
heir synergistic mRNAs wer e mainl y enric hed in antigen pr o-
essing and presentation of exogenous peptide antigen via ma-
or histocompatibility complex ( MHC ) class II, plasma membrane,
r ansmembr ane signaling r ece ptor acti vity and tuberculosis ( Fig.
D-G ) . Subsequently, 91 LncRN A-miRN A-mRN A regulatory rela-
ionships were screened in the miR W alk2.0 database, including 57
ncRN A-miRN A relationship pairs, 79 miRN A-mRN A relationship
airs, and 41 LncRN A-mRN A co-expr ession r elationship pairs. The
eRN A regulatory netw ork w as constructed using Cytoscape ( Fig.
H ) . 

mmune cell infiltr a tion anal ysis 

he enric hment anal ysis r esults str ongl y suggest a crucial role
f immune response in the pathogenesis of AA, especially se-
 er e AA. Ther efor e, this study explor ed the imm une cell infil-
ration status of patients with AA of different disease courses.
ased on the CIBERSOR T algorithm, w e sim ultaneousl y anal yzed
he infiltration of 22 immune cell types between the four groups
 Fig. 3 A ) , and the results sho w ed that native B cells, CD8 T cells,
ative CD4 T cells, resting CD4 memory T cells, gamma delta
 cells, M1 macr opha ges, M2 macr opha ges, r esting mast cells,
nd neutrophils have different enrichment levels in different dis-
ase courses of AA ( Fig. 3 B ) . Notabl y, r esting CD4 memory T cells,
amma delta T cells, resting mast cells, and neutrophils are im-
une cells with high relative expression level and significant en-

ic hment differ ence in se v er e AA patients. Compar ed with the
AP gr oup, r esting CD4 memory T cells and neutr ophils wer e sig-
ificantl y downr egulated in se v er e AA patients ( Fig. 3 C, F ) , while
amma delta T cells ( Fig. 3 D ) and resting mast cells ( Fig. 3 E ) were
pregulated in AU and AT patients, r espectiv el y. The corr elation
nal ysis of imm une cells r e v ealed that nativ e CD4 T cells wer e
ositiv el y associated with M1 macr opha ges ( r = 0.50 ) , wher eas ac-
ivated dendritic cells were negatively related to M1 macrophages
 r = −0.56 ) , and that resting mast cells were negatively related to
esting dendritic cells ( Fig. 3 G ) . In addition, the correlation analy-
is sho w ed that six upregulated hub genes were significant posi-
iv el y corr elated with gamma delta T cells and M1 macr opha ges,
nd significant negativ el y corr elated with r esting CD4 memory T
ells and resting mast cells, whereas six downregulated hub genes
ere significant positively correlated with neutrophils, and sig-
ificant negativ el y corr elated with gamma delta T cells and M2
acr opha ges ( Fig. 3 H ) . Mor eov er, the ssGSEA algorithm was used

o detect the immune infiltration status of 28 kinds of immune
ells in AA patients ( supplementary Fig. S6, see online supplemen-
ary material ) , and the results sho w ed that many types of T cells
nd B cells were involved in immune infiltration in severe AA pa-
ients, which is consistent with the function enrichment results. 

creening and comprehensi v e analysis of severe 

A-related IGs 

umerous studies have shown that severe AA is due to hair loss
aused by the attack of immune cells on the hair follicles.8 , 20 

her efor e, earl y identification and intervention may be able to ef-
ectiv el y pr e v ent the incidence of se v er e AA. We obtained 2483
Gs from ImmPort database, and 706 resting CD4 memory T cells-
elated genes, 291 neutrophils-related genes, 26 gamma delta
 cells-related genes and 90 mast cells-related genes from the
SigDB database. A total of 70 se v er e AA-r elated IGs wer e ob-

ained by intersection of these IGs and se v er e AA-r elated genes
 Fig. 4 A ) , and were verified in GSE68801 and it was found that
SRG and CD8B did not show significant differences in the process
f AAP pr ogr essing to se v er e AA ( supplementary Fig. S7A, B, see
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Figure 1. Functional correlation analysis of severe AA-related DEGs. ( A ) Venn diagram displays 31 upregulated and 119 downregulated severe 
AA-r elated DEGs. ( B –D ) GO anal ysis of the DEGs, including BP , CC, and MF , r espectiv el y. ( E ) KEGG pathway anal ysis of the DEGs. ( F ) Circle dia gr am shows 
the imm une-r elated pathwa ys , BPs , and r elated enric hed genes. ( F ) Circle dia gr am shows the skin de v elopment r elated BPs and r elated enric hed genes. 
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Figure 2. Construction of the ceRNA regulatory network and enrichment analysis. ( A , B ) Regulatory network of synergistically expressed 
mRN A–lncRN A. ( C ) The expression trend of DE-lncRNAs ( RP11-315F22.1, RP11-25K19.1, and RP1-93H18.6 ) in the AAP group and severe AA group. ( D –F ) 
GO analysis of synergistic mRNAs, including BP, CC, and MF, r espectiv el y. ( G ) KEGG pathway analysis of the synergistic mRNAs . ( H ) T he ceRNA network 
was constructed through Cytoscape. Pink and dark blue rhombuses represent upregulated and downregulated DE-lncRNAs, respectively. Red and 
green dots represent upregulated and downregulated AA-related DEGs, respectively. Purple and brown dots represent upregulated and downregulated 
se v er e AA-r elated DEGs, r espectiv el y. Or ange triangle r epr esents potentiall y r egulated miRNAs. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001. 
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Figure 3. Imm une cell infiltr ation status in AA patients. ( A ) Histogr am sho w ed the composition of 22 kinds of immune cells in normal, AAP, AT, and AU 

samples. ( B ) Box dia gr am of the infiltr ation of imm une cells between the four gr oups of samples. ( C –F ) Violin dia gr am shows the specific enric hment 
status of resting CD4 memory T cells, gamma delta T cells, resting mast cells, and neutrophils in the four groups. ( G ) Correlation heat map of 22 types 
of immune cells. ( H ) Correlation heat map between severe AA-related hub genes and immune cells in GSE68801; the top and bottom numbers 
r epr esent corr elation coefficients and P -v alues, r espectiv el y. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001; ∗∗∗∗P < 0.0001. 
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Figure 4. Machine learning in screening immune diagnostic biomarkers for severe AA and the diagnostic value evaluation. ( A ) Upset diagram shows 
the intersection of immune genes and severe AA-related genes. ( B ) Random forest algorithm shows the top 15 important genes, which are ranked 
based on the mean decrease accuracy. ( C , D ) Biomarker’s screening in the LASSO regression model. The number of genes ( n = 13 ) corresponding to the 
lo w est point of the curve is the most suitable for severe AA diagnosis. ( E , F ) Trend line graph shows that STEM algorithm screens out the most 
upregulated and downregulated change genes, respectively. ( G ) Venn diagram shows that five potential immune monitoring genes are identified via 
the above three algorithms including random forest algorithm, LASSO regression algorithm, and STEM algorithm. ( H ) ROC curves of each immune 
monitoring gene ( PRF1, LGR5, SHISA2, HOXC13 and S100A3 ) show the significant se v er e AA diagnostic value. AUC, area under the curve. 
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Figure 5. Construction of the AA model and section HE staining. ( A ) Brief schematic diagram shows the process of model establishment. ( B ) A model of 
AA at week 3 was successfully established and the area of hair removal in the mice was consistent with the area of drug intervention ( n = 4 ) . ( C ) HE 
staining of skin tissue sections in control group. ( D ) HE staining of skin tissue sections in model group. ( E ) HE staining revealed that the number of hair 
follicles in the model group was significantly less than that in the control group. ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001. 
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online supplementary material ) , so 68 se v er e AA-r elated imm une 
genes were finally identified. The enrichment analysis of these se- 
v er e AA-r elated IGs sho w ed that they w er e significantl y enric hed 

in the immune response, external side of plasma membrane, cy- 
tokine rece ptor acti vity, and Th17 cell differentiation pathway 
( supplementary Fig. S8A, B, see online supplementary material ) .
The PPI networks of se v er e AA-r elated IGs w as constructed b y Cy- 
toscape ( supplementary Fig. S8C ) , and hub genes were also ob- 
tained by five algorithms; a total of se v en hub se v er e AA-r elated 

IGs ( CD4, CD8A, PRF1, GZMB, IL2RG, CD86, ITGAX ) were identified 

( supplementary Fig. S8D ) . Corr elation anal ysis sho w ed that se v en 

hub se v er e AA-r elated IGs wer e significantl y positiv el y corr elated 

with gamma delta T cells and M1 macr opha ges, and significantl y 
negativ el y corr elated with r esting CD4 memory T cells and resting 
mast cells ( supplementary Fig. S8E ) . 

Identification and diagnostic effecti v eness 

assessment of IMGs 

LASSO r egr ession, RF, and STEM algorithms were performed to 
filter IMGs for se v er e AA dia gnosis . T he RF algorithm calculates 
the importance of each gene and ranks them, and selects the top 

15 genes as potential IMGs ( Fig. 4 B and supplementary Table S2,
see online supplementary material ) . The Lambda value is set to 
0.0342824422648852 in the LASSO r egr ession algorithm, and 13 
potential IMGs wer e finall y identified ( Fig. 4 C, D ) . The STEM algo- 
ithm conducted trend analysis on severe AA-related IGs. All data
er e filter ed by mathematical model to r emov e data with insignif-

cant time-gr adient expr ession differ ence. Finall y, four significant
odules were screened, and we selected 40 genes in the most sig-

ificant changes modules as potential IMGs ( Fig. 4 E, F ) . The inter-
ection of the potential IMGs from the RF, LASSO r egr ession, and
TEM algorithms were visualized via the Venn diagram ( Fig. 4 G ) ,
nd five genes ( LGR5, SHISA2, HOXC13, S100A3, and PRF1 ) were 
dentified for the final validation. Based on the dataset where the
MGs are located and used to validate the diagnostic effectiveness
or se v er e AA b y R OC analysis, AUC > 0.8 was used as a thresh-
ld for dia gnostic ca pability with excellent specificity and sensi-
i vity. Exce pt for PRF1 ( AUC = 0.751 ) , LGR5 ( AUC = 0.885 ) , SHISA2
 AUC = 0.899 ) , HOXC13 ( AUC = 0.900 ) , and S100A3 ( AUC = 0.882 )
ad the capability to diagnose severe AA with excellent specificity
nd sensitivity ( Fig. 4 H ) . 

Pr e vious studies hav e r eported that LGR5 is an important
arker of hair follicle stem cells ( HFSCs ) .21 , 22 LGR5 + HFSCs can

r oduce ne w hair follicles and maintain all cell lines of hair folli-
les for a long time .23 T her efor e, the significantl y low expr ession
f LGR5 in se v er e AA patients has aroused our strong interest. As
r e viousl y described, the model of AA at week 3 was successfully
stablished, and the area of hair removal in the mice was consis-
ent with the area of drug intervention ( Fig. 5 A, B ) . The HE section
taining of skin tissue sho w ed that the number of hair follicles
n the model group was significantly less than that in the control
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Figur e 6. T he expression of LGR5 and CK19 were verified in vivo . ( A ) LGR5 immunohistochemistry staining of skin tissue sections in control group. ( B ) 
LGR5 imm unohistoc hemistry staining of skin tissue sections in model gr oup. ( C ) LGR5 imm unohistoc hemistry staining r e v ealed that LGR5-positiv e 
cells in the control group was significantly more than that in the model group. ( D ) CK19 immunohistochemistry staining of skin tissue sections in 
contr ol gr oup. ( E ) CK19 imm unohistoc hemistry staining of skin tissue sections in model gr oup. ( F ) CK19 imm unohistoc hemistry staining r e v ealed that 
CK19-positive cells in the control group was significantly more than that in the model group. ∗P < 0.05; ∗∗P < 0.01. 
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r oup ( Fig. 5 C-E ) . Notabl y, a lar ge n umber of LGR5-positi ve cells
an be found in the outer root sheath of hair follicle in the control
roup, but it is quite difficult to find positive cells in the model
r oup ( Fig. 6 A–C ) . CK19 was expr essed in stem cells and plays an
mportant role in the differentiation of epidermal cells.24 Similarly,
he number of CK19-positive cells in the control group was much
igher than that in the model group ( Fig. 6 D–F ) . 

dentification of potential genetic-targeted drugs 

he DGIdb database was applied to identify the potential gene-
ar geted ther a py drugs that modulate the imm une r esponse,
hich may become an effective strategy for the treatment of se-
 er e AA. All hub genes were used for drug screening. As shown
n supplementary Fig. S9 ( see online supplementary material ) ,
 arious drugs suc h as ALEF ACEPT, SIPLIZUMAB , TREGALIZUMAB ,
nd ABA T ACEPT can tar get and r egulate IGs to become candidate
ene-targeted drugs for severe AA treatment. 

iscussion 

air loss, one of the most common disease complications,
e v er el y dama ges the patient’s a ppear ance and psyc hological
tate,25 and AA is the second most common non-scarring alope-
ia disease, with a pr e v alence r ate of 0.1%–0.2% worldwide.26 If
AP pr ogr esses to AT/AU, the difficulty and cost of treatment in-
r eases significantl y. Ther efor e, earl y identification and diagnosis
f se v er e AA is particularl y important. 

Pr e viousl y, Zhang and Nie 27 explored potential biomarkers
or AA, including significantly upregulated CD28 and signifi-
antl y downr egulated HO XC13, KR TAP1-3, and GPRC5D, and sug-
ested early identification and intervention for high-risk patients
hrough these potential biomarkers. Ho w ever, there is currently
ittle r esearc h on constructing the internal regulatory network of
A patients . T her efor e, this study first constructed a ceRNA regu-

atory network for AA patients, where two lncRNAs ( RP11-25K19.1
nd RP1-93H18.6 ) were significantly overexpressed in severe AA,
hich may be important regulatory nodes leading to the produc-

ion of se v er e AA. In addition, a study on the immune enrich-
ent status of AA patients was conducted and it was found that

here is a significant enrichment of immune cells in AA patients
 especiall y se v er e AA ) . If k e y IMGs can be screened and altered,
hen this is expected to provide early recognition and intervention
or se v er e AA. By identifying IMGs in high-risk patients thr ough
 arious mac hine-learning algorithms and conducting partial
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Figure 7. Sc hematic dia gr am showing the potential biological pr ocesses and earl y dia gnosis of se v er e AA. 
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validation, it was found that LGR5 is a good biomarker for pre- 
dicting se v er e AA. Ov er all, we explor ed the tr anscriptional fea- 
tures of AA to reveal the intrinsic mechanisms, and identified 

the most r ele v ant module genes of se v er e AA via WGCNA. We 
first performed a compr ehensiv e anal ysis of the potential mech- 
anisms of se v er e AA, including functional enric hment anal ysis,
PPI netw ork construction, and ceRN A netw ork construction. In- 
ter estingl y, the upr egulated DEGs of AA wer e mainl y enric hed in 

imm une r esponse, ada ptiv e imm une r esponse, and positiv e r egu- 
lation of T cell pr olifer ation, while the downregulated DEGs were 
mainl y enric hed in pathways related to hair cycle, keratinization,
and epithelial cell differentiation ( Fig. 1 ) . Under normal physio- 
logical conditions, hair follicle tissue cells produce cytokines that 
inhibit the expression of major histocompatibility complex ( MHC ) 
to enjoy immune privilege.28 We found that se v er e AA-r elated up- 
r egulated DEGs wer e significantl y enric hed in the MF of MHC class 
I protein binding and MHC class II protein complex binding, which 

is one of the important reasons for the loss of hair follicle immune 
privilege. 

Hub genes are regulatory genes with high node degree in the 
PPI network, which is of great significance in the progress of the 
disease. Se v er e AA-r elated upr egulated hub genes wer e closel y r e- 
lated to immune response. Numerous studies have shown that 
inflammatory tissue will c hemotacticall y r ecruit T l ymphocytes,
leading to the formation of spontaneous AA.29–31 CD8A is the sur- 
face gl ycopr otein of most c ytotoxic T lymphoc ytes and mediates 
m utual r ecognition between cells in the imm une system.32 CD2 is 
the surface antigen of all peripheral blood T cells and has the ef- 
fect of immune recognition.33 GZMA and PRF1 are common com- 
onents necessary for cytotoxic T lymphocytes and natural killer 
ells to l ysis tar get cells.34 , 35 ITGAL is involv ed in inter-leuk ocyte
dhesion and lymphocyte co-stimulation signals .36 T he expres- 
ion of GZMB increases in a variety of human autoimmune skin
iseases, and many studies have found that it will lead to the
estruction of the extracellular matrix, with numerous immune 
ells entering the hair follicles and leading to the collapse of hair
ollicle immune privilege.37 Severe AA-related downregulated hub 
enes mainly belong to a member of the keratin gene family or
er atin-associated pr otein famil y, and ar e closel y r elated to hair
ollicle r egener ation and skin de v elopment, and their significant
ownregulation may be the core link leading to hair loss in se v er e
A patients.38 

The enric hment anal ysis r esults str ongl y suggest a crucial role
f immune response in the pathogenesis of AA, especially severe
A. Ther efor e, we explor ed the imm une cells enric hment sta-

us of AA patients. Compared with the AAP gr oup, r esting CD4
emory T cells and neutrophils were significantly downregu- 

ated in se v er e AA patients, while gamma delta T cells and rest-
ng mast cells wer e upr egulated in AU and AT patients, r espec-
iv el y ( Fig. 3 B ) . McEl wee et al .39 found that non-cultured CD4 + T
ells alone were sufficient to induce AA. Hashimoto et al .40 further
ho w ed that effector memory CD4 + T cells were able to stimulate
ative and CD8 + cells through antigen-presenting cells in axillary 

ymph nodes and direct T cells to attack hair follicles, leading to
A. In addition, although a significant decrease in neutrophils was
bserved in the severe AA group in this study, previous studies
ave shown that the ratio of neutrophils to lymphocytes was not a
ood indicator for e v aluating the se v erity of AA.41 , 42 Gamma delta



12 | Precis Clin Med , 2023, 6 : pbad009 

T  

i  

p  

i
Y  

M  

a  

t  

i  

o  

i  

m
 

o  

c  

p  

w  

m  

t  

c  

t  

t  

v  

(  

a  

p  

H  

d  

t  

r  

b  

h  

o  

m  

A  

a  

i  

w  

p  

d  

L
 

F  

g  

r  

P  

g  

n  

s

C
I  

i  

t  

g  

d

S
S

A
T  

d

E
T  

t  

E

C
N

A
J  

s  

d  

t  

t  

p  

fi  

r

A
P  

c

R
1  

2  

 

3  

 

4  

 

5  

 

 

6  

 

7  

 

8  

 

 

 

9  

 

 

 

 cells in human skin play the function of outposts of physiolog-
cal stress, and their excessive activity will promote the overex-
ression of various cytokines such as CD1d, CXCL12, and MICA,

nducing the collapse of the immune privilege of hair follicles.43 

uan et al .44 found an infiltration of gamma delta T cells and
1 macr opha ges in the AA tissues, which is consistent with the

nalysis in this study. Mast cells are important imm unor egula-
ory cells involved in T cell-dependent imm unity, imm une priv-
lege, and hair growth. Bertolini et al .45 found that hair follicles
f AA patients sho w ed mor e infiltr ation of mast cells and phys-
cal MC/CD8 + T cells than contr ols, whic h may be an important

echanism of severe AA. 
Attack of immune response of hair follicles is the core factor

f AA onset and pr ogr ession. Ther efor e, if these imm une genes
an be monitored early, it may be possible to identify high-risk
atients who may pr ogr ess to se v er e AA in time. In this study,
e screened the IMGs through LASSO regression, RF, and STEM
achine-learning algorithms, and the diagnostic effectiveness of

he pivotal IMGs was validated by ROC. Finally, four IMGs, in-
luding LGR5, SHISA2, HOXC13, and S100A3, with good diagnos-
ic efficienc y w ere obtained. As sho wn in supplementary Fig. S7A,
he expression of LGR5, SHISA2, HOXC13, and S100A3 in the se-
 er e AA gr oup was significantl y lo w er than that in the AAP group
 P < 0.0001 ) , which also confirmed the effectiveness of HOXC13
s one of the IMGs. Pr e vious studies hav e found that HOXC13 is
articularly important for the differentiation of hair follicles, and
OXC13-tar geted mice gr ow completel y hairless with se v er e nail
ystrophy.46 , 47 Guan et al .48 observed the delay of hair follicles en-
ering the growth period, the reduction of hair elongation, and the
eduction of the number of hair follicles in subcutaneous tissue
y blocking the expression of S100A3, and the downregulation of
air growth induction-related genes in vivo . LGR5 is a stem marker
f HFSCs, and HFSCs maintain the growth, shedding, and replace-
ent of hair.49 , 50 Ther efor e, the low expression of LGR5 in severe
A patients aroused our strong interest. We first established an
nimal model of AA, and found that the number of hair follicles
n the animal model was significantl y r educed and hair follicles
er e atr ophied. At the same time, the number of LGR5- and CK19-
ositive stem cells also decreased significantly, and it was quite
ifficult to observe positive cells . T he abo v e r esults indicate that
GR5 is a good biomarker for predicting severe AA. 

Subsequently, we used the DGIdb database to find that ALE-
 ACEPT, SIPLIZUMAB , TREGALIZUMAB , and ABA T ACEPT are good
ene-targeted drugs to modulate the hub genes in se v er e AA-
elated PPI network, including ITGAL, GZMA, GZMAB, CD2,
RF1, IL2RG, CD4, and CD86, whic h may become effectiv e tar-
et drugs for se v er e AA. Ho w e v er, further clinical studies are
eeded to verify the effectiveness and safety of these drugs for
e v er e AA. 

onclusions 

n sum, our findings not only help to impr ov e our understand-
ng of the pathogenesis and underlying biological processes in pa-
ients with se v er e AA, but also use various machine-learning al-
orithms to identify potential IMGs, which is helpful for the early
iagnosis of severe AA ( Fig. 7 ) . 
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