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Abstract

Objectives Alopecia areata (AA) is an autoimmune-related non-cicatricial alopecia, with complete alopecia (AT) or generalized alopecia
(AU) as severe forms of AA. However, there are limitations in early identification of AA, and intervention of AA patients who may
progress to severe AA will help to improve the incidence rate and prognosis of severe AA.

Methods We obtained two AA-related datasets from the gene expression omnibus database, identified the differentially expressed
genes (DEGs), and identified the module genes most related to severe AA through weighted gene co-expression network analysis.
Functional enrichment analysis, construction of a protein-protein interaction network and competing endogenous RNA network, and
immune cell infiltration analysis were performed to clarify the underlying biological mechanisms of severe AA. Subsequently, pivotal
immune monitoring genes (IMGs) were screened through multiple machine-learning algorithms, and the diagnostic effectiveness of
the pivotal IMGs was validated by receiver operating characteristic.

Results A total of 150 severe AA-related DEGs were identified; the upregulated DEGs were mainly enriched in immune response, while
the downregulated DEGs were mainly enriched in pathways related to hair cycle and skin development. Four IMGs (LGRS, SHISA2,
HOXC13, and S100A3) with good diagnostic efficiency were obtained. As an important gene of hair follicle stem cells stemness, we
verified in vivo that LGR5 downregulation may be an important link leading to severe AA.

Conclusion Our findings provide a comprehensive understanding of the pathogenesis and underlying biological processes in patients

with AA, and identification of four potential IMGs, which is helpful for the early diagnosis of severe AA.
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Introduction

Alopecia areata (AA) is an autoimmune-related non-cicatricial
alopecia that often manifests as rounded patches of alopecia
(AAP), and will gradually develop into total alopecia (AT) that in-
volves hair loss on the entire head, or universal alopecia (AU) that
involves hair loss all over the body in severe cases.! AT and AU
belong to the progressive type of AA (severe AA), which are re-
fractory hair diseases and seriously damage the morphology of
patients. Although AA is not life-threatening, it has a huge impact
on the patient’s image and can be a significant influence on men-
tal illnesses such as anxiety and depression.? The etiology of AA
is still unclear, but scholars believe that it is caused by genetics,
pathogen infection, and autoimmunity.>~ Previous studies have
reported that immune cells infiltrating around the hair follicles
of AA patients and secreting many cytokines such as interferon-y,
interleukin 17 (IL-17), and IL-2 leads to the collapse of the immune
privilege, miniaturization of the hair follicle, and hair loss.®’
Thus, immune disorders play an important role in the onset
of AA.

For mild AAP, some patients can recover without any treat-
ment, or can be cured by topical application of glucocorticoid.
However, the current clinical treatment methods for severe AA
are limited, and combined immunosuppressive therapy is often
required, but its adverse reactions are relatively large, and the re-
currence rate after drug withdrawal is high, so it is not the first
choice for AA treatment.® Therefore, it is particularly important
to identify and intervene early in AA patients who may progress
to severe AA, which will help improve the incidence of severe AA
and its prognosis.

Machine learning is gradually becoming more widely used in
bioinformatics and can be used to identify potential mechanisms
and diagnostic biomarkers of various diseases.’ At present, there
is limited research on the use of immune monitoring genes (IMGs)
for early severe AA identification and the application of machine
learning to screen severe AA-related immune genes (IGs) to ob-
tain IMGs for severe AA diagnosis. In this study, two AA-related
datasets from the gene expression omnibus (GEO) database,
identified the differentially expressed genes (DEGs) through the
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classical Bayesian method in limma, and identified the mod-
ule genes most related to severe AA through weighted gene co-
expression network analysis (WGCNA). Functional enrichment
analysis, construction of a protein-protein interaction (PPI) net-
work and competing endogenous RNA (ceRNA) network, and im-
mune cell infiltration analysis were performed to clarify the un-
derlying biological mechanisms of severe AA. Subsequently, piv-
otal IMGs were screened through multiple machine-learning al-
gorithms, including least absolute shrinkage and selection oper-
ator (LASSO), random forest (RF), and short time-series expres-
sion miner (STEM) algorithms, and the diagnostic effectiveness of
the pivotal IMGs was validated by receiver operating characteris-
tic (ROC). This study will help identify potential diagnostic mark-
ers related to immunity in severe AA patients.

Materials and methods

Microarray data collection

The research flowchart of this study is shown in supplementary
Fig. S1, see online supplementary material. The gene expression
datasets were collected from the GEO public database (https://ww
w.ncbinlm.nih.gov/geo).’® The AA-related datasets (GSE68801,
GSE45512, and GSE80342) were download from GEO for further
analysis. The AA-related datasets were based on the GPL570 plat-
form (Affymetrix Human Genome U133 Plus 2.0 Array), in which
GSE68801 includes samples from 36 normal controls, 54 AAP pa-
tients, 9 AT patients, and 23 AU patients. The immune-related
genes were obtained from the ImmPort and MSigDB databases.
The details of datasets are shown in supplementary Table S1, see
online supplementary material.

Probe re-annotation and identification of DEGs
and DE-IncRNAs

The affymetrix was used to obtain all chip probe sequences, the
human reference genome (GRCh38) was downloaded from the
GENCODE database, and seqmap software was used to compare
all probe sequence ratios with the reference genome. First, the
unique map probe was retained, and then its position on the chro-
mosome and positive and negative chain information was used
to obtain the corresponding gene of each probe according to the
human gene annotation file (release 25) provided by GENCODE.**
The probe with the annotation information of “protein_coding” as
the corresponding probe of mRNA, and the probes with the an-
notation information of “antisense”, “sense_intronic”, “lincRNA”,
“sense_overlapping”, or “processed_transcript” were reserved as
the corresponding probe of long non-coding RNA (IncRNA). Finally,
by mutual matching between the probe number and gene symbol,
the probes that do not match to the gene symbol were removed,
and for different probes mapping to the same gene, the average
value of different probes was taken as the final expression value
of this mRNA/IncRNA.

The classical Bayesian method in “limma” R package was per-
formed for the differential analysis of datasets. For GSE68301, AAP,
AT, and AU were uniformly regarded as disease groups. Gene ex-
pression profiles of the disease and control groups in the datasets
were compared to identify DEGs and DE-IncRNAs. A gene with a
P-value < 0.05 and a fold-change value > & 0.585 (1.5-fold change)
was defined as a DEG and DE-IncRNA. In this study, the intersec-
tion of DEG and DE-IncRNA of GSE45512 and GSE68801 was per-
formed to obtain the common upregulated and downregulated
DEGs and DE-IncRNA for follow-up analysis.

WGCNA

WGCNA is a systems biology method to characterize patterns of
gene association between different samples and can be used to
identify highly synergistic sets of genes and the most relevant
modular genes based on the endogeneity of the gene set and the
association between gene sets and phenotypes.’? The median ab-
solute deviation (MAD) of each gene in the dataset was first deter-
mined, and the top 50% of genes with the smallest MAD were ex-
cluded. The goodSamplesGenes function of the “WGCNA” R pack-
age was used to remove unqualified genes and samples, and a fur-
ther scale-free co-expression network was constructed. The “soft”
threshold power (8) calculates the adjacency between genes and
transforms the adjacency into a topological overlap matrix (TOM),
which is used to measure network connectivity and similarity.
Based on the TOM dissimilarity and the minimum genome size
of the gene number map (n = 30), genes with similar expression
profiles are classified as gene modules using the average linkage
hierarchical clustering and dynamic tree-cutting function detec-
tion module. To further analyze the module, the dissimilarity of
module eigen genes was calculated, and a cut line for module den-
drogram was chosen, and some modules were combined. In this
study, important modules related to AT and AU were identified for
follow-up investigation.

Enrichment analysis of DEGs

Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed
by the DAVID database (https://david.ncifcrf.gov/). GO annotation
enrichment analysis involves simple gene annotations of molecu-
lar function (MF), biological process (BP), and cell component (CC).
A P-value < 0.05 was considered significant.

ceRNA interaction network construction

The matched sample mRNA and IncRNA data were used to cal-
culate the Pearson correlation coefficient of each of the DEGs and
DE-IncRNAs, respectively. Then, the correlation test was carried
out to screen DEG and DE-IncRNA relationship pairs that may
have a synergistic effect. The correlation coefficient value (r) >
0.05 and a P-value < 0.05 were considered to have a synergis-
tic effect. The construction of IncRNA-mRNA co-expression net-
work was visualized by Cytoscape (version 3.7.2). Subsequently,
miRWalk2.0 was used to synthesize the results of the four
databases (miRWalk, miRanda, RNA22, and Targetscan) to predict
the miRNA-mRNA relationship.’® If the predicted results appear
in the above databases, it is considered that the corresponding
miRNA regulates the corresponding mRNA. The miRanda (v3.3a)
software was used to predict miRNAs targeted by IncRNA and fil-
ter out miRNA-IncRNA relationship pairs with score > 140, en-
ergy < —20.1* The IncRNA-mRNA and miRNA-IncRNA relation-
ship pairs were combined and further screened to construct the
ceRNA network and visualized with Cytoscape.

PPI network construction and integration
analysis

The complex regulatory network between proteins constructed by
STRING version 11.5 database (https://cn.string-db.org/) was used
to expand the PPI network. The PPI networks were visualized by
Cytoscape, and the hub genes were calculated by using the cyto-
Hubba plug-in. In order to reduce the bias caused by a single algo-
rithm, five common algorithms, including MCC, Degree, Closeness,
Radiality, and EPC in the cytoHubba plug-in were used to calculate
and identify the hub genes.
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Evaluation of immune cell infiltration

CIBERSORTX analytical tool was used to evaluate the input gene
expression profiles and 22 immune cell enrichment abundances,
and LM22 (22 immune cell types) and 1000 permutations were se-
lected as the signature matrix file for significance analysis. Pear-
son correlation analysis was used for immune cell infiltration cor-
relation and a P-value < 0.05 was filtered. In addition, the sin-
gle sample Gene Set Enrichment Analysis (ssGSEA) algorithm was
used to detect the immune infiltration status of 28 kinds of im-
mune cells enrichment abundances in AA patients. The relation-
ship between hub genes and infiltrating immune cells was per-
formed by Pearson correlation analysis, and the results were vi-
sualized by “ggplot2” R package.

Machine learning and STEM algorithm

The Lasso regression method, RF method and STEM algorithm
were performed to filter monitoring genes for severe AA diagno-
sis. Based on the IMGs related to AA screened from the ImmPort
database, we divided the GSE68801 dataset into two features: AAP
and severe AA. Subsequently, we used the “glmnet” R package
to integrate the gene expression data and performed regression
analysis using the Lasso-Cox method. Additionally, we also set
up 5-fold cross-validation to obtain the optimal model.” RF has
better sensitivity and specificity and can be used to predict se-
lection continuous variables.'® Based on the above data grouping,
the IMGs can be classified by using the “randomForest” R packages
and all IMGs are used as a training set. After comparison, it is de-
termined that the gene belongs to AAP or severe AA. The STEM al-
gorithm arranges the number of changes in genes in the process of
disease trends, randomly disrupts the time point, re-analyzes the
trend, counts the number of genes in each trend, and performs a
large number of random rearrangements.” After a large number
of random rearrangements, a desired number of genes can be ob-
tained in each trend, and finally the hypergeometric distribution
algorithm is used to calculate the P-value of the trend; a P-value <
0.05 was considered significant. STEM software performed trend
analysis of the IMGs. Notably, the intersection genes of LASSO, RF,
and STEM were considered as monitoring genes in severe AA di-
agnosis.

Analyses of diagnostic value and
genetic-targeted drug

The diagnostic effectiveness of biomarkers was performed by ROC
analysis, and the value of area under curve (AUC) was used to
evaluate the diagnostic effectiveness in severe AA. The Drug Gene
Interaction Database (DGIdb) (https://dgidb.org/) was used to ex-
plore the drug-gene interaction or potentially druggable category.
The query score and the interaction score were utilized to assess
the confidence of gene and drug interactions; higher values of
both scores indicate higher correlation between genes and drugs.

Construction of AA model and
immunohistochemistry

Imiquimod cream (Mingxin Pharmaceutical Co., Ltd, Sichuan,
China) was used in C3H/HeJ mice to generate AA as our previ-
ous study described.'® In brief, a total of four 6-week-old male
C3H/HeJ mice were used to establish the AA model, and a clean-
ing cotton swab was used to dip about 0.05 g of imiquimod cream
and evenly smear it on the mouse neck skin (an area ~1.5 cm
x 1.5 cm, three times a week). After 3 weeks of administration,
the mouse neck skin showed obvious depilation, indicating that
the model was successful. The control group (n = 4) was treated

with a mixture of vaseline and lanolin in equal proportion, and
the treatment method was the same as that of the AA group. All
animal experiments have been approved by the ethics committee
of the Naval Medical University.

One week after the formation of obvious depilation in the AA
group, the full-thickness skin of the depilated area was taken, and
the full-thickness skin of the same area was taken in the con-
trol group. The skin samples were fixed with 4% paraformalde-
hyde and embedded in paraffin. Then, paraffin embedded with the
skin sample was cut into 10 micron tissue slices and stained with
hematoxylin-eosin (HE). Immunohistochemistry was performed
as previously reported.’® The primary antibodies used in immuno-
histochemistry were LGRS (1:800, Abcam, USA) and CK19 (1:800,
Abcam, UnSA). Photomicrographs were collected under an opti-
cal microscope (Leica, Germany). Four areas in each section were
randomly selected and analyzed by Image-Pro Plus 6.

Statistical analysis

Comparison between the two group was performed by using Stu-
dent’s sample t-test, and a P-value < 0.05 was considered signifi-
cant.

Results

Identification of DEGs and DE-IncRNAs

A total of 644 upregulated (308 in GSE68801 and 336 in GSE45512)
and 633 downregulated (231 in GSE68801 and 372 in GSE45512)
DEGs were identified (supplementary Fig. S2A, C, E and G). A to-
tal of 61 upregulated (41 in GSE68801 and 20 in GSE45512) and 68
downregulated (18 in GSE68801 and 50 in GSE45512) DE-IncRNAs
were identified (supplementary Fig. S2B, D, F and H, see online
supplemenatary material). After the intersection of the Venn di-
agram, 88 common upregulated DEGs and 172 common down-
regulated DEGs were obtained (supplementary Fig. S3A, see on-
line supplemehntary material), and 6 common upregulated DE-
IncRNAs and 10 common downregulated DE-IncRNAs were ob-
tained (supplementary Fig. S3B).

WGCNA and key module identification

WGCNA was used to identify the modules in AA that were most
relevant to severe AA. Based on scale independence and average
connectivity, g = 20 (scale-free R? = 1.24) was selected as the best
“soft” threshold (supplementary Fig. S4A, B, see online supplemen-
tary material), and supplementary Fig. S4C shows the clustering
dendrogram of normal, AAP, AT, and AU. Based on this power, 12
gene co-expression modules (GCMs) of different colors were pro-
duced (supplementary Fig. S4D, E). The correlation between dif-
ferent clinical phenotypes of AA and GCMs is shown in supple-
mentary Fig. S4F, and the purple (AT, correlation coefficient = 0.19,
P = 0.04; AU, correlation coefficient = 0.49, P = 1.1x107%), dark
green (AT, correlation coefficient = 0.22, P = 0.01; AU, correla-
tion coefficient = 0.2, P = 0.03), dark grey (AT, correlation coef-
ficient = 0.26, P = 3.6x1073; AU, correlation coefficient = 0.33,
P = 2.0x107%) and light cyan (AT, correlation coefficient = 0.21,
P =0.02; AU, correlation coefficient = 0.31, P = 4.4x10~*) modules
were significantly positively correlated with severe AA, and the
brown module (AT, correlation coefficient = —0.32, P = 4.0x107%;
AU, correlation coefficient = —0.57, P = 9.3x10~!?) was significant
negatively correlated with severe AA, and the genes in these mod-
ules were regarded as pivotal genes for subsequent analysis.
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Functional correlation analysis of severe
AA-related DEGs

To understand the biological functions and pathways involved in
severe AA-related DEGs, a total of 31 common upregulated se-
vere AA-related DEGs and 119 common downregulated severe AA-
related DEGs were obtained through a Venn diagram (Fig. 1A). For
biological process (BP) (Fig. 1B), the upregulated severe AA-related
DEGs were mainly enriched in immune response, adaptive im-
mune response, and cellular defense response, while the down-
regulated severe AA-related DEGs were mainly involved in inter-
mediate filament organization, keratinization, and epithelial cell
differentiation. For cell component (CC) (Fig. 1C), the majority of
upregulated severe AA-related DEGs were components of cell sur-
face, external side of plasma membrane, and plasma membrane,
whereas the downregulated severe AA-related DEGs were mainly
components of keratin filament, intermediate filament, and cy-
tosol. For molecular function (MF) (Fig. 1D), the upregulated se-
vere AA-related DEGs were mainly involved in protein binding, IL-
15 receptor activity, and IL-2 binding, whereas the downregulated
severe AA-related DEGs were mainly involved in protein binding,
structural constituent of epidermis, and structural molecule ac-
tivity. In terms of KEGG pathway (Fig. 1E), the upregulated severe
AA-related DEGs were significantly enriched in allograft rejection,
Th1 and Th2 cell differentiation, and graft-versus-host disease,
while the downregulated severe AA-related DEGs were mainly in-
volved in the estrogen signaling pathway and Staphylococcus aureus
infection. At the same time, the enrichment analysis results of se-
vere AA-related DEGs and common DEGs were basically similar,
mainly showing that the upregulated genes participate in a vari-
ety of immune responses, while the downregulated genes were en-
riched in the process of skin development and hair development
(supplementary Fig. S3C-F). Figure 1F and G respectively show the
immune-related pathways and BPs involving specific upregulated
severe AA-related DEGs and the BPs of skin development involving
downregulated severe AA-related DEGs.

PPI network construction and hub genes
identification of severe AA-related DEGs

PPI network is an important means of understanding functional
links between proteins. The PPI networks of severe AA-related
DEGs was constructed by Cytoscape (supplementary Fig. S5A,
B, see online supplementary material). Hub genes are regula-
tory genes with high node degree in the PPI network. In this
study, the top 10 hub genes were calculated using five algo-
rithms in the cytoHubba plug-in and intersected by Venn diagram
(supplementary Fig. S5C, D), and the expression levels were ver-
ified in the GSE80342 dataset (supplementary Fig. S5E, F). A to-
tal of 6 upregulated hub genes (CD8A, CD2, GZMB, PRF1, GZMA,
and ITGAL) and 6 downregulated genes (KRTAP11-1, KRTAP7-
1, KRTAP19-3, KRT82, KRTAP2-2, and KRTAPS8-1) were identified
(Fig. 1A).

Construction of the ceRNA regulatory network

According to the set threshold value, a total of 103 synergisti-
cally expressed mRNA-LncRNA relationships were screened, in-
cluding 80 mRNAs and 3 IncRNAs (Fig. 2A, B). Enrichment anal-
ysis was performed to each mRNA with synergistic effects of
IncRNA. Compared with AAP group, RP11-315F22.1 was signifi-
cantly lower expressed in severe AA group, with its synergistic
mRNAs mainly enriched in hair cycle, keratin filament and struc-
tural constituent of epidermis. RP11-25K19.1 and RP1-93H18.6
were significantly higher expressed in severe AA group (Fig. 2C).

Their synergistic mRNAs were mainly enriched in antigen pro-
cessing and presentation of exogenous peptide antigen via ma-
jor histocompatibility complex (MHC) class II, plasma membrane,
transmembrane signaling receptor activity and tuberculosis (Fig.
2D-G). Subsequently, 91 LncRNA-miRNA-mRNA regulatory rela-
tionships were screened in the miRWalk2.0 database, including 57
LncRNA-miRNA relationship pairs, 79 miRNA-mRNA relationship
pairs, and 41 LncRNA-mRNA co-expression relationship pairs. The
ceRNA regulatory network was constructed using Cytoscape (Fig.
2H).

Immune cell infiltration analysis

The enrichment analysis results strongly suggest a crucial role
of immune response in the pathogenesis of AA, especially se-
vere AA. Therefore, this study explored the immune cell infil-
tration status of patients with AA of different disease courses.
Based on the CIBERSORT algorithm, we simultaneously analyzed
the infiltration of 22 immune cell types between the four groups
(Fig. 3A), and the results showed that native B cells, CD8 T cells,
native CD4 T cells, resting CD4 memory T cells, gamma delta
T cells, M1 macrophages, M2 macrophages, resting mast cells,
and neutrophils have different enrichment levels in different dis-
ease courses of AA (Fig. 3B). Notably, resting CD4 memory T cells,
gamma delta T cells, resting mast cells, and neutrophils are im-
mune cells with high relative expression level and significant en-
richment difference in severe AA patients. Compared with the
AAP group, resting CD4 memory T cells and neutrophils were sig-
nificantly downregulated in severe AA patients (Fig. 3C, F), while
gamma delta T cells (Fig. 3D) and resting mast cells (Fig. 3E) were
upregulated in AU and AT patients, respectively. The correlation
analysis of immune cells revealed that native CD4 T cells were
positively associated with M1 macrophages (r = 0.50), whereas ac-
tivated dendritic cells were negatively related to M1 macrophages
(r=—0.56), and that resting mast cells were negatively related to
resting dendritic cells (Fig. 3G). In addition, the correlation analy-
sis showed that six upregulated hub genes were significant posi-
tively correlated with gamma delta T cells and M1 macrophages,
and significant negatively correlated with resting CD4 memory T
cells and resting mast cells, whereas six downregulated hub genes
were significant positively correlated with neutrophils, and sig-
nificant negatively correlated with gamma delta T cells and M2
macrophages (Fig. 3H). Moreover, the ssGSEA algorithm was used
to detect the immune infiltration status of 28 kinds of immune
cellsin AA patients (supplementary Fig. S6, see online supplemen-
tary material), and the results showed that many types of T cells
and B cells were involved in immune infiltration in severe AA pa-
tients, which is consistent with the function enrichment results.

Screening and comprehensive analysis of severe
AA-related IGs

Numerous studies have shown that severe AA is due to hair loss
caused by the attack of immune cells on the hair follicles.®?°
Therefore, early identification and intervention may be able to ef-
fectively prevent the incidence of severe AA. We obtained 2483
IGs from ImmPort database, and 706 resting CD4 memory T cells-
related genes, 291 neutrophils-related genes, 26 gamma delta
T cells-related genes and 90 mast cells-related genes from the
MSigDB database. A total of 70 severe AA-related IGs were ob-
tained by intersection of these IGs and severe AA-related genes
(Fig. 4A), and were verified in GSE68801 and it was found that
ESRG and CD8B did not show significant differences in the process
of AAP progressing to severe AA (supplementary Fig. S7A, B, see
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Figure 1. Functional correlation analysis of severe AA-related DEGs. (A) Venn diagram displays 31 upregulated and 119 downregulated severe
AA-related DEGs. (B-D) GO analysis of the DEGs, including BP, CC, and MF, respectively. (E) KEGG pathway analysis of the DEGs. (F) Circle diagram shows
the immune-related pathways, BPs, and related enriched genes. (F) Circle diagram shows the skin development related BPs and related enriched genes.
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Figure 2. Construction of the ceRNA regulatory network and enrichment analysis. (A, B) Regulatory network of synergistically expressed
mRNA-IncRNA. (C) The expression trend of DE-IncRNAs (RP11-315F22.1, RP11-25K19.1, and RP1-93H18.6) in the AAP group and severe AA group. (D-F)
GO analysis of synergistic mRNAs, including BP, CC, and MF, respectively. (G) KEGG pathway analysis of the synergistic mRNAs. (H) The ceRNA network
was constructed through Cytoscape. Pink and dark blue rhombuses represent upregulated and downregulated DE-IncRNAs, respectively. Red and
green dots represent upregulated and downregulated AA-related DEGs, respectively. Purple and brown dots represent upregulated and downregulated
severe AA-related DEGs, respectively. Orange triangle represents potentially regulated miRNAs. *P < 0.05; **P < 0.01; **P < 0.001; ***P < 0.0001.
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Figure 4. Machine learning in screening immune diagnostic biomarkers for severe AA and the diagnostic value evaluation. (A) Upset diagram shows
the intersection of immune genes and severe AA-related genes. (B) Random forest algorithm shows the top 15 important genes, which are ranked
based on the mean decrease accuracy. (C, D) Biomarker's screening in the LASSO regression model. The number of genes (n = 13) corresponding to the
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Figure 5. Construction of the AA model and section HE staining. (A) Brief schematic diagram shows the process of model establishment. (B) A model of
AA at week 3 was successfully established and the area of hair removal in the mice was consistent with the area of drug intervention (n = 4). (C) HE
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follicles in the model group was significantly less than that in the control group. *P < 0.05; **P < 0.01; **P < 0.001.

online supplementary material), so 68 severe AA-related immune
genes were finally identified. The enrichment analysis of these se-
vere AA-related IGs showed that they were significantly enriched
in the immune response, external side of plasma membrane, cy-
tokine receptor activity, and Th17 cell differentiation pathway
(supplementary Fig. S8A, B, see online supplementary material).
The PPI networks of severe AA-related IGs was constructed by Cy-
toscape (supplementary Fig. S8C), and hub genes were also ob-
tained by five algorithms; a total of seven hub severe AA-related
IGs (CD4, CD8A, PRF1, GZMB, IL2RG, CD86, ITGAX) were identified
(supplementary Fig. S8D). Correlation analysis showed that seven
hub severe AA-related IGs were significantly positively correlated
with gamma delta T cells and M1 macrophages, and significantly
negatively correlated with resting CD4 memory T cells and resting
mast cells (supplementary Fig. S8E).

Identification and diagnostic effectiveness
assessment of IMGs

LASSO regression, RF, and STEM algorithms were performed to
filter IMGs for severe AA diagnosis. The RF algorithm calculates
the importance of each gene and ranks them, and selects the top
15 genes as potential IMGs (Fig. 4B and supplementary Table S2,
see online supplementary material). The Lambda value is set to
0.0342824422648852 in the LASSO regression algorithm, and 13
potential IMGs were finally identified (Fig. 4C, D). The STEM algo-

rithm conducted trend analysis on severe AA-related IGs. All data
were filtered by mathematical model to remove data with insignif-
icant time-gradient expression difference. Finally, four significant
modules were screened, and we selected 40 genes in the most sig-
nificant changes modules as potential IMGs (Fig. 4E, F). The inter-
section of the potential IMGs from the RF, LASSO regression, and
STEM algorithms were visualized via the Venn diagram (Fig. 4G),
and five genes (LGRS, SHISA2, HOXC13, S100A3, and PRF1) were
identified for the final validation. Based on the dataset where the
IMGs are located and used to validate the diagnostic effectiveness
for severe AA by ROC analysis, AUC > 0.8 was used as a thresh-
old for diagnostic capability with excellent specificity and sensi-
tivity. Except for PRF1 (AUC = 0.751), LGRS (AUC = 0.885), SHISA2
(AUC = 0.899), HOXC13 (AUC = 0.900), and S100A3 (AUC = 0.882)
had the capability to diagnose severe AA with excellent specificity
and sensitivity (Fig. 4H).

Previous studies have reported that LGRS is an important
marker of hair follicle stem cells (HFSCs).?:2> LGR5* HFSCs can
produce new hair follicles and maintain all cell lines of hair folli-
cles for a long time.?® Therefore, the significantly low expression
of LGRS in severe AA patients has aroused our strong interest. As
previously described, the model of AA at week 3 was successfully
established, and the area of hair removal in the mice was consis-
tent with the area of drug intervention (Fig. SA, B). The HE section
staining of skin tissue showed that the number of hair follicles
in the model group was significantly less than that in the control
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Figure 6. The expression of LGRS and CK19 were verified in vivo. (A) LGRS immunohistochemistry staining of skin tissue sections in control group. (B)
LGRS immunohistochemistry staining of skin tissue sections in model group. (C) LGRS immunohistochemistry staining revealed that LGR5-positive
cells in the control group was significantly more than that in the model group. (D) CK19 immunohistochemistry staining of skin tissue sections in
control group. (E) CK19 immunohistochemistry staining of skin tissue sections in model group. (F) CK19 immunohistochemistry staining revealed that
CK19-positive cells in the control group was significantly more than that in the model group. *P < 0.05; **P < 0.01.

group (Fig. 5C-E). Notably, a large number of LGR5-positive cells
can be found in the outer root sheath of hair follicle in the control
group, but it is quite difficult to find positive cells in the model
group (Fig. 6A-C). CK19 was expressed in stem cells and plays an
important role in the differentiation of epidermal cells.?* Similarly,
the number of CK19-positive cells in the control group was much
higher than that in the model group (Fig. 6D-F).

Identification of potential genetic-targeted drugs

The DGIdb database was applied to identify the potential gene-
targeted therapy drugs that modulate the immune response,
which may become an effective strategy for the treatment of se-
vere AA. All hub genes were used for drug screening. As shown
in supplementary Fig. S9 (see online supplementary material),
various drugs such as ALEFACEPT, SIPLIZUMAB, TREGALIZUMAB,
and ABATACEPT can target and regulate IGs to become candidate
gene-targeted drugs for severe AA treatment.

Discussion

Hair loss, one of the most common disease complications,
severely damages the patient’s appearance and psychological

state,” and AA is the second most common non-scarring alope-
cia disease, with a prevalence rate of 0.1%-0.2% worldwide.?® If
AAP progresses to AT/AU, the difficulty and cost of treatment in-
creases significantly. Therefore, early identification and diagnosis
of severe AA is particularly important.

Previously, Zhang and Nie?’ explored potential biomarkers
for AA, including significantly upregulated CD28 and signifi-
cantly downregulated HOXC13, KRTAP1-3, and GPRC5D, and sug-
gested early identification and intervention for high-risk patients
through these potential biomarkers. However, there is currently
little research on constructing the internal regulatory network of
AA patients. Therefore, this study first constructed a ceRNA regu-
latory network for AA patients, where two IncRNAs (RP11-25K19.1
and RP1-93H18.6) were significantly overexpressed in severe AA,
which may be important regulatory nodes leading to the produc-
tion of severe AA. In addition, a study on the immune enrich-
ment status of AA patients was conducted and it was found that
there is a significant enrichment of immune cells in AA patients
(especially severe AA). If key IMGs can be screened and altered,
then this is expected to provide early recognition and intervention
for severe AA. By identifying IMGs in high-risk patients through
various machine-learning algorithms and conducting partial
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Figure 7. Schematic diagram showing the potential biological processes and early diagnosis of severe AA.

validation, it was found that LGR5 is a good biomarker for pre-
dicting severe AA. Overall, we explored the transcriptional fea-
tures of AA to reveal the intrinsic mechanisms, and identified
the most relevant module genes of severe AA via WGCNA. We
first performed a comprehensive analysis of the potential mech-
anisms of severe AA, including functional enrichment analysis,
PPI network construction, and ceRNA network construction. In-
terestingly, the upregulated DEGs of AA were mainly enriched in
immune response, adaptive immune response, and positive regu-
lation of T cell proliferation, while the downregulated DEGs were
mainly enriched in pathways related to hair cycle, keratinization,
and epithelial cell differentiation (Fig. 1). Under normal physio-
logical conditions, hair follicle tissue cells produce cytokines that
inhibit the expression of major histocompatibility complex (MHC)
to enjoy immune privilege.?® We found that severe AA-related up-
regulated DEGs were significantly enriched in the MF of MHC class
I protein binding and MHC class II protein complex binding, which
is one of the important reasons for the loss of hair follicle immune
privilege.

Hub genes are regulatory genes with high node degree in the
PPI network, which is of great significance in the progress of the
disease. Severe AA-related upregulated hub genes were closely re-
lated to immune response. Numerous studies have shown that
inflammatory tissue will chemotactically recruit T lymphocytes,
leading to the formation of spontaneous AA.2°=! CD8A is the sur-
face glycoprotein of most cytotoxic T lymphocytes and mediates
mutual recognition between cells in the immune system.>? CD2 is
the surface antigen of all peripheral blood T cells and has the ef-
fect of immune recognition.*®* GZMA and PRF1 are common com-

ponents necessary for cytotoxic T lymphocytes and natural killer
cells to lysis target cells>**> ITGAL is involved in inter-leukocyte
adhesion and lymphocyte co-stimulation signals® The expres-
sion of GZMB increases in a variety of human autoimmune skin
diseases, and many studies have found that it will lead to the
destruction of the extracellular matrix, with numerous immune
cells entering the hair follicles and leading to the collapse of hair
follicle immune privilege *” Severe AA-related downregulated hub
genes mainly belong to a member of the keratin gene family or
keratin-associated protein family, and are closely related to hair
follicle regeneration and skin development, and their significant
downregulation may be the core link leading to hair loss in severe
AA patients ®

The enrichment analysis results strongly suggest a crucial role
of immune response in the pathogenesis of AA, especially severe
AA. Therefore, we explored the immune cells enrichment sta-
tus of AA patients. Compared with the AAP group, resting CD4
memory T cells and neutrophils were significantly downregu-
lated in severe AA patients, while gamma delta T cells and rest-
ing mast cells were upregulated in AU and AT patients, respec-
tively (Fig. 3B). McElwee et al*® found that non-cultured CD4* T
cells alone were sufficient to induce AA. Hashimoto et al.*° further
showed that effector memory CD4" T cells were able to stimulate
native and CD8"cells through antigen-presenting cells in axillary
lymph nodes and direct T cells to attack hair follicles, leading to
AA.In addition, although a significant decrease in neutrophils was
observed in the severe AA group in this study, previous studies
have shown that the ratio of neutrophils to lymphocytes was not a
good indicator for evaluating the severity of AA.4"*? Gamma delta
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T cells in human skin play the function of outposts of physiolog-
ical stress, and their excessive activity will promote the overex-
pression of various cytokines such as CD1d, CXCL12, and MICA,
inducing the collapse of the immune privilege of hair follicles.*
Yuan et al** found an infiltration of gamma delta T cells and
M1 macrophages in the AA tissues, which is consistent with the
analysis in this study. Mast cells are important immunoregula-
tory cells involved in T cell-dependent immunity, immune priv-
ilege, and hair growth. Bertolini et al.*> found that hair follicles
of AA patients showed more infiltration of mast cells and phys-
ical MC/CD8™" T cells than controls, which may be an important
mechanism of severe AA.

Attack of immune response of hair follicles is the core factor
of AA onset and progression. Therefore, if these immune genes
can be monitored early, it may be possible to identify high-risk
patients who may progress to severe AA in time. In this study,
we screened the IMGs through LASSO regression, RF, and STEM
machine-learning algorithms, and the diagnostic effectiveness of
the pivotal IMGs was validated by ROC. Finally, four IMGs, in-
cluding LGR5, SHISA2, HOXC13, and S100A3, with good diagnos-
tic efficiency were obtained. As shown in supplementary Fig. S7A,
the expression of LGR5, SHISA2, HOXC13, and S100A3 in the se-
vere AA group was significantly lower than that in the AAP group
(P < 0.0001), which also confirmed the effectiveness of HOXC13
as one of the IMGs. Previous studies have found that HOXC13 is
particularly important for the differentiation of hair follicles, and
HOXC13-targeted mice grow completely hairless with severe nail
dystrophy.*®#” Guan et al.*® observed the delay of hair follicles en-
tering the growth period, the reduction of hair elongation, and the
reduction of the number of hair follicles in subcutaneous tissue
by blocking the expression of S100A3, and the downregulation of
hair growth induction-related genes in vivo. LGR5 is a stem marker
of HFSCs, and HFSCs maintain the growth, shedding, and replace-
ment of hair*?:°° Therefore, the low expression of LGRS in severe
AA patients aroused our strong interest. We first established an
animal model of AA, and found that the number of hair follicles
in the animal model was significantly reduced and hair follicles
were atrophied. At the same time, the number of LGR5- and CK19-
positive stem cells also decreased significantly, and it was quite
difficult to observe positive cells. The above results indicate that
LGRS is a good biomarker for predicting severe AA.

Subsequently, we used the DGIdb database to find that ALE-
FACEPT, SIPLIZUMAB, TREGALIZUMAB, and ABATACEPT are good
gene-targeted drugs to modulate the hub genes in severe AA-
related PPI network, including ITGAL, GZMA, GZMAB, CD2,
PRF1, IL2RG, CD4, and CD86, which may become effective tar-
get drugs for severe AA. However, further clinical studies are
needed to verify the effectiveness and safety of these drugs for
severe AA.

Conclusions

In sum, our findings not only help to improve our understand-
ing of the pathogenesis and underlying biological processes in pa-
tients with severe AA, but also use various machine-learning al-
gorithms to identify potential IMGs, which is helpful for the early
diagnosis of severe AA (Fig. 7).

Supplementary data
Supplementary data is available at PCMEDI online.
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