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Simple Summary: This work shows that the predictions of lethal dependencies (LEDs) between
genes can be dramatically improved by incorporating the “HUb effect in Genetic Essentiality” (HUGE)
of gene alterations. In three genome-wide loss-of-function screens—Project Score, CERES score and
DEMETER score—LEDs are identified with 75 times larger statistical power than using state-of-the-art
methods. In AML, we identified LEDs not recalled by previous pipelines, including FLT3-mutant
genotypes sensitive to FLT3 inhibitors. Interestingly, in-vitro validations confirm lethal de-pendencies
of either NRAS or PTPN11 depending on the NRAS mutational status.

Abstract: Recent functional genomic screens—such as CRISPR-Cas9 or RNAi screening—have
fostered a new wave of targeted treatments based on the concept of synthetic lethality. These
approaches identified LEthal Dependencies (LEDs) by estimating the effect of genetic events on cell
viability. The multiple-hypothesis problem is related to a large number of gene knockouts limiting
the statistical power of these studies. Here, we show that predictions of LEDs from functional screens
can be dramatically improved by incorporating the “HUb effect in Genetic Essentiality” (HUGE)
of gene alterations. We analyze three recent genome-wide loss-of-function screens—Project Score,
CERES score and DEMETER score—identifying LEDs with 75 times larger statistical power than
using state-of-the-art methods. Using acute myeloid leukemia, breast cancer, lung adenocarcinoma
and colon adenocarcinoma as disease models, we validate that our predictions are enriched in a
recent harmonized knowledge base of clinical interpretations of somatic genomic variants in cancer
(AUROC > 0.87). Our approach is effective even in tumors with large genetic heterogeneity such as
acute myeloid leukemia, where we identified LEDs not recalled by previous pipelines, including
FLT3-mutant genotypes sensitive to FLT3 inhibitors. Interestingly, in-vitro validations confirm lethal
dependencies of either NRAS or PTPN11 depending on the NRAS mutational status. HUGE will
hopefully help discover novel genetic dependencies amenable for precision-targeted therapies in
cancer. All the graphs showing lethal dependencies for the 19 tumor types analyzed can be visualized
in an interactive tool.

Keywords: CRISPR-Cas9 screening; precision medicine; synthetic lethality

1. Introduction

The traditional concept of synthetic lethality consists of the concurrent loss of func-
tionality of two genes resulting in cellular death. A relevant example is the effectiveness
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of PARP inhibitors in tumors with inactivated BRCA1 and BRCA2 [1]. In recent years, the
advances in functional genomics triggered by large-scale loss-of-function screening—such
as CRISPR-Cas9 or RNA interference (RNAi) screens—have boosted the discovery of hun-
dreds of novel targets and context-specific lethal dependencies (LEDs) [2–7], defined as
any association between two genes that results in differential viability depending on their
genetic context (Figure S1).

Several studies have carried out large-scale functional genomic screens to identify
genome-wide targets and LEDs [2–5]. The Project Score [4], the Achilles Project [5,6] and the
Project DRIVE [7] are three studies that performed genome-wide gene-knockouts in cancer
cells aiming at establishing novel targets and LEDs. The refinement of computational and
technical tools has improved the potential of loss-of-function screening to identify cancer
vulnerabilities [3,8,9]. However, the multiple testing problem, related to a large number of
gene knockouts, limits the statistical power of these studies and, therefore, their potential
to find new targets.

Here, we show that previous efforts to predict LEDs from functional screening can
be significantly improved by taking into account the “HUb effect” in Genetic Essentiality
(HUGE) of some gene alterations: a few specific sets of gene alterations are statistically
associated with large changes in the essentiality of multiple genes. These “hub” aberrations
lead to more statistically reliable LEDs than other alterations that do not participate in
such hubs. We incorporate the HUGE effect in the statistical analysis of three recent loss-
of-function experiments of both The Project Score and The Achilles Project (two datasets)
showing that the number of LEDs discovered for a given FDR considerably improves for
both CRISPR-Cas9 and RNAi screens.

Using acute myeloid leukemia (AML), breast cancer (BRCA), lung adenocarcinoma
(LUAD) and colon adenocarcinoma (COAD) as disease models, we validate that the pre-
dictions are enriched in associations used in the clinic. Finally, we validated in vitro an
example of a therapy guideline based on LED selection in AML. The HUGE analysis will
help discover novel tumor vulnerabilities in specific genetic contexts, providing valu-
able candidates—targets and genetic variants as biomarkers—for further personalized
treatments in hematological diseases or other cancer disorders.

2. Materials and Methods
2.1. Data Integration

Data of loss-of-function screens libraries (17,980 knockout genes in 412 cancer cell
lines) of the project Achilles [10] were integrated with gene expression and their corre-
sponding gene alteration profiles (gene variants in ~1600 genes) obtained from CCLE and
Shao et al. [6]. We gathered gene expression of cells using RNA-seq data to confirm that
the genes that were essential for a cohort of cells were expressed before the RNAi library
experiment was performed [11]. Gene variant panels were filtered out using the parameters
of CCLE’s authors to avoid common polymorphisms, low allelic fractions, putative neutral
variants, and substitutions located outside of the coding sequence [12].

We used the DEMETER score [5,8] as a measure of gene essentiality of the RNAi
libraries of the project Achilles [10]. DEMETER quantizes the competitive proliferation
of the cell lines controlling the effect of off-target hybridizations of siRNAs by solving
a complex optimization problem. The more negative the DEMETER score is, the more
essential the gene is for a cell line. We imputed missing elements of DEMETER using
the nearest neighbor averaging algorithm [13]. Moreover, we collected gene expression
patterns from RNA-seq data [11] to confirm those essential genes are expressed when
they are essential. Based on DEMETER data, we first identified genes that were essential
for a selected tumor subtype. Essential genes were required to meet several criteria:
(i) they must be essential for at least 20% of samples of the selected cancer subtype, (ii) they
must be specific to the cancer type under study, i.e., they must be non-essential for other
cancer types, and (iii) they must be expressed before RNAi experiment (>1TPM at least in
75% samples).
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2.2. Statistical Model

We developed a statistical algorithm to identify genes whose essentiality is highly
associated with the genetic alteration of other genes. Dealing with this statistical issue
implies solving a large multiple hypotheses problem (more than one million hypotheses). In
similar scenarios, traditional corrections—such as Benjamini-Hochberg (BH), Bonferroni, or
Holm—showed very few or no gene-biomarker LEDs for a given FDR [14]. To overcome this
problem, we developed a covariate-based statistical approach—similar to the Independent
Hypothesis Weighting procedure [14] (Figure S2).

Let e denote the number of RNAi target genes and n denote the number of screened
samples. Let D be an e× n matrix of essentiality whose entries dij represent the DEMETER
score for the RNAi target i in sample j. Let m be a m× n dichotomized matrix whose entry
mij denotes whether sample j is mutant or not according to the previous criteria:

mij =

{
1, i f mutant(MUT)

0, i f wild− type (WT)
, (1)

Let s be a subset of n’ cell lines that yield an essentiality vector ds =
(
des1 , . . . , desn′

)
for the eth RNAi target. Let ms = (ms1 . . . , msn) be the expression vector of a putative gene
biomarker. The null hypotheses are defined as:

Hg
0 : E(ds|ms ∈ MUT) = E(ds|ms ∈WT) (2)

This null hypothesis is, therefore: “the expected essentiality of a gene knock-down is
identical in mutant and wild-type cell lines”. To test this hypothesis, we used a moderated
t-test implemented in limma [15]. We applied this test for each RNAi target and all the
gene variants to obtain the corresponding p-values (Figure S2). Dealing with these p-values
implies correcting for multiple hypotheses.

In our case, we divided the p-values corresponding to all the tests into n groups, where
n is the number of altered genes. For each of these groups, we computed the local false
discovery rate (local FDR) [16]. The local FDR estimates, for each test, the probability of the
null hypothesis to be true, conditioned on the observed p-values. The formula of the local
FDR is the following:

P(H0|z) = localFDR(z) =
π0 f0(z)

f (z)
, (3)

where z is the observed p-values, π0 is the proportion of true null hypotheses—estimated
from the data, f0(z) the empirical null distribution—usually a uniform (0, 1) distribution
for well-designed tests—and f (z) the mixture of the densities of the null and alternative
hypotheses, which is also estimated from the data.

As stated by B. Efron and R. Tibshirani [16], “the advantage of the local FDR is its
specificity: it provides a measure of belief in gene i’s ‘significance’ that depends on its
p-value, not on its inclusion in a larger set of possible values” as it occurs, for exam-
ple, with q-values or the standard FDR. The local FDR and π0 were estimated using the
Bioconductor’s R Package q-value [17].

2.3. Comparison with the Project Score

To compare our results with Project Score’s ones, we selected the same 12 primary
cancer tissues shared in both datasets. The comparison followed two steps: (1) using CCLE
and DEMETER scores with the Project Score’s algorithm, (2) running our approach adapted
to Project Score conditions. In the first step, following the code published in their work, an
ANOVA test was performed on each tissue to calculate all possible dependent partners.
The Storey–Tibshirani correction was then used, using the criteria mentioned in Project
Score methods [4]. This enabled us to correct the ANOVA p-values and obtain significant
associations. Secondly, the comparison between both methodologies was only possible
if the same adjusted p-value is calculated for both datasets. Therefore, we estimated the
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FDR with our data as it is the q-value selected by the Project Score. The FDR correction was
obtained using the Bioconductor R package IHW [14], which enables the consideration of
covariates-based multiple hypothesis correction, as well as estimating the FDR. Discoveries
from both methodologies in DEMETER and CCLE datasets were plotted in different volcano
plots, and the number of significant LEDs was counted (FDR < 20%).

2.4. Integration of the VICC Knowledgebase of Clinical Interpretations of Genomic Variants

We downloaded 19,551 clinical interpretations of somatic genomic variants in cancer
from the Variant Interpretation for Cancer Consortium (VICC) [18,19] (version December
2020). We filtered out incomplete (e.g., entrees without annotated drug or biomarker)
and redundant associations. We then selected all associations that are annotated with
acute myeloid leukemia (AML) and synonyms. From all drugs, we selected those that
have an annotated protein target. To do so, we retrieved the data publicly available in the
ChEMBL [20] and DrugBank [21] online repositories. In total, 216 out of 19,551 associations
matched these criteria. We consider a true positive if either HUGE or ST identifies an LED
whose mutation biomarker coincides with a VICC’s association and the protein target is
included in the same association, or at least in a gene of the same pathway in the STRING
database (v.11, STRING score threshold = 400; default value on STRING for “medium”
confidence) [22].

We calculated ROC and PR curves considering the two top evidence levels included in
VICC [18,19], namely, (i) evidence from professional guidelines or FDA-approved therapies;
and (ii) evidence from clinical trials or other well-powered studies in clinical populations,
with expert consensus.

2.5. Application to Acute Myeloid Leukemia (AML) as a Disease Model

We applied the pipeline to the AML cohort of cell lines (n = 15). In the first step,
essential genes were required to be: (i) essential for at least 25% AML samples, (ii) specific
for AML cells, and (iii) expressed before the RNAi experiment. The algorithm outputs a
ranking of significant gene pairs (LEDs) that consist of a couple of genes in which the first
one is essential depending on the genetic alteration of the other.

For the final ranking for AML, we selected those LEDs that showed a p-value < 0.05
and local FDR ≤ 0.6, |D DEMETER| > 2 (default value suggested by DEMETER’s authors).
Additionally, we interrogated which of these LEDs had direct relationships (co-expressed,
annotated in the same pathway database, or contained in a common experiment) in the
STRING database [22] to ensure there is an established biological relationship between the
essential gene and the subrogate biomarker. This biological double-check is not necessary
and can be omitted when the researcher looks for novel relationships.

In vitro validation was performed using siRNAs against NRAS and PTPN11 in four
different AML cell lines, two with NRAS-genetic variants (HL-60 and OCI-AML3) and two
NRAS-wt cell lines (MV4-11 and HEL). Finally, the model was compared with
3 standard statistical methods (namely Benjamini-Hochberg (BH), Bonferroni and Holm)
known to have suboptimal sensitivity (recall of true positives) in specific scenarios in
19 additional tumor subtypes to define the potential for controlling the FDR [14]. See File S1
for more details.

3. Results
3.1. Gene Variants Associated with Multiple Essential Genes Increase the Power of
Loss-of-Function Screens

One of the main statistical challenges to finding LEDs by integrating genome-wide
functional screens with -omics datasets is the multiple hypothesis testing problem. Cor-
rection for multiple hypotheses reduces the statistical significance of results (meaning
a decreased detection rate and an increased false-positive rate). The Project Score pre-
sented a large-scale genome-wide CRISPR-Cas9 screening analysis targeting 18,009 genes in
30 different cancer types, across 14 different tissues [4,23]. They presented a methodology
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to detect LEDs based on finding differences in genetic essentiality in cell lines associated
with the presence of specific gene variants (ANOVA test [24] with the Storey–Tibshirani
p-value correction). Following this procedure, the Project Score was able to identify genetic
LEDs in 7 out of 14 individual tissues analyzed [4,23].

Analyzing Project Score’s data, we observed that for each tumor type, a few specific
genetic alterations were significantly associated with the genetic essentiality of a large
set of genes. This handful of genetic aberrations shows a hub effect, in which a gene
variant is associated with large changes in the essentiality of multiple genes. We termed
this behavior the “HUb effect in Genetic Essentiality” (HUGE) (Figure 1A; other tumor
types can be visualized in https://fcarazo.shinyapps.io/visnetShiny/ (accessed on 24 June
2022)). From the point of view of statistics, the HUGE effect is defined as an improvement
of the statistical power by using gene variants as co-variates in a multiple hypothesis
problem. Other biological covariates such as gene expression or copy number alterations
have also shown to be covariates that increase the statistical power [14]. Using gene
variants as statistical covariates provides a larger number of positives for a given FDR,
which consequently means an increased specificity and sensitivity, or type I and type II
errors, as demonstrated in File S1, Section S6. Interestingly, the analysis shows that the
HUGE effect is present in all tumors analyzed, significantly improving the predictive power
of LEDs.

Figure 1. The hub effect in genetic essentiality in Acute Myeloid Leukemia. In each cell, a small
set of gene aberrations is associated with large changes in genetic essentiality. (A) A bipartite graph
in which red squares represent gene variants (e.g., mutations), blue triangles represent significant
changes in cell viability related to knocked-down genes. Both nodes are linked by a line if the
variations in the essentiality have a statistically significant association with the presence of the gene

https://fcarazo.shinyapps.io/visnetShiny/
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variant. (B) Implications in p-value histograms of the HUGE effect. Hub associations show a high peak
close to zero p-values indicating that the null hypothesis is rejected in more cases and that these genetic
variants are associated with a higher response to the inhibition of more gene products. Segregating
the statistical analysis according to the alteration provides more statistical power. Essential genes
and other tumor types can be visualized in https://fcarazo.shinyapps.io/visnetShiny/ (accessed on
24 June 2022). Abbreviations. HUGE: The hub effect in genetic essentiality.

The presence of the HUGE effect in a cancer type can be also understood as a predictive
model in which each mutation has a different capability to define the genetic essentiality
of multiple genes. To show it visually, the histogram of p-values of a gene alteration
represents how gene alterations are associated with the genetic essentiality of multiple
genes. Histograms of the p-values for alterations that conform to a “hub” show a peak near
the origin, which means that cells with these alterations are sensitive to the depletion of a
large number of genes (Figure 1B). Conversely, if the hubs of alterations are not considered,
the relationships of mutations and viability show a flat histogram of p-values. This does
not necessarily mean that such relationships are not biologically relevant, but that it is
difficult to distinguish them from random associations and will be considered as artifacts
after multiple testing corrections.

The HUGE effect helps palliate the multiple hypothesis correction problem. Using
the mutation under study as a covariate, multiple hypotheses can be differently treated
considering the overall association of gene alteration in the complete set of essential genes
(Figures S2 and S3). Using this concept, we developed a statistical model that integrates
HUGE information to find LEDs (Figure S2).

Previous efforts to correct multiple testing in this problem consider a single set of tests
(all gene aberrations and CRISPR-Cas9 knockouts) and apply a correction that controls the
FDR, such as Storey–Tibshirani (ST), as performed in the Project Score. Interestingly, in
all tumors, our approach increases the statistical power of the analysis. From a statistical
point of view, a flat histogram is compatible with the null hypothesis for all the tests and,
therefore, multiple hypothesis correction drives to none or few discoveries (Figure S4).
Every single tumor shows p-value histograms related to specific gene variants that have a
higher zero-peak than the histogram associated with all tests in such tumor (Figures S5–S23).
To test this approach, we compare the results using HUGE with previous LED identification
strategies in three genome-wide functional genomic projects: The Project Score [4], the
DEMETER score and the CERES score (DEMETER and CERES are included in the Achilles
Project [5,6]). First, to test the potential of HUGE to predict LEDs with CRISPR-Cas9
screens, we analyze the Project Score dataset [4]. Project Score integrates 215 different
genetic events across 14 tumor types, including SNVs and CNVs. In the same reference, the
authors found at least one LED in 7 out of the 14 tumor types analyzed. A total of 40 out of
215 events were detected to be significant biomarkers of essentiality (FDR ≤ 20%), which
correspond to 77 unique LEDs (a single genetic event can be associated with several essential
genes). Analyzing Project Score’s data using the HUGE-based methodology, we identify
1438 unique associations with the same FDR (18 times larger than Project Score, Figure 2A),
corresponding to 80 single genetic events. Moreover, using HUGE we detect at least one
LED in all the 14 tumors analyzed, finding LEDs in 10 tumors that would have been missed
using the original pipeline, affecting around 10–20 genes for each disease type.

We also tested HUGE in the DEMETER score of the Achilles Project to predict LEDs, in
this case using RNAi screening. The DEMETER dataset [5,10] is a large-scale genome-wide
experiment of RNA interference libraries (17,085 knockdown genes) in 19 tumor types
(Table S5). We integrate the DEMETER data with the corresponding cell line gene alteration
profiles (genetic variants in ~1600 genes) obtained from the Cancer Cell Line Encyclopedia
(CCLE) [12] and Shao et al. [6]. This integration turns out to have 27 Million hypotheses,
which will hardly impair p-values after multiple hypothesis correction (Figure S2). Then,
we replicate the Project Score’s pipeline with the DEMETER dataset and compare it with
the HUGE-based approach to find LEDs, also including in the comparison other two
standard p-value corrections used to control the FDR, namely Holm and Bonferroni. Using

https://fcarazo.shinyapps.io/visnetShiny/
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the standard ST procedure, we find 126 LEDs (FDR ≤ 20%). There are LEDs for 7 out
of 19 tumors. The same dataset and FDR threshold using the HUGE-based approach
provides 9535 LEDs (75.7 times larger than using ST). All cancer types (19 out of 19) showed
significant LEDs in the HUGE-based analysis (Figure 2B). HUGE identifies 1,675 LEDs
in six tumor types in which other methods recall no LEDs (FDR ≤ 20%); and 9409 LEDs
in 19 tumor types that would have been missed using previous procedures (FDR ≤ 20%;
Figure 2C). These results show that the HUGE effect is present with different intensities in
all tumor types analyzed (Figures S5–S23).

Figure 2. HUGE-based analysis with Project Score and Achilles Project datasets. (A) Volcano plots
of lethal dependencies, LEDs, identified in the Project Score dataset. From left to right: (i) result of
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Project Score, (ii) results of analyzing Project Score dataset with the HUGE-based methodology.
Each dot represents a significant LED (FDR < 20%). The X-axis represents the difference in gene
essentiality when the event (gene variants) is present. The Y-axis represents the FDR values (−log10)
for that change. (B) Equivalent volcano plots using Achilles Project. From left to right: (i) results of
Achilles Project analyzed with the standard procedure, (ii) results of analyzing Achilles Project dataset
with HUGE-based methodology. (C) The number of LEDs found (FDR ≤ 20%) in 19 tumors of the
DEMETER score (RNAi) and 22 tumors of the CERES score (CRISPR-Cas9) using standard statistical
pipelines (Storey–Tibshirani, Bonferroni, and Holm) and the HUGE-based algorithm. Bonferroni and
Holm return the same number of hypotheses in all cases. Abbreviations. LED: lethal dependency;
ALL: acute lymphoblastic leukemia; AML: acute myeloid leukemia; BRCA: breast ductal carcinoma;
CNSA-IV: central nervous system astrocytoma grade IV; COAD: colon adenocarcinoma; CUADT:
upper aero-digestive tract squamous cell carcinoma; DLBCL: diffuse large B-cell lymphoma; ESCA:
esophagus squamous cell carcinoma; KIRC: kidney renal clear cell carcinoma; LCC: lung large cell
carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; MM: multiple
myeloma; NSCLC: non-small cell lung carcinoma; OS: osteosarcoma; OVAD: ovary adenocarcinoma;
PDAC: pancreas ductal carcinoma; SCLC: small cell lung carcinoma; SKCM: skin carcinoma; UCEC:
endometrium adenocarcinoma.

As a further test of the increased predictive power of HUGE, we carry out a similar
analysis using the CERES score, a CRISPR-Cas9 experiment of 22 tumors also included in
the Achilles Project. In this case, the number of significant pairs is enriched 14 times over
the standard approaches (FDR ≤ 20%; Figure S24).

3.2. LEDs Predicted by HUGE Have Better Validation Rates Than Standard Approaches

Validating a ranking of LEDs is not a simple task: it is desirable to have a gold
standard of a disease-specific list of validated target-biomarker associations. We select
as our gold standard The Variant Interpretation for Cancer Consortium (VICC) Meta-
Knowledgebase [18,19]. This database integrates different datasets of clinical associations
and includes the level of evidence for each entry: spanning from professional FDA guide-
lines to preclinical findings.

We test the enrichment in associations included in VICC in four tumor types, namely
acute myeloid leukemia (AML), breast cancer (BRCA), lung adenocarcinoma (LUAD) and
colon adenocarcinoma (COAD) for both HUGE and standard statistical methods. The VICC
knowledgebase integrates (in September 2021) 19,551 clinical interpretations of somatic
genomic variants in cancer of both resistant and sensitive biomarkers. We delete duplicated
and incomplete associations, focused on those related to confirmed mutations and manually
selected associations that match each tumor type (including synonyms).

We first run the two procedures (HUGE and Storey-Tibshirani; ST) with AML cell lines
(Table S5) to find LEDs and compare how many LEDs predicted by HUGE and by ST are
included in the VICC knowledgebase. For instance, if HUGE or the ST procedure predicts
FLT3 mutant AML genotypes to be sensitive to FLT3 inhibition, it will be considered a true
positive LED, as FLT3 is a well-known target of AML and mutations in FLT3, the fms-like
receptor-type tyrosine-protein kinase [25,26], are known to be sensitive biomarkers of the
effectiveness of most FLT3-inhibitors [27,28].

In total, 216 out of 19,551 associations matched these filters. Getting the top
500 LEDs according to the ranking using the HUGE algorithm with AML, we find 17 LEDs
that match the VICC knowledgebase of known clinic relationships (Table S1; Fisher
p-value < 1 × 10−51). An equivalent analysis using the standard pipeline (ANOVA test [24]
with the Storey–Tibshirani p-value correction) shows that out of the top 500 LEDs, only
one is included in the VICC knowledgebase (Table S1; Fisher p-value = 6.551 × 10−3). This
means that HUGE analysis identifies 16 true positive dependencies not recovered by ST
(Fisher p-value = 6.41 × 10−5). The global value of AUROC (0.53) is not too far from the
baseline of 0.5 (Figure 3A), perhaps because of the scarcity of true positives in our gold
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standard. We perform the same analysis with LUAD, BRCA and COAD getting AUCROC
values of 0.62 (vs. 0.5), 0.87 (vs. 0.64) and 0.72 (vs. 0.54) for HUGE and ST, respectively. All
cases show better values for HUGE than for ST (Figures 3B–D and S25).

Figure 3. ROC and precision-recall curves of four tumor types. (A) Acute myeloid leukemia,
(B) lung adenocarcinoma, (C) breast cancer and (D) colon adenocarcinoma. True positives were
extracted from the knowledge base of the Variant Interpretation for Cancer Consortium [18,19]. For
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each tumor type, we selected only those associations that belong to the three highest levels of
confidence (Level A: Evidence from professional guidelines or FDA-approved therapies relating to a
biomarker and disease; Level B: Evidence from clinical trials or other well-powered studies in clinical
populations, with expert consensus; and Level C: Evidence for therapeutic predictive markers from
case studies, or other biomarkers from several small studies, or evidence for biomarker therapeutic
predictions for established drugs for different indications).

3.3. Applying HUGE Methodology to Acute Myeloid Leukemia Cell-Lines Discovers Potential
Therapy Biomarkers

AML is a hematologic neoplasm characterized by a remarkable phenotypic and ge-
nomic heterogeneity [29], a challenging disease model to test the applicability and impact
of HUGE. We run the complete HUGE pipeline with AML and validate in vitro two of the
predicted LEDs.

As a preliminary step, we identify the potential genes that are essential for AML cell
survival. The Achilles Project yielded 443 essential genes that are essential and specific for
AML cells compared to other tumors (Table S2). Some of these genes belong to pathways
known to be deregulated in AML (e.g., MYB [30] or CEBPA [31]). Interestingly, 160 of these
443 genes have previously been identified as potential cancer drivers in hematological
malignancies according to the Candidate Cancer Gene Database (p-value = 7.76 × 10−5,
Fisher exact test) [32].

We then run the HUGE algorithm to identify genomic alterations that could be defined
as LED partners of those 443 essential genes. In this pipeline, we require predicted pairs
to be biologically related to each other in the STRING database (see Online Methods).
LED associations can be broken down into three groups regarding their dependency type:
positive lethal dependency (pLED), when a gene variant marks sensitivity to the inhibition
of another gene; negative lethal dependency (nLED), when a gene variant marks resistance
to the inhibition of another gene; or dual lethal dependency (dLED), when the same gene
variant confers, concurrently, sensitivity to the inhibition of one gene and resistance to the
inhibition of another gene (Figure S1). In total, we predict 24 LEDs, (12 pLEDs and 12 nLEDs,
including two dLEDs; p-value < 0.05, local FDR ≤ 0.6 and |∆Essentiality| > 2; Figure 4A,
Table 1, Figure S26, and Table S3). Using the standard multiple hypotheses correction only
one dependency turns out to be statistically significant. We provide the identified LEDs for
the 19 tumors included in the Achilles Project following a similar pipeline (Tables S6–S24).

NRAS mutation ranks first in the analysis. Lethally dependent partners associated
with NRAS genetic sequence variants show a p-value histogram that peaks at the origin
(Figure 4A,B), meaning that NRAS mutations are associated with more tumor vulnerabilities
than other alterations. Interestingly, NRAS alteration forms a Dual Lethal Dependency with
PTPN11 (Table 1, Figure 4C): it confers tumor sensitivity to NRAS inhibition and resistance
to PTPN11 inhibition.

To validate our prediction, we first check that both NRAS and PTPN11 siRNAs effi-
ciently decreased the NRAS and PTPN11 expression, respectively, in four AML cell lines
(Figure S27). Then, we confirm the computational hypothesis: the downregulation of NRAS
significantly decreases cell proliferation only in the NRAS-altered AML cell lines, and the
inhibition of PTPN11 expression produces an equivalent effect, specifically in the NRAS-wt
AML cell lines (Figure 4D), validating the predicted dLED. Remarkably, the validated
PTPN11-NRAS-wt pair was not detected using standard methodologies.
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Figure 4. Gene variants-based treatment guidelines in acute myeloid leukemia. (A) Volcano-plot
of lethal dependencies, LEDs, related to NRAS genetic mutations (left; MUT) and wildtype (right;
WT) phenotypes. Increment of Essentiality and −log10 (p-value) are shown on X-axis and Y-axis,
respectively. (B) Histogram of p-values for 6 genetic sequence variants in acute myeloid leukemia.
NRAS-alteration is enriched in close to zero p-values, which is the basic concept of HUGE-based
statistical approach. All genetic variants histograms of p-values can be found in the Supplementary
Material. (C) Summary of the computational predictions validated: NRAS-altered cells were predicted
to be sensitive to siNRAS and resistant to siPTPN11. Conversely, NRAS-wt cells were predicted to be
sensitive to siPTPN11 and resistant to siNRAS. (D) Tumor proliferation of the four AML cell lines
after inhibiting NRAS (siNRAS) and PTPN11 (siPTPN11) with specific siRNAs. Blue: NRAS-altered
AML cell lines (HL-60 and OCI-AML3); Orange: NRAS-wild-type AML cell lines (MV4-11 and HEL).

Table 1. Ranking of lethal dependencies in AML using the covariate-based statistical approach.
The ranking is divided into three groups regarding the typology of the lethal dependency relationship:
Positive Lethal Dependency (PLD), Negative Lethal Dependency (NLD) or Dual Lethal Dependency
(DLD) (Figure S1). The Increment of Essentiality column represents the average variation in the
DEMETER score between altered and wild-type cells, and its sign is related to the lethal dependency
relationship. Lethal dependencies that share the same essential gene and the same Increment of
Essentiality sign were omitted in this table (see complete data in Supplementary Table S3).

Gene Variant
Biomarker

Essential
Gene

Increment of
Essentiality t-Score p-Value Local FDR

Positive Lethal Dependencies
TGS1 SNRPF −7.87 −4.05 6.69 × 10−4 3.36 × 10−1

CLTCL1 UBR5 −6.66 −3.59 1.99 × 10−3 2.20 × 10−1

FLT3 FLT3 −6.36 −4.53 2.28 × 10−4 2.00 × 10−1

CDK14 CDK2 −3.95 −2.75 1.28 × 10−2 4.30 × 10−1

AURKC ACTL6A −3.26 −3.89 9.55 × 10−4 4.99 × 10−1
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Table 1. Cont.

Gene Variant
Biomarker

Essential
Gene

Increment of
Essentiality t-Score p-Value Local FDR

Negative Lethal Dependencies
NPM1 EEF2 3.81 3.34 3.39 × 10−3 5.96 × 10−1

PIK3C2G CDK6 3.35 2.95 8.20 × 10−3 3.51 × 10−1

NCOA3 EP300 3.04 2.75 1.25 × 10−2 4.94 × 10−1

CDK14 CCND2 2.97 2.22 3.88 × 10−2 4.99 × 10−1

EPHB6 ZNF266 2.53 2.77 1.22 × 10−2 3.42 × 10−1

ZFYVE9 TOM1L2 2.14 2.35 2.96 × 10−2 5.12 × 10−1

Dual Lethal Dependencies
NRAS NRAS −6.83 −8.71 4.67 × 10−8 1.38 × 10−4

NRAS PTPN11 4.17 2.2 4.05 × 10−2 5.89 × 10−1

EP300 PLK1 −8.11 −4.04 7.01 × 10−4 2.17 × 10−1

EP300 KLF2 3.69 4.08 6.38 × 10−4 2.12 × 10−1

4. Discussion

The advent of large-scale functional genomic screens has allowed the identification of
hundreds of novel gene targets and the prediction of genome-wide LEDs [4,33]. This strat-
egy has multiplied treatment strategies, as using LEDs, the drug targets can be decoupled
from their corresponding predictive biomarkers. The main statistical limit to finding LEDs
is the large number of hypotheses that result from integrating gene essentiality and genetic
functional events. In this work, we present HUGE, a novel analysis of CRISPR-Cas9 and
RNAi large-scale screens that significantly improves the predictive power to find LEDs from
loss-of-function screens in human tumors. It relies on the fact that some gene alterations
are statistically related to the essentiality of large sets of genes. Using this characteristic as
a prior covariate we significantly improve the predictive power of LEDs.

Notably, the presence of the HUGE effect does not necessarily mean biological causality.
HUGE dependencies are more statistically reliable than others, but this does not imply
that predicted alterations are the major players in tumor development thus, they are not
necessarily driver genes, i.e., they are just genetic biomarkers of gene essentiality. In
other words, the Hub-Effect is a statistical association. Since “correlation does not imply
causation” is not legitimate to deduce a cause-and-effect relationship between the presence
of a mutation and the sensitivity to knocking down a gene. Even more, it cannot be
concluded that the HUGE top-ranked genes (either the mutations or the knockdown genes)
are driver genes. This would require further experimentation and validation. HUGE simply
computes biomarkers of the vulnerability to a knockdown gene, that in turn, could be
targeted by a drug. However, the fact that gene alterations co-occur with multiple LEDs in
genetic hubs can be exploited to improve the statistical power.

To measure the increased predictive power of HUGE, we carry out three different com-
parisons within three functional genomic datasets: the Project Score, the DEMETER score
and the CERES score. HUGE identifies LEDs with 14 and 75 times larger statistical power
than using state-of-the-art methods in CRISPR-Cas9 and RNAi, respectively. However, it
could be argued that this result could be an artifact of the statistical technique and that
lowering the threshold for standard procedures would provide LEDs with similar reliability.
This is not the case. As shown in the results, using the same number of predictions, HUGE’s
results are more enriched in clinically used biomarkers than ST’s results. Remarkably, 1 of
the 16 LEDs only identified by HUGE is the known interaction of FLT3-mutant genotypes
sensitive to FLT3 inhibitors, such as Midostaurin. This fact is only an example of the
key importance of considering the HUGE effect when analyzing LEDs with large-scale
functional screens.

A p-value histogram can be modeled as the superposition of two distributions, a
uniform distribution (which corresponds to the null hypothesis) and another distribution
with a larger proportion of low p-values. A good covariate splits the overall p-value
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histogram into histograms with different enrichments in small p-values. If all the histograms
related to a covariate have similar shapes, it means that the covariate is uninformative. Here,
we show that stating which gene is mutated in each test is a good covariate for the LED
prediction problem because there is a hub effect of gene aberrations in gene essentiality.
The usage of covariates has successfully been incorporated before in other genomics
applications (e.g., the abundance of a gene is known to be informative in differential
expression analyses; or the proximity of loci in the genome is known to play a role in
genome-wide association studies), but it has not yet been exploited in large-scale functional
genomic screens.

One main limitation lies in the volume of data required for its execution due to the
need for multiple hypotheses to detect the Hub-Effect. Hence, the HUGE-based approach
will not obtain such striking results if applied to the analysis of smaller experiments in
number, it would perform similarly to current standard methods. Nevertheless, this method
was developed for large-scale screening analyses.

We are confident that the HUGE-based approach to calculating LEDs has great poten-
tial if applied to the study of patient data. Nowadays, drug development usually starts
from large-scale loss-of-function screenings. Therefore, this work has identified a large
number of LEDs across 19 tumor types in three different large-scale experiments. Moreover,
to facilitate the in vitro validation of these LEDs as possible therapeutic targets, we added
information regarding targeted drugs for those essential genes that are drug targets.

Predicting true LEDs is especially challenging for tumors with high genetic hetero-
geneity. In AML, for instance, state-of-the-art approaches only recover two LEDs. The
HUGE-based approach captured 24 LEDs for the same False Discovery Rate (FDR). In-
terestingly, NRASwt-PTPN11 LED, which was only identified by HUGE, was validated
in vitro. The validation in AML highlights the potential of the HUGE-based approach to
discover and validate new LEDs of biomarkers and drug targets. We pinpoint the dLED
characteristic of the NRAS gene, meaning that if a tumor has NRAS mutated a treatment
that targets NRAS itself would be the best option to reduce their tumorigenicity, whereas if
it is NRAS wild-type, a PTPN11 inhibition would be a better recommendation. This dLED
discovery confers special relevance to clinically translational therapeutic strategies, as it
was proved effective in AML cell lines, further validation in ex vivo analysis and murine
models is required but if the result is effective, it could be suggested as a treatment and it
could incentivize drug development targeting NRAS and PTPN11. This methodology has
potential applications both in basic and clinical research.

5. Conclusions

In conclusion, this work provides a computational approach to identifying LEDs with
increased predictive power. This analysis opens new possibilities for the use of genetic
variants as predictive events for precision oncology, by analyzing both previous and future
functional genomic screens. Moreover, this analysis enhances current applications in
translational oncology, such as drug development or drug repositioning projects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14133251/s1, Supplementary Methods: Section S1: Cell Culture, Section S2: Cell
Transfection, Section S3: Cell proliferation assay, Section S4: Quantitative-PCR(Q-PCR), Section S5:
Statistical pipeline, Section S6: A larger number of positives outperforms specificity and sensitivity.
Supplementary Figures: Figure S1: Types of Lethal Dependencies, Figure S2: Computational pipeline
to find lethal dependencies, Figure S3: Schematic representation of the covariate-based statistical
approach in this context, Figure S4: Histogram of p-values of all LEDs in AML, Figure S5: Histogram
of p-values of all lethal dependencies in acute myeloid leukemia vs. p-values associated with each
gene variant, Figure S6: Histogram of p-values oflethal dependencies in breast cancer vs. p-values
associated with each gene variant, Figure S7: Histogram of p-values of all lethal dependencies
in central nervous system astrocytoma grade IV vs. p-values associated with each gene variant,
Figure S8: Histogram of p-values of all lethal dependencies in colon adenocarcinoma vs. p-values
associated with each gene variant, Figure S9: Histogram of p-values of all lethal dependencies in

https://www.mdpi.com/article/10.3390/cancers14133251/s1
https://www.mdpi.com/article/10.3390/cancers14133251/s1


Cancers 2022, 14, 3251 14 of 16

upper aerodigestive tract squamous cell carcinoma vs. p-values associated with each gene variant,
Figure S10: Histogram of p-values of all lethal dependencies in diffuse large B-cell lymphoma
vs. p-values associated with each gene variant, Figure S11: Histogram of p-values of all lethal
dependencies in esophagus squamous cell carcinoma vs. p-values associated with each gene variant,
Figure S12: Histogram of p-values of all lethal dependencies in lung large cell carcinoma vs. p-values
associated with each gene variant, Figure S13: Histogram of p-values of all lethal dependencies
in lung adenocarcinoma vs. p-values associated with each gene variant, Figure S14: Histogram
of p-values of all lethal dependencies in lung squamous cell carcinoma vs. p-values associated
with each gene variant, Figure S15: Histogram of p-values of all lethal dependencies in multiple
myeloma vs. p-values associated with each gene variant, Figure S16: Histogram of p-values of
all lethal dependencies in non–small cell lung carcinoma vs. p-values associated with each gene
variant, Figure S17: Histogram of p-values of all lethal dependencies in osteosarcoma vs. p-values
associated with each gene variant, Figure S18: Histogram of p-values of all lethal dependencies
in ovary adenocarcinoma vs. p-values associated with each gene variant, Figure S19: Histogram
of p-values of all lethal dependencies in pancreas ductal carcinoma vs. p-values associated with
each gene variant, Figure S20: Histogram of p-values of all lethal dependencies in small cell lung
carcinoma vs. p-values associated with each gene variant, Figure S21: Histogram of p-values of all
lethal dependencies in skin carcinoma vs. p-values associated with each gene variant, Figure S22:
Histogram of p-values of all lethal dependencies in stomach adenocarcinoma vs. p-values associated
with each gene variant, Figure S23: Histogram of p-values of all lethal dependencies in uterine corpus
endometrial carcinoma vs. p-values associated with each gene variant, Figure S24: The number
of LEDs found (FDR ≤ 20%), Figure S25: ROC and precision-recall curves of four tumor types,
Figure S26: Volcano plot of Synthetic lethal genes related to NRAS-mutated (A) and EP300-mutated
(B) phenotypes, Figure S27: mRNA expression of NRAS and PTPN11 genes after nucleofection with
the specific siRNAs. Supplementary Tables: Table S1: Associations within the top 500 pairs predicted
using the HUGE-based and standard pipeline algorithms in AML that match the knowledgebase
of clinical interpretations of somatic genomic variants in cancer of the Variant Interpretation for
Cancer Consortium (VICC), Table S2: Essential genes for AML. Selected genes meet the following
criteria: (i) must be essential in ≥25% of AML cell lines (DEMETER essentiality threshold set to
-2), Table S3: Complete ranking of lethal dependencies in AML using the HUGE-based statistical
approach. The Increment of Essentiality (deltaEs) column represents the average variation in the
DEMETER score between altered and wild-type cells, and its sign is related to the lethal dependy
relationship, Table S4: Cell lines included in the analysis, Table S5: AML cell lines included in the
analysis, Table S6: Ranking of pairs mutation biomarker and essential genes in 19 tumor types using
a covariate-based statistical model, Table S7: Ranking of pairs mutation biomarker and essential
genes in OS, Table S8: Ranking of pairs mutation biomarker and essential genes in BRCA, Table S9:
Ranking of pairs mutation biomarker and essential genes in CNSA-IV, Table S10: Ranking of pairs
mutation biomarker and essential genes in UCEC, Table S11: Ranking of pairs mutation biomarker
and essential genes in COAD, Table S12: Ranking of pairs mutation biomarker and essential genes
in DLBCL, Table S13: Ranking of pairs mutation biomarker and essential genes in MM, Table S14:
Ranking of pairs mutation biomarker and essential genes in LUAD, Table S15: Ranking of pairs
mutation biomarker and essential genes in LCC, Table S16: Ranking of pairs mutation biomarker
and essential genes in NSCLC, Table S17: Ranking of pairs mutation biomarker and essential genes
in SCLC, Table S18: Ranking of pairs mutation biomarker and essential genes in LUSC, Table S19:
Ranking of pairs mutation biomarker and essential genes in ESCA, Table S20: Ranking of pairs
mutation biomarker and essential genes in OVAD, Table S21: Ranking of pairs mutation biomarker
and essential genes in PDAC, Table S22: Ranking of pairs mutation biomarker and essential genes
in SKCM, Table S23: Ranking of pairs mutation biomarker and essential genes in STAD, Table S24:
Ranking of pairs mutation biomarker and essential genes in STAD.
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