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Abstract

Revegetation of exposed sub-soil, while a desirable strategy in the recovery processes,

often fails due to extreme soil chemical properties, such as low organic matter and pH levels

inhospitable to biological activities such as nutrients cycling and plant establishment. This is

the case for approximately 800 ha of the Cerrado biome in Brazil, where erecting the

embankment of a hydroelectric dam in the 1960’s stripped vegetation, soil, and subsoil lay-

ers thereby distorting the soil properties. This work evaluates the effectiveness of restoration

management (RM) treatments, to restore the soil quality, including biological activity and

chemical attributes. In a factorial scheme, RM treatments include the addition of organic res-

idue from aquatic macrophytes (AM) at 3 rates (0, 16 and 32 t ha-1), combined with ash from

sugar cane bagasse of agroindustrial origin (BA) at 4 rates (0, 15, 30 and 45 t ha-1). RM

samples contrasted samples collected from undisturbed Cerrado (CER) as well as a

degraded area without intervention (DAWI). The mechanized RM plots received amend-

ments and reforestation of 10 Cerrado native tree species. After 5 years, vegetation covered

up to 60% of the surface in RM treatments receiving AM32 + BA45. AM and BA residues

promoted height increases in the introduced plants. All RM treatments promoted lower lev-

els of Al3+ than DAWI and CER. The combination of AM32 over the rates of incorporated

ash increased soil pH and K values similarly to CER. Microbial-related variables, such as

microbial biomass-C was the largest in CER, followed by the RM treatments, and the lowest

in DAWI. The microbial quotient was no different between CER and RM treatments. The

addition of residues such as AM and BA increased the vegetation covered, improved chemi-

cal and microbiological indicators. Thus, the residues used aided the recovery process of

intensely degraded soils in the Cerrado area.
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Introduction

With an area of approximately two million square kilometers, the Cerrado biome forms the

second largest biome in South America. Anthropic threats endangering the biome’s species

richness and endemism placed Cerrado on the list of critical areas for biodiversity conserva-

tion worldwide [1]. Since the 1960s, approximately half of all Cerrado area became domesti-

cated for agriculture, livestock as well as infrastructure for transport and energy production,

promoting a severe degradation of this ecosystem [2]. These land use changes led to the loss of

soil quality and its functional activities, resulting in the loss of ecosystem services, such as car-

bon storage, nutrient cycling, and soil formation [3].

Also in the 1960s, the construction of the Ilha Solteira Hydroelectric Power Plant

(HPP-ISA) fueled civil growth in the states of São Paulo and Mato Grosso do Sul, generating

significant extensions of anthropogenic areas (approximately 8,000,000 m2) [4]. Building the

waterways and other structures for the HPP removed native Cerrado vegetation as well as soil

extending as much as 12 m deep from the surface [5, 6]. The elimination of these materials left

a geological residue that resembles mined areas of very low resilience, as they are devoid of

edaphic attributes that enable spontaneous plant colonization [7].

The vegetation removal and the stripping, excavation, and transportation of the soil have

different effects on soil physical, chemical, and biological properties [8]. Rebuild the soil after a

degradation process is an essential factor for a successful restoration process [9]. Several tech-

niques have been used to restore and control soil losses and water runoffs, such as revegetation,

which helps in recovering organic matter, restructuring the degraded soil [10], and the use of

organic soil amendments to boost plant performance and soil functions [11].

For degraded Cerrado soils, amendments featuring biomass residues (e.g., aquatic macro-

phytes, biochar, agro-industrial residues) efficiently enrich the soils with nutrients and organic

matter [12–15]. These amendments enhance biological and physical soil conditions to allow

faster recovery than unamended soils still lacking organic matter [16]. Besides, the residues

selected (aquatic macrophytes and ash sugarcane bagasse) were chosen due to their abundance

in the study region. Aquatic macrophytes cause problems in energy-generating in the hydro-

electric power plants [17], and also the region has become a major producer of sugar cane,

consequently, sugar, alcohol, and residues such as bagasse, cane straw, and bagasse ash, require

an alternative for disposal [18]. Combining biomass residue amendments with the reintroduc-

tion of native vegetation, which add appropriate leaves, root biomass, and root exudates, fur-

ther bolster soil functioning [19].

Abundance, diversity and biochemical attributes, and metabolic activities of microorgan-

isms can serve as indicators of soil quality improvements [20], evidencing the success of resto-

ration programs [21].

Other recovery indicators include the microbial quotient (qMic), which defines the stock

percentage of total organic carbon in the soil, and the metabolic quotient (qCO2), which shows

specific respiration rates according to the CO2 released by microbial biomass as a function of

time [22], it is expected that stressed soils present higher qCO2 values than less-stressed/natu-

ral soils [23]. The low stocks of organic compounds in degraded areas reveal corresponding

low values of the microbial quotient [24]. In soils of preserved areas, that is to say, under native

vegetation in the Cerrado, the values of qMic range from 0.9 to 5.5 or 9 to 55% [25].

To develop tools for reconditioning these degraded areas stripped of topsoil, this work

investigates whether native tree species combined with ash residue from sugarcane bagasse

and/or aquatic macrophytes reestablish microbial activity and recover soil chemical properties

in a severely degraded area, from where the surface horizons and native vegetation were

removed and remained without vegetation cover since the 60s. We collected samples after 5
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years of intervention and compared results with soils collected from an undisturbed Cerrado

site as well as a degraded area without intervention.

Our hypothesis is that the addition of organic matter and nutrients, via regional residues,

associated with soil tillage, can improve edaphic conditions of severely degraded soil and favor

the re-establishment of vegetation and soil microbiota.

Materials and methods

Field trial and sampling

In November 2011, an experimental area of 3,4 ha for recovery was established at the Teaching,

Research and Extension Farm of the São Paulo State University (UNESP) Ilha Solteira Cam-

pus, in Selvı́ria, state of Mato Grosso do Sul, Brazil (20˚ 22’ 22" S and 51˚ 24’ 59" W). This site

remained without vegetation cover for 50 years since the construction of the Ilha Solteira

Hydroelectric Power Plant removed up to 12 m of its topsoil.

The experimental design of the recovery management (RM) trial was randomized blocks

composed of different rates of aquatic macrophytes and rates of sugar cane bagasse ash applied

in strips, and using a 3 x 4 factorial scheme composed of 3 rates (0, 16 and 32 t ha-1) of aquatic

macrophytes (AM, C:N ratio of 16.5) and 4 rates (0, 15, 30 e 45 t ha-1) of sugar cane bagasse

ash (BA, C:N ratio of 93.4). The chemical characterization of the residues, AM and BA, are pre-

sented in S1 and S2 Tables. This factorial approach featured 12 treatments with 3 replicates

each for a total of 36 plots with 600 m2 area per plot. To appraise the recovery progress, com-

parative analysis bracketed these interventions with similar evaluations of soil from an undis-

turbed Cerrado (CER) as well as a degraded area with no intervention (DAWI) (Figs 1 and 2).

The granulometric analysis for these soil sites was obtained by the pipette method [26] (S3

Table). The amendment residues were collected locally. AM residues comprised a mixture of

aquatic macrophyte species containing Egeria densa Planch., Egeria najas Planch., Ceratophyl-
lum demersum L., Eichhornia azurea Kunth, Eichhornia crassipes (Mart.) Solms., Pistia stra-
tiotes L. and Typha latifolia L., reported for the Jupiá Hydroelectric Power Plant in Três

Lagoas/Brazil [27]. The ash was collected in the boiler at Alcoolvale: Sugar and Alcohol S.A., in

Aparecida do Taboado/Brazil. Residues air-dried for 120 days before incorporation into the

degraded soils.

In February 2012, three months after soil residues incorporation, seedlings of 10 native spe-

cies of Cerrado were introduced into the experimental area (Fig 3). Planting in pits of 0.40 m

depth with 4.0 x 5.0 m spacing, each plot received three individuals of each species, totaling

1,080 seedlings.

After 5 years of intervention, the area was evaluated for soil fertility and microbiological

activity. Soil samples collected during the rainy season (March 2016) at depths of 0.0 to 0.10 m

in an assembled sample from 6 individual collections per plot in the experimental area (RM).

Plant growth

Delineated in the field via tape measure at five years after planting, tree heights (cm) of the

seedlings characterized each species’ survival.

Conducted during the rainy season (March 2016), the monitoring system for spontaneous

vegetation canopy coverage in the RM treatments employed an inverted L-shaped stand to ori-

ent a camera parallel to the surface at a consistent 1.6 m height without casting shadows. In

each of the 36 plots, images captured an area of approximately 2 m2 with 5 random repetitions.

APS ASSESS 2.0 software estimated the percentage of ground vegetation cover (COVER) from

the images [28].
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Soil chemistry

Quantifying soil exchangeable phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg)

and aluminum (Al) used ion exchange resins and Atomic Absorption Spectrophotometry—

AAS [29, 30]. The total organic carbon (TOC) determination followed the Walkey-Black

method with modifications [31]. This method uses sodium dichromate instead of potassium

dichromate, due to the greater solubility of the former. In addition, the oxidation of organic

matter is done cold, by simply stirring the soil in a solution containing sodium dichromate

and sulfuric acid [32]. The pH was measured in water (dry soil: distilled water ratio of 1:2.5)

[33] and total nitrogen (TN) by Kjeldahl method [34].

Microbial-related soil properties

Soil respiration quantification relates the C-CO2 released by microbial respiration to the titra-

tion of a free base, NaOH to calculate of the amount of CO2 by subtraction [35]. First, 100 g of

Fig 1. Aerial view of the research site illustrating the degraded area without intervention (DAWI, black circle), the area under restoration management

(RM; dotted rectangle), and the undisturbed Cerrado (CER; solid blue polygon) in Selvı́ria, Mato Grosso State, Brazil.

https://doi.org/10.1371/journal.pone.0270215.g001
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sampled soil was sieved (2 mm), weighed and placed in screw-cap glass jars along with a flask

in the center containing 10 mL of 0.1 mol L-1 NaOH. With soil moisture corrected to 70%, the

jars were then hermetically sealed. The incubation time was determined by a calibration curve

developed by monitoring on alternate days. Titration of the free NaOH used HCl (0.1 mol L-1)

and the phenolphthalein indicator (1%). As a control, glass jars were prepared, without soil,

containing flasks with NaOH.

Microbial biomass carbon (MBC) quantification uses two 10 g samples of extracted soil per

replicate and applies the fumigation-extraction method [36]. In this process, one sample is

fumigated with chloroform, then both are analyzed by spectrophotometer read at a wavelength

of 495 nm [37]. The carbon that settles with the death of the fumigated microorganisms allows

a less turbid sample compared to the non-fumigated samples. The metabolic quotient (qCO2)

represents the amount of C-CO2 released per MBC unit, estimated by the ratio of C-CO2

released/MBC, that is: μg C g-1 dry soil day / μg C g-1 dry soil, while the microbial quotient

(qMic) was calculated by the ratio between MBC and total organic carbon of the soil (TOC)

expressed as a percentage [38].

Data analysis

Analyses of variance (ANOVA) was employed to test the effects of soil amendments on plant

growth, soil chemistry, and microbial-related soil properties. The analyses were performed by

fitting the data into a linear mixed effect model using ‘lme’ function of the R software,

Fig 2. Experimental areas: (a) degraded area without intervention (DAWI), (b) AM00+BA00 receiving no

amendments, (c) AM16+BA45 in 2016 after 5 years of soil conditioning treatments, and (d) undisturbed Cerrado

(CER). (AM = aquatic macrophytes, BA = ash from sugar cane bagasse, applied at 00, 16 and 45 t ha-1).

https://doi.org/10.1371/journal.pone.0270215.g002
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considering blocks as a random factor. Before subjecting the data to ANOVA, the data homo-

geneity of variances (Levene’s test) and normality of the residuals (Shapiro-Wilk test) were

tested. If the requirements for ANOVA were not met, data were log-transformed. Dunnett’s

Multiple comparison post-hoc test was used to compare each experimental group with a con-

trol group. Dunnett’s test allowed us to identify significant changes by caused by the RM treat-

ments compared to conditions in the site without any intervention (i.e., DAWI). We also

compared each RM treatment with the conditions in the undisturbed site (i.e., CER), which

reflect the improvement goals for vegetation, soil nutrients, and microbial activities for the

sites under restoration. Hence, Dunnett’s mean test was used to compare each RM treatment

between the reference sites, i.e., DAWI and CER (p<0.05) using “PMCMRplus” package in R.

Tukey test compared means within the RM treatments (p<0.05) to identify what rate of inputs

would be ideal to achieve changes in vegetation, soil nutrients, and microbial activities. For

Tukey test, we used “multicomp” package in R. Pearson’s correlation analysis examined the

relationship between plant, soil, and microbial variables using the “corrplot” package in R. All

statistical analyses were performed in R 3.3.2 [39].

Results

Species survival and tree performance

We estimated the percentage of ground vegetation cover (COVER) by spontaneously grown

vegetation in the RM treatments (Tables 1 and 2). The species were a mix of herbaceous and

Fig 3. Native tree species introduced as seedlings to the restoration management (RM) area.

https://doi.org/10.1371/journal.pone.0270215.g003
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shrub arboreal as well as native and alien origin. We observed a significant correlation between

ground cover and biomass input, with the highest ground cover of 67.7% in AM32 + BA45 (r2

= 0.47; p<0.05; Fig 4). Plots without any input (i.e., AM00+BA00) achieved only 5.7% of the

ground covered by vegetation. Tree survival proved consistent amongst all the RM treatments

(p>0.05; 63,3 to 100%). There was no significant interaction effect of both amendments for

tree height of any of the species (Table 1). AM residues, at either 16 and 32 tons per hectare,

promoted tree height of Acacia polyphylla, Astronium fraxinifolium, Dipteryx alata,Hancornia
speciosa, Tabebuia caraiba and Xylopia aromatica, by 489%, 78.2%, 93.2%, 57.6%, 177%,

57.5%, respectively, compared to their counterparts growing under AM00 (Fig 5). BA residues

with incorporation rates larger than 15 tons per hectare, increased on average 174.7% the

tree height of A. fraxinifolium compared to BA00 (Fig 6). BA residues with incorporation

rates > 30 tons per hectare increased tree heights by 291% and 115% in Anadenanthera falcata
and X. aromatica, respectively, compared to BA00. BA residues promoted height increases in

Hymenaea stigonocarpa and Psidium guineense, but only at incorporation rates of 45 tons per

hectare (56.4% and 65.6% increased, respectively, compared to BA00).

Table 1. Main and interactive effects of aquatic macrophyte (AM) residue, sugar cane bagasse ash (BA), their

interaction (AMxBA), and of the three studied areas—Degraded area without intervention (DAWI), recovery

management treatments (RM) and undisturbed Cerrado (CER), on vegetation, soil chemistry, and microbe-

related soil properties.

Observed variables AM BA AMxBA Overall†

COVER �� �� �� NA

A. falcata ns ��� ns NA

P. guineense ns � ns NA

D. alata �� ns ns NA

Mabea fistulifera ns ns ns NA

A. fraxinifolium �� ��� ns NA

T. caraiba �� ns ns NA

H. stigonocarpa ns � ns NA

H. speciosa ��� ns ns NA

A. polyphylla �� ns ns NA

X. aromatica � �� ns NA

pH �� �� � �

TOC ns ns ns ��

TN ns ns ns ��

K �� ns ns ��

Ca ns � � ��

Mg ns ns ns �

Al ns �� ns ��

Soil respiration ns ns ns �

MBC ns ns ns �

qCO2 ns ns ns ns

qMic ns ns ns ns

��� p < 0.001,

�� p < 0.01 and

� p < 0.05.
† Analysis of variance (ANOVA) including DAWI, CER, and RM treatments.

NA: The analysis does not apply, as ground vegetation cover and tree height were not estimated in DAWI and CER.

https://doi.org/10.1371/journal.pone.0270215.t001
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Soil chemical properties

Of the soil indicators measured, only soil pH, K, and Al responded to amendment inputs

(Table 3). Treatments receiving the highest AM residue rate with any non-zero BA input (i.e.,

AM32+BA15, AM32+BA30, and AM32+BA45) increased 106% soil pH (5.2) and 277% K (0.9

mmolc kg-1), compared to DAWI (pH = 4.8; K = 0.3 mmolc kg-1). Only the RM treatments that

included BA input reduced Al concentration, on average by decreasing 63,48% comparing to

DAWI. Soil pH, K, Ca and Mg concentrations were inversely correlated with Al concentra-

tions. Increases in soil pH and K concentrations were significantly correlated with ground veg-

etation cover and soil respiration. Compared to CER, the reference for an undisturbed Cerrado

area, pH reached similar levels in treatments receiving 30 and 45 tons of BA per hectare or AM

rates equal or above 16 tons of AM per hectare, with the exception of AM16 + BA00. Concen-

trations of K and Ca reached similar levels to those in CER only in the AM32+BA15 treatment.

The correlation analysis (Fig 7) positively aligns TOC with N, P and Ca, particularly because

they are found in the composition of organic matter, thus resulting in increases of these nutri-

ents in the remaining subsoil that received both AM and BA.

Microbial indicators

Across all sites, CER demonstrated the highest soil respiration being significantly larger than

DAWI and the RM (Table 4). No significant differences arose between the RM treatments and

DAWI. The average soil respiration in the RM treatments was about 2.7 times lower than in CER.

The undifferentiated RM group MBC was a third of CER (p<0.05) and 10 times larger than

DAWI. The proportion of MBC to TOC, represented by the microbial quotient (qMic), ranged

from 2–38% with the lowest in DAWI, the CER statistically inseparable from RM with AM16

+ BA15 as the highest treatment. The microbial metabolic quotient (qCO2), which represents

the respiration-to-MBC ratio, was the highest in the DAWI treatment and significantly larger

than qCO2 in indistinguishable CER and RM treatments (Table 4).

It is noted that even in the treatment where only the subsoil turmoil occurred (AM00

+ BA00) the BMC increased more than 1000% and reduced the qCO2 in 1200% compared to

DAWI. In addition, 50% of the treatments, including the CER, presented some significant dis-

tance from the DAWI regarding the qMic, where in mean these treatments increased 730%

qMic than DAWI.

Table 2. Mean values and standard deviation for ground vegetation cover (COVER) across the restoration man-

agement (RM) treatments. Mean followed by the same letter do not differ significantly by Tukey test (p<0.05).

RM treatments Total biomass input (t ha-1) COVER (%)

AM00 + BA00 0 5.7 ± 5.2 d

AM00 + BA15 15 16.8 ± 12.6 cd

AM00 + BA30 30 30.7 ± 6.9 bcd

AM00 + BA45 45 46.0 ± 14.2 abc

AM16 + BA00 16 50.1 ± 12.7 ab

AM16 + BA15 31 60.6 ± 14.0 ab

AM16 + BA30 46 45.9 ± 8.7 abc

AM16 + BA45 61 56.6 ± 9.4 ab

AM32 + BA00 32 45.6 ± 18.0 abc

AM32 + BA15 47 43.2 ± 6.1 abc

AM32 + BA30 62 52.4 ± 7.9 ab

AM32 + BA45 77 67.7 ± 11.3 a

https://doi.org/10.1371/journal.pone.0270215.t002
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Soil respiration correlated significantly with pH, TOC, and K. Soil respiration was also

found to be inversely related to exchangeable aluminum content (Fig 7).

Discussion

Increasing soil pH while lowering aluminum concentration drives soil and

vegetation improvements

In Oxisols, such as those that dominate Cerrado soils, pHwater and Al range from 4.0 to 5.3 and

1 to 9.3 mmolc kg-1, respectively [15, 40–42]. Many Cerrado plants survive in soils with high

Al content (13.73 mmolc Al dm-3) [43], however, their growth can be limited by the low avail-

ability of essential nutrient cations such as ammonium, calcium, magnesium, and potassium

[44]. Under acidic conditions, base cations become scarce as Al+3, H+, and Mn and Fe-bearing

minerals prevail in nutrient solutions [45]. In this study, inputs of AM and BA increased soil

pH and reduced Al concentration, and these changes aligned with observed increases in vege-

tation growth. Under the highest rates of input (AM 32 + BA 45), soil pH was able to reach

CER levels, which suggests the system may be restoring. As expected under these more favor-

able conditions, AM 32 + BA 45 also showed significantly higher availability of the valuable

cation K when compared to the degraded area without intervention (DAWI). Similarly, a

study in degraded Oxisol showed that 21 months after fertilization with sheep increased soil

pH from 4.2 to 4.6 and Al+3 decreased from 4.6 to 2.2 mmolc dm-3, stimulating vegetation

growth from 11.37 and to 48.15 g m-2 [46]. It is possible that vegetation growth did not result

Fig 4. Correlation between ground vegetation cover (COVER) and residue inputs.

https://doi.org/10.1371/journal.pone.0270215.g004
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Fig 5. Influences of AM residues on tree height.

https://doi.org/10.1371/journal.pone.0270215.g005
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Fig 6. Influences of BA residues on tree height.

https://doi.org/10.1371/journal.pone.0270215.g006
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solely from the dissolution of base cations upon soil pH increase; the amount of nutrients

added through the AM and BA amendments was very high. Previous research proposes N con-

centration (%) as the first determinant of N release, where resources with N

concentration < 2.5% can release about 40% of their total amount [47]. P and K-rich plant

based organic amendments can mineralize up to 80 and 100% of their P and K contents within

three months of incorporation [48]. Thus, based on amendment input concentrations, the AM

32 + BA 45 treatment added 837, 93, and 215 kg ha-1, of N, P, and K respectively.

Indeed, ground vegetation cover increased linearly with biomass input, from 5.7% (AM 00

+ BA 00) to 67.7% (AM 32 + BA45) of ground cover. This aligns with several studies demon-

strating the potential of soil amendments and biomass inputs for restoring degraded areas [22,

49–52]. Biomass inputs denote nutrient inputs which propel vegetation growth and favors the

appearance of spontaneous vegetation that combat soil erosion [53, 54], reduce soil tempera-

ture [55, 56], and increase biological activity [57]. It was demonstrated that when using bio-

char, biosolids, wood chips, singly or combined, in post-mine sites, soil properties improved

resulting in increased nutrient availability, soil moisture, and consequently elevated plant

cover from 17% (Control) to 58% (Biosolid + biochar + wood chip treatment) [58].

Henceforth, this study demonstrates how a gradient of AM and BA amendments span the

range from DAWI to CER in pH and Aluminum concentration can release essential cations

that fuel the vegetative growth valuable to ecosystem stability.

Microbial improvements associated to the residues

In addition to vegetative biomass and soil nutrients, microbial communities can reveal the re-

establishment of vital functions in systems under restoration, as they respond quite rapidly to

the addition of organic materials and carry out many relevant ecosystem processes such as

nutrient cycling [24, 59].

Table 3. Mean values and standard deviation for soil pH, total organic carbon (TOC), total nitrogen (TN), phosphorus (P), potassium (K), calcium (Ca), magne-

sium (Mg), and aluminum (Al), in the degraded area without intervention (DAWI), restoration management treatments, and undisturbed Cerrado (CER).

Sites pH† TOC TN P K Ca† Mg Al

- - (g kg-1) - - (mg kg-1) - - - - - - (mmolc kg-1) - - - - - -

DAWI 4.8 ± 0.06 4.6 ± 0.45 0.5 ± 0.19 0.9 ± 0.00 0.3 ± 0.10 0.9 ± 0.00 1.2 ± 0,58 6.9 ± 0.91

AM00 + BA00 4.6 ± 0.04 b 4.6 ± 0.18 0.6 ± 0.18 0.9 ± 0.00 0.3 ± 0.10 0.9 ± 0.00 b 0.9 ± 0.00 5.8 ± 1.65F

AM00 + BA15 4.8 ± 0.05 ab 4.6 ± 0.60 0.6 ± 0.24 0.9 ± 0.00 0.3 ± 0.15 2.5 ± 0.58 ab 1.8 ± 1.00 3.2 ± 0.01�

AM00 + BA30 5.0 ± 0.08 aF 4.6 ± 0.28 0.5 ± 0.21 0.9 ± 0.00 0.4 ± 0.06 2.5 ± 0.58 ab 1.8 ± 1.00 2.6 ± 1.21�

AM00 + BA45 5.0 ± 0.1 aF 5.1 ± 0.47 0.5 ± 0.12 0.9 ± 0.00 0.5 ± 0.15 4.0 ± 3.21 ab 3.7 ± 4.36F 2.6 ± 0.91�

AM16 + BA00 4.8 ± 0.08 ab 4.3 ± 0.44 0.4 ± 0.12 0.9 ± 0.00 0.4 ± 0.10 1.8 ± 1.00 ab 0.9 ± 0.00 5.3 ± 1.84F

AM16 + BA15 4.9 ± 0.12 abF 4.5 ± 0.19 0.5 ± 0.08 0.9 ± 0.00 0.5 ± 0.17 1.8 ± 1.00 ab 1.5 ± 1.15 2.6 ± 0.91�

AM16 + BA30 5.1 ± 0.01� aF 4.6 ± 0.54 0.5 ± 0.23 0.9 ± 0.00 0.5 ± 0.06 2.8 ± 1.00 ab 1.8 ± 1.00 2.1 ± 0.91�

AM16 + BA45 5.0 ± 0.14 aF 5.1 ± 0.56 0.4 ± 0.11 0.9 ± 0.00 0.5 ± 0.15 1.8 ± 1.00 ab 1.2 ± 0.58 3.4 ± 0.46

AM32 + BA00 4.9 ± 0.15 abF 4.3 ± 0.32 0.6 ± 0.15 0.9 ± 0.00 0.5 ± 0.23 2.2 ± 1.15 ab 1.5 ± 1.15 3.2 ± 0.01�

AM32 + BA15 5.2 ± 0.09� aF 4.2 ± 0.46 0.8 ± 0.31 0.9± 0.00 0.8 ± 0.17�F 4.6 ± 1.00 aF 2.5 ± 0.58 1.6 ± 0.8�

AM32 + BA30 5.1 ± 0.17� aF 5.15 ± 1.38 0.6 ± 0.19 0.9 ± 0.00 0.8 ± 0.12� 1.8 ± 0.00 ab 1.5 ± 0.58 2.6 ± 1.83�

AM32 + BA45 5.1 ± 0.22� aF 4.9 ± 0.61 0.5 ± 0.19 0.9 ± 0.00 0.9 ± 0.49�F 3.1 ± 2.31 ab 1.8 ± 1.00 2.1 ± 2.42�

CER 5.0 ± 0.14 12.8 ± 1.97� 1.5 ± 0.19� 7.1 ± 0.58� 1.2 ± 0.00� 9.30 ± 7.21� 6.80 ± 3.51� 7.1 ± 2.86

� = Mean values with asterisks are significantly different from control (DAWI) by the Dunnett test (p < 0.05).
†Significant interaction effect between AM and BA amendments. Means followed by the same letter, in the columns do not differ significantly by Tukey test (p <0.05).
F Not significantly different than undisturbed Cerrado (CER)

AM = aquatic macrophytes applied at 0, 16, and 32 t ha-1.

https://doi.org/10.1371/journal.pone.0270215.t003
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For this study, the microbially-based indicators needed to be sensitive to inputs of organic

materials as well as cost-effective considering the sample size. All restoration management

treatments (RM) showed, on average, an order of magnitude more microbial biomass carbon

(MBC) than DAWI, which neglected organic residue input, tillage, or tree seedling transplants.

This also includes the AM00 + BA00 site, which accounted with only tillage and tree seedling

transplants. The decrease in the microbial metabolic quotient (respiration-to-biomass ratio),

or qCO2, under RM compared to DAWI indicates that RM microbial communities released

less CO2 per unit microbial biomass than in DAWI [60]. The opposed the trend for qMic, the

proportion of MBC to total organic carbon. The observed qMic increased in the RM sites, rela-

tive to DAWI, indicating a higher proportion of microbial carbon in the total carbon pool [61,

62]. Similar values were found among all RM treatments and CER for qCO2 and qMic, showing

Fig 7. Correlation matrix among the variables soil cover by vegetation (COVER), pH, total organic carbon (TOC), total nitrogen (TN),

phosphorus (P), potassium (K), calcium, magnesium (Mg), aluminum (Al), soil respiration (RESP), microbial biomass carbon (MBC),

metabolic quotient (qCO2), and microbial quotient (qMIC) of the soil, across the restoration management treatments. ���, �� and �

represent significant values for p� 0.001, p� 0.01, and p� 0.05, respectively.

https://doi.org/10.1371/journal.pone.0270215.g007
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that remediation is producing conditions similar to our ideal undisturbed site. The quotients

present specific respiration rates (qCO2) and stock of carbon in the soil (qMic), the highest val-

ues of qMic indicate the maintenance of carbon in the soil [61], revealing that after five years

of treatments, the RM soils show positive changes in microbial activity comparable to the spe-

cific respiration and stock of carbon from the CER. These microbial responses are expected

due to the input of organic amendments and the physical changes caused by tillage [60, 63].

The organic compounds added in this trial provide energy and nutrients [19], and soil

mechanical tillage in degraded soils decompact the surface to produce changes in the physical

and mechanical properties of soil that improve water infiltration and aeration [64].

Five years later, it is still possible to see the beneficial responses from the RM. Evaluating a

soil restoration experiment, using biosolids and nutrients after the mechanical subsoiling, in

Brazilian Federal District mining sites, was observed soil carbon continues to increase even

after 9 years since the introduction of the amendments [65]. Thus, lasting soil productivity can

be increased by the addition of natural amendments that stimulate the microbial activity to

provide the nutrients and organic carbon to the soil. After vegetation establishes, the cycling of

nutrients begin that maintain the activity of microorganisms for the long-term [19, 66]. We

see the formation of this soil fertility in this study, as both soil respiration and MBC correlated

significantly with TOC, N and P, K, Ca and Mg, suggesting that the microbial activities are

helping to maintain TOC and nutrient availability in the soil [59].

Plants responses to residues inputs and soil improvements

Using only plants native to Cerrado and occurring in the central Brazil, all 10 species survived

the experiment. Some plant heights responded to the AM residues and others responded

Table 4. Mean values and standard deviation for soil respiration (RESP), microbial biomass carbon (MBC), metabolic quotient (qCO2) and microbial quotient

(qMic) inthe degraded area without intervention (DAWI), restoration management treatments, and undisturbed Cerrado (CER).

Site RESP MBC qCO2 qMic

μg C g-1 dry soil day mg C g-1 dry soil # (%)

DAWI 6.02 ± 2.08 0.11 ± 0.03 0.040 ± 0.002 2.55 ± 0.52

AM00 + BA00 3.05 ± 1.57 1.29 ± 0.48� 0.003 ± 0.002�F 28.30 ± 11.73�F

AM00 + BA15 6.51 ± 1.46 0.81 ± 0.21� 0.008 ± 0.002�F 19.56 ± 7.13F

AM00 + BA30 5.53 ± 3.68 1.20 ± 0.33� 0.007 ± 0.003�F 25.92 ± 6.62�F

AM00 + BA45 6.17 ± 3.10 0.69 ± 0.25� 0.009 ± 0.002�F 13.90 ± 6.14F

AM16 + BA00 5.62 ± 0.73 0.71 ± 0.50� 0.011 ± 0.008�F 16.12 ± 10.47F

AM16 + BA15 5.22 ± 1.61 1.70 ± 0.51� 0.004 ± 0.002�F 38.36 ± 12.92�F

AM16 + BA30 7.78 ± 1.93 0.87 ± 0.16� 0.009 ± 0.003�F 19.31 ± 4.78F

AM16 + BA45 8.41 ± 3.33 1.31 ± 0.70� 0.007 ± 0.001�F 25.28 ± 10.71�F

AM32 + BA00 5.53 ± 1.33 0.58 ± 0.26� 0.011 ± 0.005�F 13.28 ± 4.89F

AM32 + BA15 8.66 ± 2.99 1.91 ± 0.25� 0.005 ± 0.002�F 45.16 ± 4.37�F

AM32 + BA30 8.01 ± 1.91 1.70 ± 0.41� 0.005 ± 0.002�F 35.39 ± 14.29�F

AM32 + BA45 6.17 ± 0.91 0.73 ± 0.37� 0.010 ± 0.005�F 15.47 ± 9.12F

CER 17.67 ± 0.24� 3.47 ± 0.08� 0.005 ± 0.000� 27.58 ± 3.88�

� = Mean values with asterisks are significantly different from control (DAWI) by the Dunnett test (p < 0.05).
F Not significantly different than undisturbed Cerrado (CER)

AM = aquatic macrophytes applied at 0, 16, and 32 t ha-1.

BA = ash bagasse residue applied at 0, 15, 30, 45 t ha-1.
# = qCO2: μg C g-1 dry soil day / μg C g-1 dry soil.

https://doi.org/10.1371/journal.pone.0270215.t004
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specific to BA residues, however the combination of the amendments promoted no additional

effects on tree height. These responses can be related to the improvements in soil nutrients,

soil coverage and consequently in C cycle. Soil nutrients are decisive for the successful reestab-

lishment and growth of plants [67, 68], and several soil conditioners and fertilizers improve

soil nutrients stimulating recovery in degraded areas [22, 52]. Only Mabea fistulifera did not

respond to the amendments added, which may indicate that the species is adapted to adverse

conditions.

Other studies verified the effects of organic amendments to the growth of Cerrado plants.

Biochar and cattle manure combined in different doses promote development of seedlings of

Magonia pubescens, a native Cerrado species. The larger doses of combined manure and bio-

char (CM30% + BC30%) presented better results for average height, differing from the control

with 9% increase in height (2.2 cm) [69]. Different doses of agro-industrial residues (ash) in

Hymenaea stigonocarpa produced positive effects after 8 months, such as a linear increase of

height, ultimately yielding approximately 24% compared to control [13].

The species, Astronium fraxinifolium, augmented height incrementally as the doses of both

residues increased (Figs 5 and 6), proving to be a good alternative for recovery experiments

using soil amendments.

Conclusions

The combination of the amendments (aquatic macrophytes and ash from sugarcane bagasse)

increased the pH and reduced the Al, consequently increasing the availability of nutrients,

such as K. The improvements in soil quality prompted vegetation growth, evidenced by

increases in the biomass of spontaneous plants and the height of native tree species. The

restoration management treatments also boosted soil biological activities.

Comparing to the degraded area without intervention, the restoration management treat-

ments increased microbial biomass-C. And contrasted to undisturbed Cerrado, showed simi-

lar results to qMIC and qCO2.

After 5 years of intervention, the restoration management treatments, which include bio-

mass residues and the reintroduction of native vegetation, can effectively rehabilitate an inten-

sively degraded area such as those of exposed sub-soils in the Brazilian Cerrado.
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