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Uterine corpus endometrial carcinoma (UCEC) is one of the most common gynecologic
malignancies, but only a few biomarkers have been proven to be effective in
clinical practice. Previous studies have demonstrated the important roles of non-
coding RNAs (ncRNAs) in diagnosis, prognosis, and therapy selection in UCEC and
suggested the significance of integrating molecules at different levels for interpreting
the underlying molecular mechanism. In this study, we collected transcriptome data,
including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger
RNAs (mRNAs), of 570 samples, which were comprised of 537 UCEC samples and
33 normal samples. First, differentially expressed lncRNAs, miRNAs, and mRNAs,
which distinguished invasive carcinoma samples from normal samples, were identified,
and further analysis showed that cancer- and metabolism-related functions were
enriched by these RNAs. Next, an integrated, dysregulated, and scale-free biological
network consisting of differentially expressed lncRNAs, miRNAs, and mRNAs was
constructed. Protein-coding and ncRNA genes in this network showed potential
immune and metabolic functions. A further analysis revealed two clinic-related modules
that showed a close correlation with metabolic and immune functions. RNAs in the two
modules were functionally validated to be associated with UCEC. The findings of this
study demonstrate an important clinical application for improving outcome prediction
for UCEC.

Keywords: dysregulated network, endometrial carcinoma, miRNA, lncRNA, integrative analysis, TCGA, immunity,
metabolism

INTRODUCTION

Cancer is one of the major public health problems worldwide and is the second leading cause
of death in the United States (Siegel et al., 2021). After the rapid development in healthcare,
the total decline in the cancer death rate has reached approximately 31% (Siegel et al., 2021).
Nonetheless, uterine corpus endometrial carcinoma (UCEC) is still one of the most common
gynecologic malignancies in many countries (Matteson et al., 2018). In the United States alone,
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there will be approximately 14,000 new UCEC patients and 4,000
deaths in the 2021, as predicted by Siegel et al. (Siegel et al., 2021).
Generally, UCEC is prevalent among postmenopausal women
due to the unstable level of estrogen (Chen et al., 2015). Different
risk factors, such as smoking, high blood pressure, and being
overweight, also contribute to the generation and development
of UCEC (Zhang et al., 2014). In particular, changes in molecular
levels are one factor contributing the development of UCEC (Li
et al., 2020). However, effective therapeutic targets are still scarce
in clinical practice.

Non-coding RNAs (ncRNAs), including microRNAs
(miRNAs) and long non-coding RNAs (lncRNAs), have been
regarded as transcriptional noise and useless due to their low
effective transcription and expression (Hyashizaki, 2004). Taking
advantage of the large-scale, next-generation transcriptomic
sequencing, more ncRNAs have been identified. In GENCODE
v29, there are 16,066 annotated lncRNA genes, 7,577 annotated
small ncRNA genes (e.g., miRNA) and thousands of other
ncRNA genes. In total, there are more than 30,000 annotated
ncRNA genes, which are more than protein-coding genes whose
annotated number is less than 20,000. Many ncRNAs have been
functionally associated with human diseases, such as cancers
(Gutschner and Diederichs, 2012). HOX antisense intergenic
RNA (HOXAIR), one of the most famous lncRNAs, has been
reported to be associated with metastases in colorectal, liver,
pancreatic, breast, and gastric cancers (Gupta et al., 2010; Kogo
et al., 2011; Yang et al., 2011). Furthermore, some ncRNAs have
been functionally related with UCEC. Wang found a six-miRNA
signature that can predict the survival of UCEC patients (Wang
et al., 2019). Many studies have investigated the pathogenesis
at genomic levels using the combination of different kinds of
molecules and have discovered clinical diagnostic and prognostic
biomarkers. It reported that miR-21 and lncRNA AWPPH are
associated with the poor prognosis of hepatocellular carcinoma
but regulate cancer cell chemosensitivity and proliferation
in triple-negative breast cancer (Liu et al., 2019). Dong et al.
revealed two patient survival-associated RNA sets, including
lncRNAs, miRNAs, and messenger RNAs (mRNAs), in invasive
breast carcinoma (Dong et al., 2020). Moreover, Liu et al.
identified six triplets of mRNA–lncRNA–miRNA that play a
function in UCEC (Liu et al., 2017) based on the expression
profiles. However, their underlying molecular mechanisms still
need to be uncovered.

In this study, to investigate the underlying molecular
mechanisms of the generation and development of UCEC, the
expression profiles of 537 UCEC and their 33 counterpart
normal samples were downloaded from the Cancer Genome
Atlas (TCGA). Three different kinds of RNAs, namely, lncRNAs,
miRNAs, and mRNAs, were extracted from the profiles. First,
a differential expression analysis was performed, followed by
a functional enrichment analysis, including a gene ontology
(GO) analysis, KEGG analysis, and gene set enrichment analysis
(GSEA). Then, a lncRNA–miRNA–mRNA dysregulated network
was constructed, and two modules related with the survival
time, metabolic function, and immune function were identified.
RNAs from each module have showed a functional role
in UCEC.

MATERIALS AND METHODS

Acquisition of RNA Sequencing Datasets
RNA sequencing datasets of 570 samples were downloaded
from TCGA1, including 537 UCEC samples and 33 normal
samples (Supplementary Table 1). Each sample contained
miRNAs, lncRNAs, and mRNAs simultaneously were used
for downstream analyses. The annotation from GENCODE
database (GENCODE v36) was used to extract lncRNAs
from the expression profile. Based on the annotation file, the
following biotypes were regarded as known lncRNAs: antisense,
lincRNA, lncRNA, processed_transcript, sense_intronic,
sense_overlapping, and TEC. The biotype “protein_coding” was
used to extract mRNAs from the expression profile. Finally,
19,597 mRNAs, 15,088 lncRNAs, and 188 miRNAs were used for
the downstream analysis.

Differential Expression Analysis
To remove biases, RNAs with an expression level in less than 10%
of the samples were ignored, followed by a differential expression
analysis with p-value < 0.05 and fold change > 2 using a t-test
(Ye et al., 2018). In total, 648 differentially expressed lncRNAs,
5,831 differentially expressed mRNAs, and 342 differentially
expressed miRNAs were identified (Supplementary Table 2).
Unsupervised clustering was performed, and heat maps were
drawn for differentially expressed lncRNAs, mRNAs, and
miRNAs using the R package pheatmap, separately. Moreover,
the R package Prcomp was used to conduct the principal
component analysis (PCA).

MiRNAs and Their Targets
MiRNA target sites were downloaded from one of the most
popular databases in the field, starBase v3.0 (Li et al., 2014),
which predicts the miRNA target using five algorithms, i.e.,
TargetScan (Lewis et al., 2005), miRanda (Enright et al., 2003),
Pictar2 (Krek et al., 2005), PITA (Kertesz et al., 2007), and RNA22
(Loher and Rigoutsos, 2012). MiRNAs play a function in RNA-
induced silencing complexes (RISCs), or the ribonucleoprotein
complexes (Fabian et al., 2010). The components of RISCs, i.e.,
Argonaute (AGO) family proteins, are the best characterized
protein elements and are central to RISC functions (Chekulaeva
and Filipowicz, 2009). Ultraviolet (UV) crosslinking and
immunoprecipitation (CLIP) is one of the useful techniques
in identifying specific protein–RNA interactions, including
identifying the AGO–RNA–miRNA complex to illustrate miRNA
functions (König et al., 2012). Thus, in this study, AGO CLIP-
Seq datasets downloaded from starBase v3.0 were used to identify
AGO binding sites. MiRNA-target pairs with at least one AGO
binding site were considered. Finally, 40,042 miRNA–lncRNA
and 1224,551 miRNA–mRNA regulatory relationships were used,
which include 3,228 lncRNAs, 413 miRNAs, and 14,645 mRNAs.

Functional Enrichment Analysis
To explore the functional roles of differentially expressed
molecules, GO and KEGG analyses were performed using

1https://portal.gdc.cancer.gov/
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clusterProfiler (Yu et al., 2012). For ncRNAs, we first calculated
the Pearson correlation coefficient between each ncRNA-
mRNA pair based on the expression value across the samples,
followed by the calculation of the average Pearson correlation
coefficient for each mRNA across ncRNAs. Then, the top
500 co-expressed mRNAs were used. Barplots were drawn
using ggplot2. To further investigate the functional roles of
the key RNAs, GSEA was also performed using clusterProfiler
(Yu et al., 2012).

To determine if genes in each immune (or metabolism)-
related pathway are enriched in each sample, the Gene Set
Variation Analysis (GSVA) (Hänzelmann et al., 2013) was
performed. Gene sets annotated in immune (or metabolism)-
related pathways were obtained from MSigDB2. GSVA scores
were calculated using the R package GSVA with the single-
sample GSEA method.

Construction of the Dysregulated
lncRNA–miRNA–mRNA Network
First, the miRNA–lncRNA and miRNA–mRNA interactions
from starBase v3.0 (Li et al., 2014) were obtained. Only
differentially expressed miRNAs, lncRNAs, and mRNAs
were considered for the downstream analysis. Then, the
dysregulated lncRNA–miRNA–mRNA network was constructed
based on the interactions. Afterward, a two-step filtering
was used: (1) The correlations between each miRNA-target
pair should be significant (p-value < 0.01 and | correlation
coefficient| > 0.3) across all samples using the Pearson
correlation coefficient. (2) Only miRNAs shared by mRNAs
and lncRNAs were used. Finally, a dysregulated network
was constructed containing 1243 interactions, including
323 mRNAs, 52 miRNAs, and 53 lncRNAs (Supplementary
Table 3). To identify functional modules, CytoCluster (Li et al.,
2017), a graphical algorithm, was used with the hierarchical
clustering algorithm in protein interaction networks (HC-
PIN) and default parameters. CytoCluster is a Cytoscape
plugin integrating six clustering algorithms, i.e., identifying
overlapping and hierarchical modules in protein interaction
networks (OH-PIN), identifying protein complex algorithm
(IPCA), clustering with overlapping neighborhood expansion
(ClusterONE), detecting complexes based on an uncertain
graph model (DCU), identifying protein complexes based on
maximal complex extension (IPC-MCE), and the Biological
Networks Gene Ontology (BinGO) function. CytoCluster is a
very popular algorithm used to identify functional modules,
predict protein complexes and network biomarkers, and visualize
clustering results.

Survival Analysis
The clinical data of all the UCEC and normal samples were
obtained from TCGA, and the survival time was extracted using
a customized Perl script. For each module, the samples were
clustered into two different groups via k-means clustering based
on the expression across the RNAs, followed by the comparison
of the survival durations between the two groups using a log-rank

2http://www.gsea-msigdb.org/gsea/msigdb

test. Finally, an R package survival was used to conduct the
statistical test.

RESULTS

Dysregulated RNAs Can be Used to
Distinguish UCEC Samples From Normal
Ones
The expression profiles of 570 samples for miRNAs, lncRNAs,
and mRNAs were downloaded from TCGA, which include
537 UCEC samples and 33 counterpart normal samples
(Supplementary Table 1). To investigate the underlying
molecular mechanism on how UCEC occurs and develops,
a differential expression analysis was performed for each
expression profile using a t-test with a p-value < 0.05 and
fold change > 2 as the cutoff (see section “Materials and
Methods”). A total of 5831 differentially expressed mRNAs
between the UCEC and normal samples were identified,
which include 2810 upregulated and 3021 downregulated
genes (Supplementary Table 2). Moreover, 648 differentially
expressed lncRNAs were identified, including 219 upregulated
and 428 downregulated lncRNAs (Supplementary Table 2).
We also identified 342 differentially expressed miRNAs, in
which 280 were upregulated and 62 were downregulated
(Supplementary Table 2).

To further investigate the differentially expressed mRNAs,
lncRNAs, and miRNAs between the UCEC and their counterpart
normal samples, an unsupervised hierarchical clustering analysis
was performed using the R package pheatmap. Each molecule can
clearly distinguish UCEC samples from their counterpart normal
samples (Figures 1A–C). Furthermore, PCA was conducted for
the differentially expressed lncRNAs, mRNAs, and miRNAs using
the R function prcomp. Again, the majority of the UCEC samples
and their counterpart normal samples were separated into two
groups (Figures 1D–F).

The known tumor suppressor lncRNA HAND2 Antisense
RNA 1 (HAND2-AS1) was identified as one of the differentially
expressed lncRNAs in high-grade serous ovarian carcinoma
(Yang et al., 2018). The significant downregulation in UCEC
indicated the potential role as a tumor suppressor in UCEC
(Figure 2A). Another lncRNA example is FRMD6 Antisense
RNA 2 (FRMD6-AS2), which is also downregulated in UCEC
(Figure 2B). Wang et al. reported the tumor suppressive effect of
this lncRNA in UCEC, whose expression is consistent here (Wang
et al., 2020). For the protein-coding gene, Homeobox protein
Hox-A11 (HOXA11) was significantly downregulated in UCEC
(Figure 2C) and was reported to play roles in malignant cancer
(Zhang et al., 2018). WT1 was also downregulated in UCEC
(Figure 2D), which was reported to be a prognostic marker in
advanced serous epithelial ovarian carcinoma (Netinatsunthorn
et al., 2006). MicroRNA-21 (miR-21), which was upregulated in
UCEC (Figure 2E), is also a cancer biomarker (Bautista-Sánchez
et al., 2020). The suppression role for the proliferation and
metastasis of miR-522 in non-small cell lung cancer was reported
by Zhang et al. (2016), in which miR-522 was upregulated
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FIGURE 1 | Clustering based on differentially expressed molecules. Heatmap of clustering for UCEC and the normal samples based on differentially expressed
lncRNAs (A) mRNAs (B) and miRNAs (C). PCA analysis for differentially expressed lncRNAs (D) mRNAs (E) and miRNAs (F).

in UCEC (Figure 2F). All these data indicate the potential
functional roles of these key RNA molecules.

Dysregulated Genes Are Highly Enriched
in Cancer- and Metabolism-Related
Pathways
As we mentioned above, genes playing an important function
in tumor generation and development were identified to be up-
or downregulated in UCEC. To determine the functional roles
for all differentially expressed mRNAs, an unbiased functional
enrichment analysis for GO using clusterProfiler (Yu et al.,
2012) was performed. Cancer hallmark-related terms were
enriched (Figure 3A). Apoptotic processes, such as “dendritic
cell apoptotic process,” and cell proliferation-related pathways,
such as “mesenchymal cell proliferation” and “regulation of
mesenchymal cell proliferation,” were enriched. Moreover,
immunity-related terms were enriched, such as “establishment of
T-cell polarity.”

A functional enrichment analysis for KEGG was also
performed by the UCEC-related genes (Figure 3B).
Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein
kinase B (Akt) pathway, which is associated with cellular
quiescence, proliferation, cancer, and longevity, is an
intracellular signaling pathway of great importance in the
cell cycle process. It was enriched by UCEC-related genes.
The pathway “proteoglycans in cancer” was also enriched,
which suggested the functional roles of differentially expressed
mRNAs in cancer.

To further investigate the roles of these UCEC-related genes,
GSEA was performed using clusterProfiler (Yu et al., 2012;
Figures 3C–F). The glycolytic pathway, whose high level in
tumors, including UCEC, exhibits specific driver genes in most
cancer types (Wei et al., 2020), was enriched by upregulated
genes in UCEC (Figure 3D). Upregulated genes in UCEC
were also enriched in a hypoxia-related pathway (Ruan et al.,
2009; Figure 3E). Moreover, known tumor-related pathways,
i.e., G2M checkpoint (Figure 3C) and TNFA (Figure 3F)
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FIGURE 2 | Expression of example molecules in UCEC and the normal samples. The comparison of gene expression between tumor sample and the normal sample
for differentially expressed lncRNAs HAND2-AS1 (A) and FRMD6-AS2 (B), differentially expressed genes HOXA11 (C) and WT1 (D), and differentially expressed
miRNAs miR-21 (E) and miR-522 (F).

related terms, were enriched by up- and downregulated genes,
respectively.

Dysregulated ncRNAs Reveal Immune
and Metabolic Functions
NcRNAs have previously been regarded as useless for a long time.
However, recently, more studies have attempted to explore the
function of ncRNAs (Jiang et al., 2019) and showed functional
ncRNAs in tumors (Dong et al., 2020). To determine the
functional roles of differentially expressed lncRNAs in UCEC,
GO and KEGG analyses were performed (Figures 4A,B). For
the GO analysis, immunity-related terms, such as “neutrophil-
mediated immunity,” “neutrophil degranulation,” “myeloid
leukocyte-mediated immunity,” “leukocyte degranulation,”
“myeloid leukocyte activation” and “interleukin-1-mediated
signaling pathway” were enriched (Figure 4A). For the KEGG
analysis, metabolic pathways, such as “central carbon metabolism

in cancer,” “glycolysis/gluconeogenesis,” “glucagon signaling
pathway,” “oxidative phosphorylation,” and “thermogenesis”
were enriched by these lncRNAs (Figure 4B).

In addition, to further identify the roles of these lncRNAs,
GSEA was also performed (Figures 4C–F). Metabolic features,
such as “TCA cycle,” “Hallmark reactive oxygen species
pathway,” and “myeloid-derived suppressor cell” were enriched
(Figures 4C–E). The immunity-related feature “T-cell memory
(Tcm) CD8” was also enriched (Figure 4F). Interestingly, all these
features were enriched by downregulated lncRNAs in UCEC,
suggesting the immune and metabolic functional roles of these
downregulated lncRNAs.

Besides lncRNAs, miRNAs were also reported to play essential
roles in tumor development (Qiu et al., 2020). Thus, to determine
the functional role of differentially expressed miRNAs, the same
analyses performed on lncRNAs were performed for miRNAs.
Again, metabolism and immunity-related GO terms and KEGG
pathways were enriched (Figures 5A,B). Metabolic GO terms,
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FIGURE 3 | Functional enrichment analysis for differentially expressed mRNAs. (A) Enriched GO terms. (B) Enriched KEGG pathways. (C–F) Results of GSEA
analysis.

such as “positive regulation of MAPK cascade” and “regulation
of ERK1 and ERK2 cascade,” and immunity-related terms,
such as “leukocyte activation involved in immune response,”
“myeloid cell activation involved in immune response” and
“neutrophil-mediated immunity” were enriched. Similarly, GSEA
also showed the enrichment of pathways involving in cancer and
metabolic diseases (Figures 5C–F). The DNA repair pathway,
which has been reported to be the target for cancer therapies

(Helleday et al., 2008) and plays roles in metabolic diseases
(Hoeijmakers, 2009), was enriched by upregulated miRNAs in
UCEC (Figure 5C). The E2F pathway was also enriched by
upregulated miRNAs in UCEC (Figure 5D). E2F plays a key
role in tumor suppression through a specific regulation of tumor
suppressor genes (Kurayoshi et al., 2018). Furthermore, estrogen-
related and G2M pathways were enriched by downregulated
and upregulated miRNAs in UCEC, respectively (Figures 5E,F).
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FIGURE 4 | Functional enrichment analysis for differentially expressed lncRNAs. (A) Enriched GO terms. (B) Enriched KEGG pathways. (C–F) Results of GSEA
analysis.

Estrogens show function in controlling the energy balance and
glucose homeostasis (Mauvais-Jarvis et al., 2013) and play roles
in different cancer types (Whiteside, 2008).

Construction of the Dysregulated
lncRNA–miRNA–mRNA Network
Based on the interactions between miRNA and its targets
downloaded from starBase v3.0 (Li et al., 2014), a dysregulated

network containing differentially expressed lncRNAs, miRNAs,
and mRNAs was constructed. To provide more confident
interactions between miRNA and its targets, AGO CLIP-
Seq was used, followed by several filtering steps (see section
“Materials and Methods”). A final dysregulated lncRNA–
miRNA–mRNA network was constructed with 1243 interactions
and 428 differentially expressed molecules, including 323
mRNAs, 53 miRNAs, and 53 lncRNAs (Figure 6A and
Supplementary Table 3).
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FIGURE 5 | Functional enrichment analysis for differentially expressed miRNAs. (A) Enriched GO terms. (B) Enriched KEGG pathways. (C–F) Results of GSEA
analysis.

A biological network is a small-world network (Latora
and Marchiori, 2001) or scale-free network (Latora and
Marchiori, 2001). To test whether our dysregulated network
is a scale-free network, the degree distribution was analyzed
(Supplementary Figure 1). Approximately 90% of RNAs have
less than five edges, whereas only approximately 5% of RNAs
have more than 10 interactions. The data support that our
dysregulated network is a scale-free network and a meaningful

biological network. To further investigate the network, a GO
analysis was performed. Cancer hallmark-related functions
were enriched, such as the migration-related term “epithelial
cell migration” and proliferation-related term “regulation of
epithelial cell proliferation” (Figure 6B). Moreover, pathways
involved in the metabolism were enriched (Figure 6B). The
Wnt signaling pathway has been shown to direct glycolysis
and angiogenesis in colon cancer (Pate et al., 2014). In
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FIGURE 6 | The dysregulated lncRNA-miRNA-mRNA network. (A) The network containing differentially expression mRNA, lncRNA and miRNA. (B) Enriched GO
terms. (C) Enriched KEGG pathways.

addition, the KEGG pathway analysis was performed. Pathways
playing function in cancers, such as “proteoglycans in cancer,”
“microRNAs in cancer” and “transcriptional misregulation in
cancer” were enriched by the differentially expressed RNAs
in the dysregulated network (Figure 6C). The FoxO pathway
was also enriched (Figure 6C), which was reported to be
a therapeutic target in cancers (Farhan et al., 2017) and
regulate glucose and lipid metabolism (Lee and Dong, 2017). All

these data imply the immune and metabolic functions of our
dysregulated network.

The Dysregulated Networks Showed
Clinical-Related Modules
To maximize the utility of the dysregulated lncRNA–
miRNA–mRNA network, the Cytoscape plugin CytoCluster
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FIGURE 7 | Functional modules identified from the dysregulated network. (A) The first module. (B) The second module. (C) Kaplan-Meier plot of survival for the first
module. (D) Kaplan-Meier plot of survival for the second module. (E) Expression patterns of the first modules in normal and cancer samples. The average expression
value of each molecule crossing all normal/cancer samples was used. (F) Expression patterns of the second modules in normal and cancer samples.

(Li et al., 2017) was used to identify functional modules from
the dysregulated network. CytoCluster is a popular tool used
to identify functional modules by integrating seven clustering
algorithms, namely, HC-PIN (Wang et al., 2011), OH-PIN
(Wang et al., 2012), IPCA (Li et al., 2008), ClusterONE (Nepusz
et al., 2012), DCU (Zhao et al., 2014), IPC-MCE (Li et al., 2010),
and BinGO function. Accordingly, two modules were identified

(Figures 7A,B). The first module contained 7 interactions with 5
mRNAs, 2 lncRNAs, and 1 miRNA. The second one consisted of
14 interactions with 8 mRNAs, 4 lncRNAs, and 3 miRNAs.

To explore the biological function of the two modules, the
associations of the modules with the patient survival time
were evaluated by checking the difference of the survival time
between two subpopulations from all UCEC patients divided
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FIGURE 8 | The modules correlated with immunity and metabolism. (A,B) the correlation between the first module and pathway IL2-STAT5 (A), and inflammatory
(B). Each dot presents a sample. X axis presents the GSVA score, and Y axis presents the normalized expression value. The average expression value of the first
module for each sample was used. (C,D) the comparison between two subpopulations from Figure 7C in fatty acid metabolism pathway (C) and glycolysis pathway
(D). Y axis presents the GSVA score. (E,F) the correlation between the second module and pathway oxidative phosphorylation (E), and unfolded protein (F). (G,H)
the comparison between two sub-populations from Figure 7D in interferon gamma pathway (G) and IL6-JAK-STAT3 pathway (D).

by the k-means clustering. Both modules showed a significant
correlation with the survival time (Figures 7C,D). Next, the
Wilcoxon rank-sum test was performed based on the expression
values of RNAs between the tumor and normal samples. The
results showed that both modules had higher expression in the
UCEC samples compared with their counterpart normal samples
(Figures 7E,F).

The Clinical-Related Modules Are
Correlated With Metabolism and
Immunology
As immunity- and metabolism-related functions were connected
to the dysregulated RNAs in the network, we focused on these
related pathways. To determine if the dysregulated RNAs in the

two modules are correlated with the immune and metabolic
functions, GSVA (Hänzelmann et al., 2013) was performed for
each sample. GSVA provides increased power to detect subtle
pathway activity changes over a sample population in comparison
to corresponding methods.

The first module is positively correlated with interleukin-
2 and STAT5 pathway (Figure 8A), which was reported to
regulate T-cell development and function (Mahmud et al., 2013).
A known immune inflammatory pathway was also positively
correlated in the first module (Figure 8B). Furthermore, two
classical metabolic pathways, i.e., fatty acid metabolism pathway
and glycolysis pathway, showed significantly different GSVA
scores between the two subpopulations with different survival
times in the module shown in Figures 7C, 8C,D. The same
analyses were also performed to the second module. Oxidative
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FIGURE 9 | The correlations between RNAs and pathways. (A,B) Correlations between pathway and RNAs from the first module (A) and the second module (B).

phosphorylation, a classic metabolic pathway, showed a negative
correlation with the second module (Figure 8E). The unfolded
protein pathway, which showed functional roles in different
cancer types (McGrath et al., 2018) and metabolic pathways
(Lee and Ozcan, 2014), was positively correlated with the second
module (Figure 8F). The interferon gamma pathway, which
affects tumor progression and regression in different cancers
(Jorgovanovic et al., 2020) and also metabolic signalings (Siska
and Rathmell, 2016), showed significantly different GSVA scores
between the two subpopulations with different survival times
in the second module shown in Figures 7D, 8G. A similar
scenario occurred in the IL6/JAK/STAT3 pathway, a well-known
pathway playing a significant role in cancers (Johnson et al., 2018;
Figure 8H).

To further check the function of the two modules, the
correlation between each RNA in the modules and the pathways

involved in the immune and metabolic functions was examined
(Figures 9A,B). Overall, SP11, miR-146a, AC006333.2, and TLR4
from the first module showed a negative correlation with the
metabolic and immune functions (Figure 9A). Conversely, the
other four RNAs in the first module more likely have a positive
correlation with the metabolic and immune functions. In the
second module, several RNAs, especially for E2F2, showed a
negative correlation with the metabolic and immune functions
(Figure 9B). E2F2 was highly negatively correlated with pathways
involved in G2M checkpoints, E2F targets, and mitotic spindles.

DISCUSSION

In this study, a dysregulated lncRNA–miRNA–mRNA network
was constructed, in which all RNAs were differentially expressed
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in UCEC and enriched in cancer and metabolic functions. An
integrative analysis on transcriptome data from 570 samples was
performed at three different RNA levels, i.e., lncRNAs, miRNAs,
and mRNAs. Further analysis identified two clinical-related
modules, which showed correlation with metabolic and immune
functions. Importantly, some elements from the two modules
have been functionally related with UCEC. This framework will
help reveal the underlying mechanism for the generation and
development of UCEC.

NcRNAs, which constitute more than 90% of RNAs made
from the human genome, have attracted increasing attention
as more ncRNAs have been functionally validated in different
conditions, particularly in human diseases, such as cancers
(Anastasiadou et al., 2017; Slack and Chinnaiyan, 2019). In this
study, to better determine the potential roles of ncRNAs in
UCEC, we focused on dysregulated lncRNAs and miRNAs. By
taking advantage of state-of-the-art technologies, we integrated
dysregulated lncRNAs, miRNAs, and mRNAs into a single
dysregulated network, which is a scale-free and biologically
meaningful network. Based on the dysregulated lncRNA–
miRNA–mRNA network, a functional enrichment analysis for
GO and KEGG was performed, and the results showed that
metabolic and immune functions that the network may be
involved in were enriched.

Further analysis identified two modules including
dysregulated lncRNAs, miRNAs, and mRNAs using a Cytoscape
plugin CytoCluster. By integrating the corresponding clinical
data, we found that the two modules were survival time related,
and both modules were overexpressed in the UCEC samples,
indicating the potential carcinogenic roles of some overexpressed
elements in the two modules. Through GSVA, we further showed
that both modules were immunity and metabolism related.
Nevertheless, the biggest limitation is that all the conclusions
were drawn without any experiments to support them. Although
some elements in the two modules have been functionally
validated in UCEC, there are genes (i.e., TLR4, FAM110B,
LINC00663, and LINC00261) in the two modules that have not

been reported in UCEC, and further experimental and clinical
validations are necessary for these RNAs with potential functional
roles in UCEC. In the future, we would select one of the genes
for further investigation. The counterpart functional experiments
such as knockdown and overexpression assays to investigate the
mechanism on how the gene paly function in UCEC would be
performed. Our study provides new insights into the outcome
prediction and will help in the precision medicine for UCEC.
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