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Due to their fundamentally different biology, archaea are consistently overlooked
in conventional microbiome surveys. Using amplicon sequencing, we evaluated
methodological set-ups to detect archaea in samples from five different body sites:
respiratory tract (nasal cavity), digestive tract (mouth, appendix, and stool) and skin.
With optimized protocols, the detection of archaeal ribosomal sequence variants (RSVs)
was increased from one (found in currently used, so-called “universal” approach) to 81
RSVs in a representative sample set. The results from this extensive primer-evaluation
led to the identification of the primer pair combination 344f-1041R/519F-806R which
performed superior for the analysis of the archaeome of gastrointestinal tract, oral cavity
and skin. The proposed protocol might not only prove useful for analyzing the human
archaeome in more detail but could also be used for other holobiont samples.

Keywords: human archaeome, amplicon sequencing, human body, detection, methodology

INTRODUCTION

The importance of microbial communities to human and environmental health motivates
microbiome research to uncover their diversity and function. While the era of metagenomics and
metatranscriptomics has begun, 16S rRNA gene amplicon sequencing still remains one of the most
used methods to explore microbial communities, mainly due to the relatively low cost, the number
of available pipelines for data analysis, and the comparably low computational power required.

It has been recognized that methodological issues in sample processing can significantly
influence the outcome of microbiome studies, affecting comparability between different studies
(Clooney et al., 2016; de la Cuesta-Zuluaga and Escobar, 2016) or leading to an over-and/or
under-estimation of certain microbial clades (Eloe-Fadrosh et al., 2016; Eisenstein, 2018). For
better comparability among different studies, standard operational procedures for sampling, storing
samples, DNA extraction, amplification and analysis were set-up [e.g., the Earth Microbiome
Project (Gilbert et al., 2014) and the Human Microbiome Project (Methé et al., 2012)]. This includes
the use of so-called “universal primers” (Caporaso et al., 2012; Klindworth et al., 2013; Walters et al.,
2016), to maximally cover the prokaryotic diversity.

The human microbiome consists of bacteria, archaea, eukaryotes, and viruses. The
overwhelming majority of microbiome studies is bacteria-centric, but in recent years, the
number of human microbiome studies targeting eukaryotes (e.g., fungi), and viruses has
increased (Seed, 2014; Zou et al., 2016; Halwachs et al., 2017). However, most microbiome
studies still overlook the human archaeome (Eisenstein, 2018; Moissl-Eichinger et al., 2018).
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A few of the underlying reasons for the under-representation
of archaea in microbiome studies are: (i) primer mismatches
of the “universal primers” (Raymann et al., 2017); (ii) low
abundance of the archaeal DNA in the studied samples (Mahnert
et al., 2018); (iii) improper DNA extraction methods (Ghavami
et al., 2015); and (iv) the incompleteness of the 16S rRNA gene
reference databases due to missing isolates, especially for the
DPANN superphylum (Castelle et al., 2015; Mahnert et al., 2018).
Moreover, the clinical interest on archaea has been comparatively
insignificant, as no archaeal pathogens have been identified
(Gill et al., 2006).

Nevertheless, archaea (e.g., methanogens) are among the
commensal microorganisms inhabiting the human body. Such
archaea are regularly detected in the oral cavity and the
gastrointestinal tract (Horz and Conrads, 2011; Gaci et al.,
2014; Chaudhary et al., 2015; Nkamga et al., 2017). In the
latter, they can even outnumber the most abundant bacterial
species by as much as 14%, as revealed in a shotgun-based
metagenomic analysis of gut samples of 96 healthy Russian adults
(Tyakht et al., 2013).

Most studies of archaea in humans use either cultivation or
qPCR-based detection methods (Dridi et al., 2009, 2012; Borrel
et al., 2017; Grine et al., 2017; Koskinen et al., 2017; van de Pol
et al., 2017; Wampach et al., 2017). Only a few 16S rRNA-based
archaea-centric studies are available (Mihajlovski et al., 2010;
Hoffmann et al., 2013; Koskinen et al., 2017; Moissl-Eichinger
et al., 2017). These studies show that archaea are also present
in the human respiratory tract (Koskinen et al., 2017) and on
human skin in considerable amounts (Probst et al., 2013; Moissl-
Eichinger et al., 2017).

It has also been shown that archaea reveal body site-specific
patterns as do human-associated bacteria (Koskinen et al.,
2017). For example, the gastrointestinal tract is dominated
by methanogens, the skin by Thaumarchaeota, the lungs
by Woesearchaeota, and the nasal archaeal communities
are composed of a mixture of mainly methanogens and
Thaumarchaeota. Together, these data demonstrate a substantial
presence of archaea in some, or even all, human tissues.

As a logic progression from our previous studies, we have
begun to optimize the detection of archaea commensals in
humans. Specifically, we tested, in silico and experimentally, 27
different 16S rRNA gene-targeting primer pair combinations
suitable for NGS amplicon sequencing with the goal of detecting
the archaeal diversity in samples from different body sites,
including: respiratory tract (i.e., nasal samples), digestive tract
(i.e., oral biofilms, appendix biopsy specimens, and stool
samples), and skin.

MATERIALS AND METHODS

Selection of Samples and DNA
Extraction
Representative samples from various body sites including the
respiratory tract (nasal swabs), the digestive tract (oral biofilm,
appendix biopsy, and stool samples) and skin swabs were selected
for the comparison of amplification-based protocols.

Research involving human material was performed in
accordance with the Declaration of Helsinki and was
approved by the local ethics committee (Medical University
of Graz, Graz, Austria).

Microbiome studies focused on bacteria have already been
published using some of the samples used in this present study
(Santigli et al., 2016; see Klymiuk et al., 2016; Koskinen et al.,
2018). Details of the ethics approvals are provided in these prior
studies for oral, nasal, and skin sample use.

Appendix and stool samples have been obtained covered
by the ethics votes 25-469 ex12/13 and 27-151 ex 14/15
(informed consent was obtained from all participants or their
parent/legal guardian).

Nasal swabs (n = 7) were obtained from healthy adult
volunteers (18–40 years old) and were taken from the olfactory
mucosa located at the ceiling of the nasal cavity using ultra
minitip nylon flocked swabs (Copan, Brescia, Italy) (Koskinen
et al., 2018). Oral samples (n = 7) were obtained using a
standardized protocol for paper point sampling from healthy
children (10 years old) who participated in a microbiome study
investigating the subgingival biofilm formation (Santigli et al.,
2016, 2017). Appendix samples (n = 6) were obtained during
pediatric appendectomies from children (7–12 years old) with
either acute or ulcerous appendicitis. Stool samples (n = 5) were
obtained from healthy adult volunteers (18–40 years old) (Bagga
et al., 2018), and from one patient (68 years old) with above
average methane production after metronidazole treatment. Skin
samples (n = 7) were obtained from healthy adult volunteers
(18–40 years old) from either the back (n = 1) or the left
forearm (n = 6) using BD Culture SwabsTM (Franklin Lakes,
NJ, United States).

Sample set 1 (one representative sample from each body site:
nasal, oral, appendix, stool from patient with high methane
production, and skin from the back) was used to initially evaluate
the primers and methods, whereas sample set 2 (6 nasal samples,
6 oral samples, 5 appendices, 5 stool samples, and 7 skin samples)
was then used for assessing the archaeal diversity, based on the
chosen, optimal protocol.

In all cases, the genomic DNA was extracted by a combination
of mechanical and enzymatic lysis. However, depending on
the sample type, different protocols were used: for the stool
samples approx. 200 mg of sample has been used for DNA
extraction using the E.Z.N.A. stool DNA kit according to
the manufacturer’s instruction. The DNA from the appendix
samples was obtained using the AllPrep DNA/RNA/Protein
Mini Kit (QIAGEN), before the DNA extraction, small
pieces of cryotissue were homogenized 3 times for 30 s
at 6500 rpm using the MagNALyzer R© instrument (Roche
Molecular Systems) with buffer RTL and β-mercaptoethanol
(according to the manufacturer’s instructions). For the nasal
and skin samples from the forearm, the DNA was extracted
using the FastDNA Spin Kit (MP Biomedicals, Germany)
according to the provided instructions. The DNA from the
oral samples and from the skin samples from the back were
isolated using the MagnaPure LC DNA Isolation Kit III
(Bacteria, Fungi; Roche, Mannheim, Germany) as described by
Klymiuk et al. (2016) and Santigli et al. (2016).
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16S rRNA Gene Primer Selection and
Pre-analysis in silico Evaluation
Different primer pairs targeting the archaeal 16S rRNA gene
region have been selected from recent publications (Klindworth
et al., 2013; Koskinen et al., 2017). The main criteria for
selection were: (a) specificity for archaea in silico; (b) low or no
amplification of eukaryotic DNA; (c) amplicon length between
150 to 300 bp, suitable for NGS such as Illumina MiSeq. In
addition, three “universal” primer pairs (Caporaso et al., 2012;
Klindworth et al., 2013; Walters et al., 2016) were tested in parallel
to determine their efficiency in detecting archaea in human
samples. Full information on the selected primer pairs is given
in Table 1.

In silico evaluation of the selected primer pairs was performed
using the online tool TestPrime1.0 (Klindworth et al., 2013)
and the non-redundant SILVA database SSU132 (Quast et al.,
2013). Two of the primers (344F and 519F) were also tested
using TestProbe 3.0 (Klindworth et al., 2013) and the SILVA
database SSU132 to assess their individual coverage for the
archaeal domain. These two primers were further tested either
due to low coverage of the Thaumarchaeota domain (such
as primer combinations including the 344F primer) or due
to their additional coverage of non-archaeal domains (primer
combinations including the 519F).

PCR and Library Preparation
For archaea-targeting PCR, a nested approach was chosen
to increase the specificity for archaea and to avoid the
formation of primer dimers caused by the tag attached to the
primers, necessary for Illumina sequencing (Peng et al., 2015;
Koskinen et al., 2017). Due to the high background DNA from
human tissues, the nested approach has proven useful in a
variety of samples.

In addition to the nested approach, a standard PCR was
performed with three different universal primer pairs (515F-
806uR, 515FB-806RB, and 519F-785R), and one archaeal primer
pair (519F-806R) for comparative reasons, and to test if a
universal approach is capable to cover archaea in human samples
in sufficient depth. All primer combinations (in total 27) used for
the PCR reactions are provided in Table 2.

For the first PCR, each reaction was performed in a final
volume of 20 µl containing: TAKARA Ex Taq R© buffer with
MgCl2 (10 X; Takara Bio Inc., Tokyo, Japan), primers 500 nM,
BSA (Roche Lifescience, Basel, Switzerland) 1 mg/ml, dNTP
mix 200 µM, TAKARA Ex Taq R© Polymerase 0.5 U, water
(Lichrosolv R©; Merck, Darmstadt, Germany), and DNA template
(1–50 ng/µl).

After the first PCR, the resulting amplicons were purified
to remove primer remnants. This purification was performed
with three different kits to compare the different yields and
efficiencies, namely MinElute PCR Purification kit (Qiagen;
Hilden, Germany), Monarch R© PCR & DNA Cleanup Kit (5 µg)
(New England Biolabs GmbH; Ipswich, United States), or
innuPREP DOUBLEpure Kit (Analytik Jena, Germany) as
indicated in Table 2. The purified PCR product was eluted in
10 µl water (Lichrosolv R©; Merck, Darmstadt, Germany).

From the resulting, purified PCR products, 2 µl were
transferred into a subsequent 2nd PCR containing the following
mixture: TAKARA Ex Taq R© buffer with MgCl2 (10 X; Takara Bio
Inc., Tokyo, Japan), primers 500 nM, BSA (Roche Lifescience,
Basel, Switzerland) 1 mg/ml, dNTP mix 200 µM, TAKARA
Ex Taq R© Polymerase 0.5 U, and water (Lichrosolv R©; Merck,
Darmstadt, Germany) up to a volume of 25 µL.

The PCR cycling conditions are listed in Table 3, according
to the primer pairs used. For all primer pairs, annealing
temperatures were either determined experimentally by gradient
PCR or adopted from literature.

Sample set 2 was amplified using the primer combination
344F-1041R/519F-806R. For the first PCR, each reaction was
performed in a final volume of 20 µl as described above. After the
first PCR, the PCR products were purified using Monarch R© PCR
& DNA Cleanup Kit (5 µg; New England Biolabs GmbH). For
the second PCR, the final volume was 25 µl, as described above,
only the volume of the DNA template varied: 2 µl purified PCR
product for stool and nasal samples, 4 µl for all other samples.

Next Generation Sequencing,
Bioinformatics, and Statistical Analyses
Amplicons were sequenced at the ZMF Core Facility Molecular
Biology in Graz, Austria, using the Illumina MiSeq platform
(Klymiuk et al., 2016). The MiSeq amplicon sequence data was
deposited in the European Nucleotide Archive under the study
accession number PRJEB27023.

Data processing for the obtained MiSeq data was performed
using the open source package DADA2 (Divisive Amplicon
Denoising Algorithm) (Callahan et al., 2016) as described
previously (Mora et al., 2016). Shortly, the DADA2 turns
paired-end fastq files into merged, denoised, chimera-free,
and inferred sample sequences called RSVs. RSVs were
classified using the SILVA v128 database as a reference
(Quast et al., 2013). In the resulting RSV table, each row
corresponds to a non-chimeric inferred sample sequence with
a separate taxonomic classification. RSV tables are given in
Supplementary Tables S1, S2.

Negative controls (e.g., extraction controls and no-template
controls) were included during PCR amplification. The
RSVs overlapping the negative controls and samples were
either subtracted or completely removed from the data
sets. RSVs detected in the negative controls are provided in
Supplementary Table S3.

Processing of sequencing data was performed using the in-
house Galaxy set-up (Klymiuk et al., 2016) and subsequent
statistical analyses were performed in R version 3.4.3 (R Core
Team, 2013). Samples were rarefied to 500 reads and alpha
diversity was calculated using the Shannon index. Differences
between the archaeal diversity indices were tested using Wilcoxon
Rank Test. The diversity of the archaeal communities within
sample set 2 was determined using two diversity matrices
(Shannon and richness). Analysis of variance (ANOVA) was
performed to test for differences in the archaeal diversity based on
the body location. Principal coordinates analysis (PCoA) based
on Bray-Curtis distance was used to visualize differences between
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TABLE 1 | Primer selection and results of the pre-analysis in silico evaluation of all primer pairs used.

Primer
pair

Name Primer name∗ Sequence (5′– >3′) Fragment size (bp) 0 mismatch 1 mismatch

Archaea Bacteria Eukarya Archaea Bacteria Eukarya

1 344F S-D-Arch-0344-
a-S-20

ACGGGGYGCAGCAGGCGCGA 571 46.1% 0.0% 0.0% 67.4% 0.0% 0.0%

915R S-D-Arch-0911-
a-A-20

GTGCTCCCCCGCCAATTCCT

2 349F S-D-Arch-0349-
a-S-17

GYGCASCAGKCGMGAAW 566 71.8% 0.0% 0.0% 86.1% 0.0% 0.0%

915R S-D-Arch-0911-
a-A-20

GTGCTCCCCCGCCAATTCCT

3 344F S-D-Arch-0344-
a-S-20

ACGGGGYGCAGCAGGCGCGA 697 51.5% 0.0% 0.0% 72.10% 0.0% 0.0%

1041R S-D-Arch-1041-
a-A-18

GGCCATGCACCWCCTCTC

4 349F S-D-Arch-0349-
a-S-17

GYGCASCAGKCGMGAAW 692 71.2% 0.0% 0.0% 88.90% 0.0% 0.0%

1041R S-D-Arch-1041-
a-A-18

GGCCATGCACCWCCTCTC

5 519F S-D-Arch-0519-
a-S-15

CAGCMGCCGCGGTAA 522 79.3% 0.0% 0.0% 93.4% 0.0% 0.0%

1041R S-D-Arch-1041-
a-A-18

GGCCATGCACCWCCTCTC

6 344F S-D-Arch-0344-
a-S-20

ACGGGGYGCAGCAGGCGCGA 462 48.3% 0.0% 0.0% 70.6% 0.0% 0.0%

806R S-D-Arch-0786-
a-A-20

GGACTACVSGGGTATCTAAT

7 349F S-D-Arch-0349-
a-S-17

GYGCASCAGKCGMGAAW 457 75.2% 0.0% 0.0% 89.9% 0.0% 0.0%

806R S-D-Arch-0786-
a-A-20

GGACTACVSGGGTATCTAAT

8 519F S-D-Arch-0519-
a-S-15

CAGCMGCCGCGGTAA 287 85.6% 6.8% 0.0% 94.9% 90.8 0.1%

806R S-D-Arch-0786-
a-A-20

GGACTACVSGGGTATCTAAT

9 349F S-D-Arch-0349-
a-S-17

GYGCASCAGKCGMGAAW 170 79.3% 0.0% 0.0% 91.7% 0.0% 0.1%

519R S-D-Arch-0519-
a-A-16

TTACCGCGGCKGCTG

10 519F S-D-Arch-0519-
a-S-15

CAGCMGCCGCGGTAA 266 88.9% 88.8% 0.6% 95.1% 94.9% 1.2%

785R S-D-Bact-0785-
b-A-18

TACNVGGGTATCTAATCC

11 515F 515F-original GTGCCAGCMGCCGCGGTAA 291 52.9% 86.8% 0.0% 94.3% 93.8% 0.3%

806uR 806R-original GGACTACHVGGGTWTCTAAT

12 515FB 515F-modified GTGYCAGCMGCCGCGGTAA 291 85.7% 87.7% 0.0% 95.1% 93.9% 1.4%

806RB 806R-modified GGACTACNVGGGTWTCTAAT

Coverage of Archaea, Bacteria and Eukarya is given in percentages, depending on whether no or one mismatch was allowed (last base at the 3′ end
excluded for mismatch). ∗According to Klindworth et al. (2013). Designated “universal” primers (primer pairs 10–12) are indicated in bold letters.

the samples from different body site. Redundancy discrimination
analysis (RDA) was used to analyze the association between
archaeal community composition and the body site location.
RDA, alpha diversity and PCoA analysis were performed using
Calypso Version 8.62 (Zakrzewski et al., 2016). The RSV tables
were used to summarize taxon abundance at different taxonomic
levels. The taxonomic profiles obtained at genus level for samples
with more than 100 reads were used to generate bar graphs.

A phylogenetic tree was constructed with the obtained
archaeal RSVs from sample set 1. The tree-dataset included
the RSVs from the universal approaches (515F-806uR, 515FB-
806RB, and 519F-785R), the archaeal primer pair 519F-806R,
and from the archaeal specific primer pair combination 344F-
1041R/519F-806R. The alignment was performed using the
SILVA SINA (Pruesse et al., 2012) and the five most closely related
available sequences (neighbors) were downloaded together with
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TABLE 2 | displays all primer pair combinations used for the first and the second
PCR of the nested approach and the “universal” PCR.

PCR # Primer combination 1st PCR Primer combination 2nd PCR

PCR21 349F-915R Illu 349F-Illu519R

PCR22 349F-915R Illu 519F-Illu785R

PCR23 349F-915R Illu 519F-Illu806R

PCR31 344F-1041R Illu 349F-Illu519R

PCR33 344F-1041R Illu 519F-Illu785R

PCR34 344F-1041R Illu 519F-Illu806R

PCR41 349F-1041R Illu 349F-Illu519R

PCR42 349F-1041R Illu 519F-Illu785R

PCR43 349F-1041R Illu 519F-Illu806R

PCR61 349F-806R Illu 349F-Illu519R

PCR62 349F-806R Illu 519F-Illu785R

PCR63 349F-806R Illu 519F-Illu806R

PCR71 519F-1041R Illu 519F-Illu785R

PCR72 519F-1041R Illu 519F-Illu806R

PCR81 519F-806R Illu 519F-Illu785R

PCR82 519F-806R Illu 519F-Illu806R

PCR91 344F-519R Illu 349F-Illu519R

PCRQ1 344F-915R (QIAGEN) Illu 349F-Illu519R

PCRQ3 344F-915R (QIAGEN) Illu 519F-Illu785R

PCRQ4 344F-915R (QIAGEN) Illu 519F-Illu806R

PCRM1 344F-915R (NEB Monarch) Illu 349F-Illu519R

PCRM3 344F-915R (NEB Monarch) Illu 519F-Illu785R

PCRM4 344F-915R (NEB Monarch) Illu 519F-Illu806R

PCRA1 344F-915R (Analytik Jena) Illu 349F-Illu519R

PCRA3 344F-915R (Analytik Jena) Illu 519F-Illu785R

PCRA4 344F-915R (Analytik Jena) Illu 519F-Illu806R

PCRQ5 344F-806R (QIAGEN) Illu 349F-Illu519R

PCRQ6 344F-806R (QIAGEN) Illu 519F-Illu785R

PCRQ7 344F-806R (QIAGEN) Illu 519F-Illu806R

PCRM5 344F-806R (NEB Monarch) Illu 349F-Illu519R

PCRM6 344F-806R (NEB Monarch) Illu 519F-Illu785R

PCRM7 344F-806R (NEB Monarch) Illu 519F-Illu806R

PCR8-Uni n.a. Illu 515F-Illu806uR

PCR9-Uni n.a. Illu 515FB-Illu806RB

PCR10 n.a. Illu 519F-Illu806R

PCR11-Uni n.a. Illu 519F-Illu785R

If not indicated otherwise (in brackets), the first PCR was followed by a
purification of the PCR product by the MinElute PCR Purification kit (QIAGEN) kit.
n.a., not applicable.

the aligned sequences. All sequences were cropped to the same
length (276 nt, from position 545 nt to 821 nt) and used to
construct a tree based on maximum-likelihood algorithm using
MEGA7 (Kumar et al., 2016) with a bootstrap value of 500.
The Newick output was further processed with iTOL interactive
online platform (Letunic and Bork, 2007).

RESULTS

Primer pairs were evaluated with respect to the following
characteristics: high in silico specificity for archaeal 16S rRNA
genes, amplicon length of 150 to 300 bp (suitable for NGS), and

in vitro capability to amplify diverse archaeal 16S rRNA genes
from a variety of human specimens.

Besides archaea-specific primer pairs, two widely used
“universal” primers (Caporaso et al., 2012; Walters et al., 2016),
namely 515F-806uR (original) and 515FB-806RB (modified),
were evaluated as well to assess the potential of “universal”
primers to display archaeal diversity associated with the
human body.

Most Archaea-Targeting Primers Reveal
Good Coverage in silico
A total of 12 different primer pairs were evaluated in silico
(Table 1). Most primer pairs showed high coverage for the
archaeal domain ranging from 46% to 89% and revealed a high
domain-specificity (8 of 12 primer pairs showed no matching
outside of the archaeal domain). When one mismatch per primer
was allowed, the coverage increased (67% to 95%).

The designated archaeal primer pair 519F-806R was found to
target additional sequences within the Bacteria and Eukarya. For
instance, when one mismatch per primer was allowed, a >90%
in silico coverage across the bacterial domain was observed.

We further evaluated the coverage of the primer pairs with
respect to specific archaeal groups of particular interest in
human archaeome studies, which are the phyla Euryarchaeota,
Thaumarchaeota, and Woesearchaeota, as well as the genera
Nitrososphaera, Methanobrevibacter, Methanosphaera and
Methanomassiliicoccus. For all subsequent in silico analyses we
allowed one mismatch per primer at all locations except at the
last base of the 3′ end.

All primer pairs revealed a high coverage of ≥90% for the
Euryarchaeota phylum. For the genus Methanobrevibacter,
all primer pairs showed a coverage >94%, and for
Methanomassiliicoccus a coverage >92%. The coverage for
Methanosphaera was found to be <90% with the exception of
primer pairs 519F-806R and 349F-519R, which showed 90% and
90.3% coverage, respectively (Table 4).

The coverage of the Woesarchaeota and Thaumarchaeota
clades were found to be variable, depending on the primer pairs.
While for Woesearchaeota all primer pairs showed coverages
between 55% and 89.1%, most analyses that included the primer
344F showed a low in silico coverage for Thaumarchaeota
(<30%). However, all other primer pair combinations revealed a
high coverage of this phylum (>90%; Table 4). The coverage for
Nitrososphaera in particular varied across primer pairs between
86.9% and 94.4%.

As the archaeal primer 344F has often been used for
detecting archaea in a variety of environmental samples
(Zhang et al., 2014; Fontana et al., 2016), we further analyzed
its coverage using TestProbe 3.0 (Klindworth et al., 2013)
and the SILVA database SSU132 (Quast et al., 2013). The
results revealed 73.2% coverage of the archaeal domain,
a high coverage of the Euryarchaeota phylum (93.8%)
and the genera within, especially Methanobrevibacter
with 96.1% coverage, Methanosphaera with 89.9% and
Methanomassiliicoccus with 100%. The results also revealed
a good coverage of 74.6% for Woesearchaeota, but showed,
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TABLE 3 | PCR conditions.

Target Archaea (16S rRNA gene) “Universal” (16S rRNA gene)

(Nested) PCR, round 1◦ 1◦ 2◦ 1◦ 1◦

Primer pair 344F/915R 344F/1041R All Illumina tagged primer pairs Illu519F/Illu806R Illu515F/Illu806uR

349F/915R 349F/1041R Illu519F/Illu785R Illu515FB/Illu806RB

344F/806R 519F/1041R

349F/806R

519F/806R

Initial denaturation 2′, 95◦C 5′, 95◦C 5′, 95◦C 5′, 95◦C 3′, 94◦C

Denaturation 30′′, 96◦C (first 10
cycl.), 25′′ 94◦C

30′′, 94◦C 40′′, 95◦C 40′′, 95◦C 45′′, 94◦C

Annealing 30′′, 60◦C 45′′, 56◦C 2′, 63◦C 2′, 63◦C 1′, 50◦C

Elongation 1′, 72◦C 1′, 72◦C 1′, 72◦C 1′,72◦C 1′ 30′′, 72◦C

Final elongation 10′, 72◦C 10′, 72◦C 10′, 72◦C 10′, 72◦C 10′, 72◦C

No. of cycles 25 25 30 40 40

For denaturation, annealing and elongation the corresponding time and temperature is given.

TABLE 4 | In silico analysis of the coverage of chosen primer pairs for specific archaeal taxa of interest.

Euryarchaeota Thaumarchaeota Nanoarchaeota

Primer pair Name Total Methanobrevibacter Methanosphaera Methanomassiliicoccus Total Nitrososphaera Woesearchaeota

1 344F 89.80% 94.90% 81.00% 100% 20.40% 87.10% 55.80%

915R

2 349F 89.70% 95.00% 83.00% 100% 91.2% 89.30% 70.30%

915R

3 344F 89.90% 94.30% 78.20% 100% 20.60% 89.00% 56.60%

1041R

4 349F 90.20% 94.40% 78.60% 100% 95.80% 92.30% 73.40%

1041R

5 519F 94.60% 97.40% 84.60% 92.90% 96.50% 90.60% 82.40%

1041R

6 344F 91.50% 95.20% 82.20% 100% 23.20% 88% 55.00%

806R

7 349F 91.40% 95.30% 84.20% 100% 96.10% 90.10% 72.60%

806R

8 519F 96.30% 98.60% 90% 95% 96.50% 89.50% 82.90%

806R

9 349F 91.90% 95.60% 90.30% 95% 97.50% 94.40% 83.10%

519R

10 519F 96.20% 98.40% 89.60% 95% 96.00% 86.90% 87.30%

785R

11 515F 95.90% 98.30% 89.60% 95% 94.60% 86.90% 89.10%

806R

12 515FB 95.90% 98.30% 89.60% 95% 96.40% 89% 89.10%

806RB

One mismatch was allowed per primer (last base at the 3′ end was excluded for mismatch). For primer full names and sequences, please refer to Table 1.

despite a high coverage for the genus Nitrososphaera
(93.6%), a generally low coverage of the Thaumarchaeota
phylum with only 24%. These findings indicate a potentially
low capacity of this primer for studies with a focus on
thaumarchaeotal diversity.

Additionally, we also analyzed the primer 519F using the
TestProbe 3.0, especially since the sequence of the primer
519F (S-D-Arch-0519-a-S-15; 5′-CAGCMGCCGCGGTAA-3′)
overlaps with the sequence of the “universal” primer S-∗-
Univ-0519-a-S-18 (5′- CAGCMGCCGCGGTAATWC-3′). As
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expected, the results from the in silico analysis indicated that the
primer 519F targets Bacteria (coverage 98%), Archaea (98.2%)
and Eukarya (96.4%). The universal primer S-∗-Univ-0519-a-
S-18 shows a similar coverage for the three domains: Bacteria
(coverage 97.5%), Archaea (96.4%), and Eukarya (95.6%).
Considering our in silico results, the primer 519F cannot be
considered to target Archaea specifically and should be re-named
to S-D-Univ-0519-a-S-15.

As most selected archaea-targeting primers analyzed revealed
a good coverage of the archaeal domain, all primer pairs were
used for subsequent wet-lab experiments.

Archaeal Community Composition Varies
According to the Used Primer Pairs
Whereas Universal Primers Fail to Detect
the Archaeal Diversity
Herein, we sought to identify the optimal primer pair for
amplicon sequencing of the archaeomes in human samples. For
this, we selected five representative sample types from different
body sites: nose (upper nasal cavity), oral (subgingival sites), stool
and appendix specimens, and skin (back) (sample set 1).

Next generation sequencing was performed after a two-step
nested PCR (for archaea) or a single-step PCR (“universal”
target). The nested PCR approach was selected based on the
reasons given in the section “Materials and Methods.” In brief,
the first PCR was intended to select the archaeal community and
the second to further amplify the archaeal signal.

The results obtained after amplification, NGS, and data
analysis based on DADA2 algorithm (Callahan et al., 2016;
Koskinen et al., 2017) are summarized in Supplementary
Table S4. This table includes the number of total reads
obtained and the number of observed ribosomal sequence
variants (RSVs) assigned to Bacteria, Archaea and Eukarya (plus
unclassified taxa).

The use of universal primers (515F-806uR, 515FB-806RB,
and 519F-785R) resulted in reads classified mainly within the
bacterial domain, whereas only a small amount of the reads (0-
0.3%, stool sample) was classified within the Archaea. The widely
used primer pair 515FB-806RB (modified) could not detect a
single archaeal RSV, whereas the 515F-806uR (original) resulted
in one found RSV in the stool sample (Supplementary Table S4).
This confirmed our previous observation that universal primers
are mostly not suitable for a detailed study of the archaeome
(Koskinen et al., 2017).

The universal primer pair 519F-785R yielded slightly better
results, allowing the detection of three different archaeal
RSVs from two different samples: Methanobrevibacter and
Methanosphaera in the stool sample and one RSV from the nasal
sample, which was classified within the Thaumarchaeota clade.
Very similar detection results were obtained using the primer pair
519F-806R. However, this primer pair was originally described to
be archaea-specific, but revealed in our study broad in silico and
experimental coverage of the bacterial and archaeal domain (see
previous chapter and Supplementary Table S4).

To visualize the overlap of phylotypes detected by different
primer pair approaches, a phylogenetic tree was constructed

(Figure 1). Besides the obtained archaeal RSVs from the universal
approaches (primer pairs 515F-806uR, 519F-785R, and 519F-
806R), the RSVs retrieved from the archaea-specific primer
pair combination (344F-1041R/519F-806R) were included for
comparison. Overall, 82 individual archaeal RSVs were detected:
20 RSVs in the nasal sample, 19 RSVs in the oral, one RSV in the
appendix, 3 RSVs in the stool, and 39 RSVs in the skin sample.

Although the information received from universal and
archaea-specific approaches were similar with respect to
the detection of methanogenic archaea from stool samples
(Methanobrevibacter and Methanosphaera clade, Figure 1),
the universal approaches failed to cover the diversity of
Thaumarchaeota (nasal samples) and Woesearchaeota (skin
and oral samples).

Ten out of 23 primer pair combinations allowed the detection
of archaeal signatures in all analyzed samples (Supplementary
Table S4). All 23 primer pair combinations were able to detect
archaeal reads in at least one of the sample types analyzed. For
example all primer pair combinations detected archaeal RSVs in
the stool sample; the number of RSVs, however, varied according
to the used primer pair combination.

In the next step, we aimed to identify the optimal primer
pair for the detection of archaeal signatures in a variety of
human samples. However, depending on the used primer pair,
the archaeal community composition was found to be variable
(Supplementary Figure S1). We particularly observed that
the detected variation in the archaeal composition could be
attributed to the primer pair used in the first PCR, whose
purpose was to select the communities, while primer pairs
used in the second PCR enhanced the signal of the first PCR
(Supplementary Figure S1).

It shall be mentioned that for the second PCR only three
different primer pairs were used (i.e., 349F-519R, 519F-785R,
and the 519F-806R) of which the first two primer pairs had
been used before to explore archaeal communities in human
samples (Koskinen et al., 2017) and in confined habitats
(Mora et al., 2016).

To further explore the influence of the primer pair selection
on the archaeal community composition, the alpha diversity was
calculated using the Shannon index (Figure 2). For this analysis,
we excluded the results obtained from the second primer pair
349F-519R as most samples yielded less than 500 reads, with the
exception of the stool sample.

The highest archaeal diversity was detected with primer
combination 344F-1041R/519F-806R (PCR34). This result was
found to be significant (p < 0.05) compared to PCR 33 (344F-
1041R/519F-785R), PCR Q7 (344F-806R/519F-806R) and PCR
M7 (344F-806R/519F-806R; Table 2 and Figure 2).

Based on the results from the comparison of the alpha
diversities and the lower number of bacterial and eukaryal
background signals (Supplementary Table S4), we selected the
nested approach with the primer pair 344F-1041R in the first
PCR, followed by a second PCR with the primers 519F-806R for
subsequent analyses (see below).

It shall be noted that the use of the different purification
kits between the first and the second PCR resulted in no
significant differences based on the alpha diversity (Shannon
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FIGURE 1 | Phylogenetic tree based on the retrieved RSVs from the universal approach with the primer pairs 515F-806uR and 519F-785R, archaeal approach with
primer pair 519F-806R and from the PCR based on the primer pair combination 344F-1041R/519F-806R as indicated in colors as an outer circle [legend “Primer
combinations (PCR)”]. The inner circle represents the body site from where the RSVs were identified (see legend). Reference sequences from the SILVA database are
shown without label/circle. The branches of the tree were colored according to the phyla: blue, Woesearchaeota; green, Euryarchaeota; and orange,
Thaumarchaeota.

FIGURE 2 | Shannon index indicating the diversity received from different PCR approaches. The results have been plotted and grouped according to the first PCR
used and the statistical significance (p-value < 0.05; Wilcoxon Rank Test) is indicated by ∗.
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FIGURE 3 | Bar chart displaying the different archaeal lineages detected in different human samples using the superiorly performing primer combination
344F-1041R/519F-806R.

index, Wilcoxon Rank Test; Figure 2). However, as the
Monarch R© PCR & DNA Cleanup Kit (5 µg) (New England
Biolabs GmbH; Ipswich, United States) revealed visible
band on the gel electrophoresis for the amplicons after
the purification, we decided to further use this kit for the
purification step.

The Selected Amplification Approach
Revealed Broad Archaeal Diversity in
Human Stool, Appendix, Nasal, Oral, and
Skin Samples
In a next step, we applied the amplification approach based on the
primer pair combination 344F-1041R/519F-806R to a number of
additional samples from the following body sites: nasal cavity
(n = 5), oral cavity (n = 6), appendix (n = 5), stool (n = 5), and
skin (n = 7) (sample set 2).

Our selected PCR approach allowed the detection of archaea
in all samples investigated. We obtained an average of 102,366
reads and eight observed RSVs for the nasal cavity, 56,480 reads
and 35 observed RSVs for the oral samples, 46,022 reads and
eight observed RSVs for the appendix samples, 93,948 reads
and four observed RSVs for the stool samples, and 76,001 reads
and 30 observed RSVs for the skin samples. A summary of the
number of archaeal, bacterial and eukaryotic reads/RSVs can be
found in Supplementary Table S5. The results on genus level are
visualized in Figure 3.

Our results confirmed previous findings that archaeal
communities are body-site specific (Koskinen et al., 2017), as
alpha and beta diversity indices revealed significant differences
(Shannon index, richness, RDA plot) (Figure 4).

Notably, the stool samples revealed the overall lowest diversity
of archaea, with only three to five identified archaeal RSVs, while
skin and oral samples contained a higher diversity, with five
to 49 RSVs found in the skin samples and 14 to 49 RSVs in
the oral samples.

DISCUSSION

More than 40 years after the description of archaea as
a separate domain of life, knowledge on the composition
and function of the human archaeome is still sparse. For
instance, it is unclear how humans acquire these, mostly
oxygen-sensitive, microorganisms after birth, although it has
been reported that archaea can be detected in the human
microbiome already in the first year of life (Palmer et al., 2007;
Wampach et al., 2017). Additionally, it still remains largely
unexplored, how archaeal communities interact/communicate
with other human commensal microorganisms. It is unknown,
whether archaeal communities are affected by dysbiosis or human
disease, or, vice versa, are involved in pathogenic situations.
Facing these numerous unsolved mysteries, we argue that more
studies on the human archaeome are needed.

Although purely PCR-based studies are not capable
to distinguish living or dead cells, amplicon-based NGS
sequencing remains a method of choice in microbiome research.
This procedure allows a reliable, qualitative detection of
microorganisms, also in samples with high background DNA.

To address the need for an archaea-specific, amplicon-
based NGS protocol for human microbiome samples, we herein
tested 12 different primers previously described in literature
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FIGURE 4 | Alpha (A, Shannon index and richness) and beta diversity (B, PCoA and RDA) analyses of the obtained archaeal community information, based on
primer combination 344F-1041R/519F-806R.

(Klindworth et al., 2013), in 27 primer pair combinations and
evaluated their performance using in silico and experimental
approaches on five different human sample types.

Despite their overall good in silico performance, the three
“universal” primer pairs tested in this study failed to picture
the archaeal diversity in the wet-lab experiments. Two of them
represent the most-used universal primers for amplicon-based
microbiome analyses (Caporaso et al., 2012; Walters et al.,
2016), but resulted in the detection of only one (515F-806uR)
or zero archaeal RSVs (515FB-806RB) in five sample types that
evidentially possessed a variety of archaeal signatures.

The reasons for the failure of the universal primers to detect
archaeal signatures are unclear. It appears that, depending on the
diversity within the sample, bacterial signatures are preferred by
slightly superior primer specificity and/or annealing.

Based on the outcome of the tested universal primer pairs,
we decided to focus on archaea-specific approaches, with
combinations of nine different primer combinations for the first
PCR (all archaea-specific), and two archaea-specific and one
universal primer pair for the second PCR, resulting in 23 different
approaches (Table 2).

We observed that archaeal primer pair 519F-806R, which has
been used before for archaea-targeted amplicon sequencing (Siles
et al., 2018), detected only a small proportion of the archaeal
diversity in the analyzed samples. The result was improved when
a nested PCR was performed, with an amplification based on
primer pair 344F-1041R in the first PCR.

Nested PCR has been shown to improve sensitivity and
specificity and is useful for suboptimal DNA samples
(Bomberg et al., 2003; Vissers et al., 2009). Based on
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our experience in the past (Koskinen et al., 2017), other
reports (De Vrieze et al., 2018), and due to the fact that
all attempts to use Illumina-tagged archaeal primers to
directly identify archaeal 16S rRNA genes in human samples
failed, we retained this approach for a qualitative archaeal
diversity assessment.

Notably, although the primer pair combinations 344F-
915R/349F-519R and 344F-915R/519F-785R had been used
earlier to detect archaeal signatures in human and environmental
samples (Mora et al., 2016; Koskinen et al., 2017), our study
revealed that when the second PCR contained the Illumina-
tagged primers 349F-519R, almost no reads in samples other than
the stool were retrieved (Supplementary Table S4).

Ten out of the 23 different primer combinations allowed the
detection of archaeal signatures in all analyzed samples (sample
set 1). The results of two of the primer pair combinations
were outstanding regarding the number of reads and
observed RSVs in each sample (Supplementary Table S4),
namely combinations 344F-1041R/519F-806R and 344F-
1041R/519F-785R. The comparison of the retrieved
alpha diversity (based on Shannon index) indicated that
the archaeal diversity uncovered with the primer pair
344F-1041R/519F-806R was significantly higher than
the one obtained with the primer pair combination
344F-1041R/519F-785R (Figure 2).

According to the obtained results, we decided to use the
primer pair combination 344F-1041R/519F-806R to identify
and characterize archaeal communities within human samples.
Despite the fact that the second primer pair 519F-806R performs
like a universal primer pair and also reads classified within
Bacteria and Eukarya were retrieved along with the archaeal
reads, this procedure still proved to be superior for the detection
of the archaeal diversity.

To further test and validate this primer pair, we analyzed 29
additional samples from different body sites (nasal cavity, oral,
appendix, stool, skin; sample set 2), resulting in the detection of
overall 85 archaeal RSVs classified within six different phyla.

Based on these data, we were able to confirm body-
site specificity of the human archaeome (Koskinen et al.,
2017). In detail, the gastrointestinal tract (stool and appendix
samples) and the oral samples were found to be predominated
by distinctive euryarchaeal signatures, whereas the nasal
cavity was predominated by a mixture of Euryarchaeota
and Thaumarchaeota signatures. The skin revealed a mixture
of Euryarchaeota, Thaumarchaeota, Aenigmarchaeota, and, in
very low amounts also Crenarchaeota, confirming previous
results (Tsai et al., 2016; Koskinen et al., 2017; Moissl-
Eichinger et al., 2017) and the suitability of the selected
primer-pair combination to picture the local archaeome in a
variety of samples.

CONCLUSION

We have shown that the choice of the primers influences
substantially the picture of the archaeal community in
amplicon-based microbiome studies. Our results have

indicated the importance of archaea-specific procedures, as
universal approaches fail to picture the diversity of archaeal
signatures. In our survey, a nested PCR approach based
on primer pair 344f-1041R for the first PCR, followed
by a second PCR with the primer pair 519F-806R was
found to be superior for the analysis of the archaeome of
gastrointestinal tract, oral cavity, and skin. This protocol
for archaeal signature detection might also be useful for
samples from other environments and holobionts, such
plants or animals.
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