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Background: Traumatic brain injury-induced coagulopathy (TBI-IC), is a disease with

poor prognosis and increased mortality rate.

Objectives: Our study aimed to identify predictors as well as develop machine learning

(ML) models to predict the risk of coagulopathy in this population.

Methods: ML models were developed and validated based on two public databases

namedMedical Information Mart for Intensive Care (MIMIC)-IV and the eICU Collaborative

Research Database (eICU-CRD). Candidate predictors, including demographics, family

history, comorbidities, vital signs, laboratory findings, injury type, therapy strategy and

scoring system were included. Models were compared on area under the curve (AUC),

accuracy, sensitivity, specificity, positive and negative predictive values, and decision

curve analysis (DCA) curve.

Results: Of 999 patients in MIMIC-IV included in the final cohort, a total of 493 (49.35%)

patients developed coagulopathy following TBI. Recursive feature elimination (RFE)

selected 15 variables, including international normalized ratio (INR), prothrombin time

(PT), sepsis related organ failure assessment (SOFA), activated partial thromboplastin

time (APTT), platelet (PLT), hematocrit (HCT), red blood cell (RBC), hemoglobin (HGB),

blood urea nitrogen (BUN), red blood cell volume distribution width (RDW), creatinine

(CRE), congestive heart failure, myocardial infarction, sodium, and blood transfusion. The

external validation in eICU-CRD demonstrated that adapting boosting (Ada) model had

the highest AUC of 0.924 (95% CI: 0.902–0.943). Furthermore, in the DCA curve, the

Ada model and the extreme Gradient Boosting (XGB) model had relatively higher net

benefits (ie, the correct classification of coagulopathy considering a trade-off between

false- negatives and false-positives)—over other models across a range of threshold

probability values.

Conclusions: The ML models, as indicated by our study, can be used to predict the

incidence of TBI-IC in the intensive care unit (ICU).

Keywords: traumatic brain injury-induced coagulopathy, TBI-IC, machine learning, external validation, model

interpretation
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INTRODUCTION

Traumatic brain injury (TBI) is still one of the leading
causes of death and disability worldwide with over 10
million people hospitalized every year (1). It is common to
witness the alterations of the coagulative system and disturbed
coagulation function in TBI patients. Results from previous
studies indicated that two in three patients with severe TBI
manifested coagulation system abnormalities upon admission to
the emergency department, and then continued to worsen (2, 3).
And the overall mortality of TBI-induced coagulopathy (TBI-IC)
attains 17–86% (4–6). TBI-IC is characterized by both hypo-
coagulopathy with prolonged bleeding or hyper-coagulopathy
with an increased prothrombotic tendency, or both (4, 7).
Previous study unearthed that coagulopathy following TBI was
related to higher mortality and prolonged intensive care unit
(ICU) stay (8). In early stage, potential mechanisms include the
dysfunction of the coagulation cascade and hyperfibrinolysis,
both of which contribute to hemorrhagic progression. Later, a
poorly defined prothrombotic stage emerges, partly caused by
fibrinolysis shutdown and hyperactive platelets (9–11).

Undoubtedly, it is imperative to promote the early
identification of TBI-IC in a timely way. Laboratory
assays, including international normalized ratio (INR) and
thromboelastogram are widely used to diagnose TBI-IC.
Nonetheless, these assays have limited value in predicting
coagulopathy before it develops. In recent years, as a field of
artificial intelligence, machine learning (ML) is able to learn
from data based on computational modeling. Likewise, ML can
fit high-order relationships between covariates and outcomes in
data-rich environments (12–14).

This study aimed to determine whether ML algorithms using
demographic, comorbidities, laboratory examinations and other
variables could predict TBI-IC with considerable accuracy and
identify factors contributing to the prediction power.

MATERIALS AND METHODS

Data Source
We conducted this retrospective study based on two sizeable
critical care databases, the Medical Information Mart for
Intensive Care (MIMIC)-IV version 1.0 (15) and eICU
Collaborative Research Database (eICU-CRD) version 1.2 (16).
In brief, the MIMIC-IV database, an updated version of
MIMIC-III, incorporated comprehensive, de-identified data of
patients admitted to the ICUs at the Beth Israel Deaconess
Medical Center in Boston, Massachusetts, between 2008 and
2019, containing data from 383220 distinct admissions (single
center). The other database, eICU-CRD, was a multicenter, freely
available, sizeable database with de-identified high granularity
health data associated for over 200,000 admissions to ICUs
across the United States between 2014 and 2015. This study
was approved by the Institutional Review Boards of Beth Israel
Deaconess Medical Center (Boston, MA) and the Massachusetts
Institute of Technology (Cambridge, MA). Requirement for
individual patient consent was waived because the study did
not impact clinical care and all protected health information

was deidentified. One author (CP) has obtained access to both
databases and was responsible for data extraction (Certification
number: 41657645). The study was reported in accordance to the
REporting of studies Conducted using Observational Routinely
collected health Data (RECORD) statement (17).

Participant Selection
Inclusion criteria were patients with moderate and severe TBI
[msTBI: defined as Glasgow Coma Score (GCS) =< 12]. People
with an age of less than 16 years old, ICU stays less than
48 h, and no coagulation index within 24 h of ICU admission
were excluded from the study. Moreover, for patients with ICU
admissions more than once, only data of the first ICU admission
of the first hospitalization were included in the analysis.

Predictors of Coagulopathy
A total of 53 predictor variables for the ML models were initially
included. Specifically, in this study, the data were extracted from
MIMIC-IV and eICU-CRD including age, gender, race, family
history of stroke. Coexisting disorders were also collected based
on the recorded International Classification of Diseases (ICD)-
9 and ICD-10 codes. Then, the Charlson comorbidity index
(CCI) was calculated from its component variables [myocardial
infarction, congestive heart failure, peripheral vascular disease,
cerebrovascular disease, dementia, chronic pulmonary disease,
rheumatic disease, peptic ulcer disease, diabetes, paraplegia,
renal disease, malignant cancer, severe liver disease, metastatic
solid tumor and acquired immunodeficiency syndrome (AIDS)].
Lastly, we extracted data containing vital signs, laboratory
findings, injury type, different therapy strategies and scoring
system on the first day of ICU admission. Details of missing data
can be seen in Supplementary Table 1.

Outcome
In accordance to previous literature, the following parameters
were considered for diagnosing coagulopathy: an activated partial
thromboplastin time (APTT) > 40s, an INR > 1.4, or platelet
(PLT) counts < 100× 109/L (4, 18).

Statistical Analysis
Values were presented as the means with standard deviations
(if normal) or medians with interquartile ranges (IQR) (if
non-normal) for continuous variables, and total numbers with
percentages for categorical variables. Proportions were compared
using χ² test or Fisher exact tests while continuous variables
were compared using the t test or Wilcoxon rank sum test,
as appropriate.

In this study, recursive feature elimination (RFE) as a
feature selection method was used to select the most relevant
features. In short, RFE recursively fits a model based on
smaller feature sets until a specified termination criterion is
reached. In each loop, in the trained model, features were
ranked based on their importance. Finally, dependency and
collinearity were eliminated. Features were then considered in
groups of 15/25/35/45/ALL (ALL = 53 variables, as represented
in Figure 1) organized by the ranks obtained after the feature
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FIGURE 1 | Overview of the methods used for data extraction, training, and testing. ICU, intensive care unit; MIMIC-IV, Medical Information Mart for Intensive Care-IV;

eICU-CRD, eICU Collaborative Research Database; TBI, traumatic brain injury; ML, machine learning; NNET, artificial neural network; NB, naïve bayes; GBM, gradient

boosting machine; Ada, adapting boosting; RF, random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting.

selection method. To find the optimal hyperparameters, 10-
fold cross-validation was used as a resampling method. In each
iteration, every nine folds were used as training subset, and the
remaining one fold was processed to tune the hyperparameters.
This training-testing process was repeated thirty times. And in
this way, each sample would be involved in the training model,
and also participated in the testing model, so that all data were
used to the greatest extent.

In this study, we employed seven diverse ML algorithms to
develop models, containing artificial neural network (NNET),
naïve bayes (NB), gradient boosting machine (GBM), adapting
boosting (Ada), random forest (RF), bagged trees (BT), and
eXtreme Gradient Boosting (XGB). Initially, we conducted
internal validation on the development sets to quantify optimism
in the predictive performance and evaluate stability of the
prediction model. Bootstrap Resampling technique with 100
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iterations was used to evaluate the internal validity of eachmodel.
External validation of the models was performed in eICU-CRD.
All the models were assessed in multiple dimensions regarding
their model performance. The median and 95% confidence
intervals of area under the curve (AUC)were calculated, where an
AUC value of 1.0means perfect discrimination and 0.5 represents
no discrimination. And the accuracy, sensitivity, specificity,
negative predictive value, and positive predictive value were also
calculated. Additionally, to determine the clinical usefulness of
the included variables by quantifying the net benefit at different
threshold probabilities, we conducted the decision curve analysis
(DCA) (19). Finally, the “Shiny” package in the R was used to
construct a visual data analysis platform.

All analyses were performed by the statistical software
packages R version 4.0.2 (http://www.R-project.org, The R
Foundation). In our study, we used the “Caret” R packages to
achieve the process. P values less than 0.05 (two-sided test) were
considered as statistically significant.

RESULTS

Baseline Characteristics
Variable values on the first day of the TBI patients in MIMIC-
IV were analyzed. As shown in Figure 1 and Table 1 of
5717 TBI patients in MIMIC-IV, 999 were included in the
final cohort. A total of 493 patients developed coagulopathy,
whereas 506 patients did not. A cohort of 285 patients
with coagulopathy following TBI in eICU-CRD was included
as external dataset (Supplementary Table 2). The process of
data extraction, training preparation, data testing via different
ML algorithms is depicted in Figure 1. People who had
coagulopathy weremore likely to be female, with family history of
stroke, myocardial infarction, congestive heart failure, peripheral
vascular disease, cerebrovascular disease, renal disease, malignant
cancer, severe liver disease, metastatic solid tumor as well
as having higher CCI, heart rate, respiratory rate, red blood
cell volume distribution width (RDW), INR, lactate, buffer
excess (BE), FiO2, chloride, sodium, glucose, creatinine (CRE),
blood urea nitrogen (BUN), blood transfusion, sepsis related
organ failure assessment (SOFA), acute physiology score III
(APSIII), and longer APTT, prothrombin time (PT), mechanical
ventilation (MV). Furthermore, they were less likely to have
dementia, cerebral contusion, with lower temperature, mean
artery pressure (MAP), red blood cell (RBC), white blood
cell (WBC), hemoglobin (HGB), PLT, hematocrit (HCT), pH,
bicarbonate, PaO2/FiO2, calcium, urine output, and GCS.

Variable Importance
A total of 15 important predictors (Figure 2) was selected by
the RFE algorithm, including INR, PT, SOFA, APTT, PLT,
HCT, RBC, HGB, BUN, RDW, CRE, congestive heart failure,
myocardial infarction, sodium, and blood transfusion. Then,
these 15 variables were used in all the subsequent analysis for all
models in both training and testing sets.

FIGURE 2 | Association between the number of variables allowed to be

considered at each split and the prediction accuracy in the REF algorithm.

REF, recursive feature elimination.

FIGURE 3 | Area under the curve of receiver operating characteristic curve by

machine learning models in the validation cohort. ROC, receiver operate

characteristics; AUC, area under the curve; NNET, artificial neural network; NB,

naïve bayes; GBM, gradient boosting machine; Ada, adapting boosting; RF,

random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting.

Prediction Performance in eICU-CRD
The discriminatory abilities of all models for the prediction of
coagulopathy are in Figure 3 and Table 2. Within the training
set, the NNET, NB, GBM, Ada, RF, BT and XGB models were

Frontiers in Medicine | www.frontiersin.org 4 December 2021 | Volume 8 | Article 792689

http://www.R-project.org
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yang et al. Coagulopathy Prediction in TBI Patients

TABLE 1 | Baseline characteristics of the MIMIC-IV cohorts.

MIMIC-IV

Variables Coagulopathy (n = 493) Non-Coagulopathy (n = 506) P Value

Demographics

Age (y), median [Q1, Q3] 67.00 (52.00, 80.00) 66.00 (48.00, 82.00) 0.809

Male, n (%) 317 (62.65) 343 (69.57) 0.025

Race, n (%)

Black 24 (4.87) 28 (5.53)

White 294 (59.63) 304 (60.08)

Hispanic 14 (2.84) 16 (3.16)

Asian 15 (3.04) 10 (1.98)

Others 146 (29.61) 148 (29.25)

BMI (kg/m2 ), median [Q1, Q3] 26.25 (23.03, 29.80) 26.12 (23.10, 30.10) 0.914

Family history of stroke, n (%) 19 (3.85) 5 (0.99) 0.006

Coexisting disorders, n (%)

Myocardial infarction 69 (14.00) 23 (4.55) <0.001

Congestive heart failure 122 (24.75) 44 (8.70) <0.001

Peripheral vascular disease 39 (7.91) 20 (3.95) 0.012

Cerebrovascular disease 98 (19.88) 75 (14.82) 0.043

Dementia 22 (4.46) 45 (8.89) 0.008

Chronic pulmonary disease 75 (15.21) 61 (12.06) 0.173

Rheumatic disease 11 (2.23) 5 (0.99) 0.189

Peptic ulcer disease 12 (2.43) 5 (0.99) 0.128

Diabetes 108 (21.91) 122 (24.11) 0.452

Paraplegia 47 (9.53) 62 (12.25) 0.202

Renal disease 73 (14.81) 42 (8.30) 0.002

Malignant cancer 36 (7.30) 10 (1.98) <0.001

Severe liver disease 23 (4.67) 0 (0.00) <0.001

Metastatic solid tumor 10 (2.03) 2 (0.40) 0.038

AIDS 2 (0.41) 2 (0.40) 1.000

CCI, median [Q1, Q3] 5.00 (3.00, 7.00) 4.00 (2.00, 6.00) <0.001

Vital signs (1st 24h)

Temperature (◦C), median [Q1, Q3] 37.10 (36.70, 37.50) 37.20 (36.90, 37.52) 0.017

MAP (mmHg), median [Q1, Q3] 79.00 (73.00, 86.00) 81.00 (76.00, 88.00) <0.001

Heart rate (min), median [Q1, Q3] 86.00 (76.00, 99.00) 84.00 (73.00, 95.00) 0.004

Respiratory rate (min), median [Q1, Q3] 19.00 (17.00, 22.00) 18.00 (16.00, 20.00) <0.001

Laboratory findings (1st 24h)

RBC (109/L), median [Q1, Q3] 3.40 (3.00, 3.80) 3.80 (3.30, 4.20) <0.001

WBC (×109/L), median [Q1, Q3] 11.60 (8.33, 14.80) 12.30 (9.50, 15.00) 0.029

HGB (g/dL), median [Q1, Q3] 11.00 (9.00, 12.00) 12.00 (10.00, 13.00) <0.001

PLT (×109/L), median [Q1, Q3] 166.50 (119.00, 224.75) 219.00 (178.00, 265.00) <0.001

RDW (%), median [Q1, Q3] 17.20 (14.50, 47.80) 15.50 (13.60, 44.98) <0.001

HCT (%), median [Q1, Q3] 31.90 (27.83, 35.77) 35.10 (31.20, 38.40) <0.001

APTT (s), median [Q1, Q3] 31.40 (27.70, 38.20) 27.60 (25.70, 30.17) <0.001

PT (s), median [Q1, Q3] 15.40 (13.40, 17.90) 12.90 (12.00, 13.80) <0.001

INR, median [Q1, Q3] 1.40 (1.20, 1.60) 1.20 (1.10, 1.20) <0.001

pH, median [Q1, Q3] 7.39 (7.34, 7.43) 7.40 (7.37, 7.44) 0.001

Bicarbonate (mmol/L), median [Q1, Q3] 22.50 (20.00, 25.00) 23.30 (21.00, 25.00) 0.002

Lactate (mmol/L), median [Q1, Q3] 1.80 (1.20, 2.60) 1.50 (1.00, 2.12) < 0.001

BE (mEq/L), median [Q1, Q3] −0.71 (-3.00, 1.00) 0.00 (-1.50, 1.50) < 0.001

Anion gap (mmol/L), median [Q1, Q3] 14.80 (12.80, 16.70) 14.50 (13.00, 16.30) 0.467

PaO2 (mmHg), median [Q1, Q3] 141.48 (104.91, 191.65) 148.33 (103.25, 193.69) 0.560

PaCO2 (mmHg), median [Q1, Q3] 38.33 (35.00, 42.67) 38.46 (35.00, 43.00) 0.784

(Continued)
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TABLE 1 | Continued

MIMIC-IV

Variables Coagulopathy (n = 493) Non-Coagulopathy (n = 506) P Value

FiO2 (%), median [Q1, Q3] 50.00 (42.50, 60.00) 50.00 (40.00, 57.50) 0.025

PaO2/FiO2, median [Q1, Q3] 286.29 (208.26, 372.00) 313.72 (227.25, 413.23) 0.008

Chloride (mmol/L), median [Q1, Q3] 105.50 (102.00, 109.30) 104.50 (101.00, 108.00) 0.001

Calcium (mmol/L), median [Q1, Q3] 8.30 (7.80, 8.70) 8.50 (8.00, 8.90) <0.001

Sodium, (mmol/L), median [Q1, Q3] 140.00 (137.00, 142.80) 140.00 (137.00, 141.80) 0.049

Potassium (mmol/L), median [Q1, Q3] 4.10 (3.80, 4.40) 4.00 (3.80, 4.30) 0.197

Glucose (mmol/L), median [Q1, Q3] 141.00 (116.00, 166.00) 133.00 (114.50, 159.00) 0.035

CRE (mg/dL), median [Q1, Q3] 1.00 (0.70, 1.30) 0.90 (0.70, 1.10) <0.001

BUN (mg/dL), median [Q1, Q3] 17.50 (12.30, 26.70) 15.00 (11.00, 20.00) <0.001

Urine output (mL), median [Q1, Q3] 1668.00 (1078.00, 2462.50) 1875.00 (1250.00, 2673.75) 0.018

Type of injury, n (%)

Subarachnoid hemorrhage 175 (35.50) 162 (32.02) 0.273

Cranial extradural hematoma 18 (3.65) 16 (3.16) 0.801

Cerebral contusion 74 (15.01) 124 (24.51) < 0.001

Therapy strategy (1st 24h), n (%)

MV 436 (88.44) 401 (79.25) < 0.001

Blood Transfusion 29 (5.88) 5 (0.99) < 0.001

Hyperosmolar therapy 46 (9.33) 63 (12.45) 0.139

Neurosurgical intervention 146 (29.61) 153 (30.24) 0.884

Scoring system

GCS 8.00 (5.00, 10.00) 8.00 (7.00, 10.00) 0.001

SOFA 7.00 (5.00, 10.00) 5.00 (4.00, 6.00) < 0.001

APSIII 39.00 (31.00, 48.00) 35.00 (27.00, 43.00) < 0.001

MIMIC-IV, Medical Information Mart for Intensive Care-IV; BMI, body mass index; AIDS, acquired immunodeficiency syndrome; CCI, Charlson comorbidity index; MAP, mean artery

pressure; RBC, red blood cell; WBC, white blood cell; HGB, hemoglobin; PLT, platelet; RDW, red blood cell volume distribution width; RDW, red blood cell volume distribution width;

HCT, hematocrit; APTT, activated partial thromboplastin time; PT, prothrombin time; INR, international normalized ratio; BE, buffer excess; CRE, creatinine; BUN, blood urea nitrogen;

MV, mechanical ventilation; GCS, Glasgow coma score; SOFA, sepsis related organ failure assessment; APSIII acute physiology score III; Blood Transfusion: defined as RBC, Plasma,

PLT product administered; Hyperosmolar therapy: defined as HTS or mannitol; Neurosurgical intervention: defined as craniectomy or ventriculostomy.

established, and the testing set obtained AUCs of 0.910, 0.867,
0.920, 0.924, 0.915, 0.881, and 0.917, respectively. Comparatively,
Ada had the highest predictive performance among these seven
models (AUC 0.924, 95% Confidence Interval (CI) 0.902 to
0.943), while NB had the poorest generalization ability (AUC
0.867, 95% CI 0.839 to 0.891). The decision curve compared
the net benefit of the best model and alternative approaches for
clinical decision making. As shown in Figure 4, the net benefits
of the Ada model and XGB model surpassed those of other
ML models, including NB for all threshold values, showing that
these two models were more superior in predicting the TBI-IC in
this cohort.

In the Figure 5, the fifth predictor variables in the ML models
are shown. Each variable included in the study had varying
importance over the TBI-IC relying on theML approach. Overall,
the coagulation profile (PLT, INR, PT) was the variable with
relatively higher importance across all ML algorithms, followed
by APTT, SOFA, and so forth.

Model Interpretation
We next used the Shiny to illustrate the impacts of key features
on the coagulopathy prediction model in individual patients. As

shown in Figure 6, the information of one patient was input
into the model: PLT (186 × 109/L), INR (1.1), PT (12s), APTT
(29s), SOFA (4), RDW (44%), no congestive heart failure, RBC
(3.9 × 109/L), CRE (8.7 mg/dL), BUN (24 mg/dL), sodium
(142.3 mmol/L), HCT (39.2%), no myocardial infarction, no
blood transfusion, HGB (14 g/dl). The model analyzed that the
risk of coagulopathy in this patient was 82.10%, indicating that
the probability of coagulopathy for the patients was high, and
precaution measures were recommended.

DISCUSSION

Altered hemostasis and hemorrhagic progression are substantial
challenges in the clinical management of TBI. Patients with
TBI-IC were at a high risk of death over those with normal
coagulation. Notably, studies elucidating the rapid prediction
of TBI-IC, are warranted. In this sense, our study developed
and validated ML models, providing an accurate predictive
tool for coagulopathy in TBI patients. Specifically, seven ML
models (NNET, NB, GBM, Ada, RF, BT and XGB) were used to
predict TBI-IC using variables frequently used in clinical practice.
Concerning the predictive performance, the Ada outperformed
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TABLE 2 | Prediction performance of the machine learning models in the testing set.

Model Accuracy Sensitivity Specificity PPV NPV AUC 95% CI

NNET 0.851 0.733 0.932 0.882 0.835 0.910 (0.886, 0.930)

NB 0.814 0.586 0.971 0.933 0.772 0.867 (0.839, 0.891)

GBM 0.848 0.800 0.881 0.823 0.864 0.920 (0.897, 0.939)

Ada 0.855 0.730 0.942 0.897 0.834 0.924 (0.902, 0.943)

RF 0.862 0.797 0.908 0.857 0.866 0.915 (0.892, 0.935)

BT 0.835 0.747 0.896 0.832 0.837 0.881 (0.854, 0.904)

XGB 0.859 0.744 0.939 0.895 0.841 0.917 (0.894, 0.936)

PPV, positive predictive values; NPV, negative predictive values, AUC, area under the curve; CI, confidence interval; NNET, artificial neural network; NB, naïve bayes; GBM, gradient

boosting machine; Ada, adapting boosting; RF, random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting.

FIGURE 4 | Decision curve analysis. The net benefits of the Ada and XGB are

relatively larger over a range of threshold probability values compared with

those of other ML models. Ada, adapting boosting; XGB, eXtreme Gradient

Boosting; ML, machine learning. NNET, arti?cial neural network; NB, naïve

bayes; GBM, gradient boosting machine; RF, random forest; BT, bagged trees.

the remainingmodels. Moreover, results from the DCA indicated
that the Ada and XGB models had higher net benefits over a
range of threshold probability values than other models. It is
remarkable that this study combined preoperative characteristic,
comorbidities, and laboratory findings other than coagulopathy
profile to establish a prediction model.

To help surgeons use the model, a calculator was developed,
which provided a user-friendly interface. After entering the
variables, the incidence of TBI-IC will be shown. The explanation
of the ML model at the individual level was consistent with the
aforementioned explanations at the feature level, and gratifyingly,
the black-box concern was further mitigated to a certain extent.
Notably, these results facilitated correct clinical decisions, and
more importantly, timely treatment strategy.

A previous study conducted by Cosgriff et al. (20) developed
a simple score to predict traumatic brain injury-induced
coagulopathy (TIC) using four binary predictors [systolic

blood pressure<70mm Hg, temperature <34◦C, pH <7.1,
and Injury Severity Score (ISS) >25]. However, due to the
fact that the ISS cannot be obtained at the time of decision
making, the application of such a score was limited. To
predict TIC more accurately, two scores have been developed
by prehospital information (21, 22). Mitraet al.’s score used
5 predictors (entrapment; systolic blood pressure < 100mm
Hg; temperature < 34◦C; suspected abdominal or pelvic
injury; and chest decompression), whereas Peltan et al.’s score
employed 6 predictors (age, injury mechanism, prehospital
shock index> = 1, GCS, and need for prehospital tracheal
intubation and/or Cardiopulmonary Resuscitation (CPR)) (21,
22). Nevertheless, in new patients, both scores achieved only
moderate performance, with sensitivity <30%. Additionally,
the Trauma Induced Coagulopathy Clinical Score (TICCS)
employed three components, including general severity, blood
pressure, and extent of significant injuries to predict TIC (23). A
major limitation of above scores was that much of the prognostic
potential of available information was lost through limiting the
number of predictors and dichotomizing continuous variables.
Consequently, a novel predictive model for early-identification
of TIC was established (Predictors: heart rate, systolic blood
pressure, temperature, hemothorax, Focused Assessment with
Sonography for Trauma (FAST) result, unstable pelvic fracture,
long bone fracture, GCS, lactate, base deficit, pH, mechanism
of injury, energy) (24). However, one point worth noting was
that previous study focused on the entire trauma patient,
not TBI patients in particular, which added confusion to
some extent.

By interpreting the full model, it was found that many clinical
variables can contribute to predict the risk of TBI-IC. In this
study, coagulopathy profile (INR, PT, APTT) was found to
be the most important variable in predicting TBI-IC, followed
by SOFA, blood routine test (PLT, RBC, HCT, HGB, RDW),
renal function (BUN and CRE), comorbidities (congestive heart
failure, myocardial infarction) and so forth. Among the fifteen
included variables, the SOFA was an important predictor.
SOFA is an indicator to describe multiple organ dysfunction,
including respiratory system, nervous system, cardiovascular
system, liver, coagulation and kidney (25). Potential mechanisms
may include the fact that SOFA scores are more likely to
indicate liver failure or cardiovascular failure. Those organ
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FIGURE 5 | Variable importance in seven different ML models. ML, machine learning; NNET, artificial neural network; NB, naïve bayes; GBM, gradient boosting

machine; Ada, adapting boosting; RF, random forest; BT, bagged trees; XGB, eXtreme Gradient Boosting; INR, international normalized ratio; PT, prothrombin time;

SOFA, sepsis related organ failure assessment; APTT, activated partial thromboplastin time; PLT, platelet; HCT, hematocrit; RBC, red blood cell; HGB, hemoglobin;

BUN, blood urea nitrogen; RDW, red blood cell volume distribution width; CRE, creatinine.

failures have a high tendency to bleed, and subsequently leading
to coagulopathy (26).

In this study, PLT, RBC, HCT, HGB and RDWwere important
predictors of TBI-IC. In a prospective observational study
conducted by Davis PK et al. (27), PLT dysfunction was an
earlymarker for TBI-IC. Potential mechanism included the blood
dilution arised from the use of coagulation factor products (28).
Nevertheless, we cannot exclude the likelihood that the blood
coagulation system was activated by the continuous bleeding
itself (29).

RDW, a parameter of red blood cell volume, measures the
variability in size of circulating erythrocytes. Although primarily
used to diagnose different types of anemias, the RDW was also
associated with various thrombotic disease processes including
venous thromboembolism (VTE) (30, 31).

Although the underlying mechanism is unclear, it is
speculated that inflammatory factors destroy the vascular
endothelial integrity, subsequently changing the glycoprotein
and ion channel structure of the erythrocyte membrane (32,
33). Consequently, the deformability of the RBC is reduced, in
turn, further enables endothelial damage to increase, causing the
release of tissue factors that activate the coagulation pathway and
triggers disseminated intravascular coagulation (DIC) (34).

In this study we found that renal function indicators (BUN
and CRE) can help to indicate the risk of TBI-IC. Similarly, a ML
model developed by Zhao QY et al. also identified renal function,

including urine output and CRE to predict sepsis-induced
coagulopathy (SIC) (35). It is worth noting that renal dysfunction
has been associated with both thrombotic and hemorrhagic
complications (36, 37). Potential mechanism included less
adenosine diphosphate (ADP) and serotonin storage in PLT of
patients with renal dysfunction (38, 39). Taken together, the force
of impact at the time of TBI can cause shearing of large and small
vessels, and result in subdural, subarachnoid, or intracerebral
hemorrhages, or a combination of different types. TBI-associated
factors might then alter the intricate balance between bleeding
and thrombosis formation, leading to coagulopathy (9). Indeed,
the complex interactions between the PLT dysfunction, changes
in endogenous procoagulant, anticoagulant factors, endothelial
cell activation, hypoperfusion, and inflammation related to TBI-
IC remain to be elucidated (9, 40, 41).

The strengths of this study lied in the fact that it applied
modern ML approaches to predict TBI-IC. It is worth noting
that early and accurate prediction of TBI-IC can provide
more time for clinicians to adjust corresponding treatment
strategies. For example, this model is applicable if detailed
medical history is not available for intubated severe head-injured
ICU patient. Furthermore, given the heterogeneity of TBI-IC
phenotypes (bleeding/thrombotic tendencies), timely treatment
strategy would still require investigation and further testing
to determine the type and therefore appropriate treatment.
Furthermore, it was based on a real-world data with multicenter
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FIGURE 6 | Examples of website usage. Entering the input value determined the coagulopathy and displayed how each value contributed to the prediction. PLT,

platelet; INR, international normalized ratio; PT, prothrombin time; APTT, activated partial thromboplastin time; SOFA, sepsis related organ failure assessment; RDW,

red blood cell volume distribution width; RBC, red blood cell; CRE, creatinine; BUN, blood urea nitrogen; HCT, hematocrit; HGB, hemoglobin.

and external validation, which heighted the reliability of the
performance of ML models. Besides, all the information in this
dataset was coded independently of the practitioner, making it a
reliable source.

Our study had limitations, consistent with those inherent
to many large administrative database studies. First, only TBI-
IC adults in ICUs were included, while TBI-IC children and
hospitalized TBI-IC cases were not analyzed. Nevertheless, in
light of the immaturity of the coagulation system in children,
more research is indeed required. Second, derived from the ICU
participants, the results of our study cannot be generalized to
other population, and we did not obtain information including
laboratory testing and interventions before ICU admission,
which may cause confounders to some extent. Although our
models can screen out patients who are at a high risk of
TBI-IC, it is the surgeons who decide the administration
of anticoagulant therapy. Usually, the interventions are time
sensitive and need to occur early after admission, starting
in the emergency department. Third, some new coagulation
markers, for example, thrombin-antithrombin-III complex and

plasmin-α2-antiplasmin complex, are useful in coagulopathy
diagnosis (42, 43). Nevertheless, these indicators were not
recorded in the MIMIC-IV and eICU database. This was also
the case for viscoelastic coagulation testing [Thrombelastograghy
(TEG), Rotational thromboelastometry (ROTEM), ClotPro].
Although these testings can provide detailed coagulopathy
diagnosis rapidly and have multiple advantages over the
traditional plasma-based coagulation tests (PT, APTT, INR),
unfortunately, the above indicators were not included in
these two databases. Fourth, we did not obtain the results
of cranial Computer Tomography (CT) scans in this study,
consequently, the original Corticosteroid Randomization After
Significant Head Injury (CRASH)-CT score was not available.
Moreover, as an administrative database, there was possibility
for misclassification of TBI, to reduce bias caused by imprecise
coding, we adopted the extensively used ICD-9, 10 codes. Fifth,
as with all potential retrospective studies, there was a potential
for unmeasured confounders, causing selection bias. Another
major limitation worth noting was the changing nature of the
variables in a critically ill patient from time of injury and right
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throughout the continuum of care to ICU discharge. The nature
of the retrospective database did not allow for correction for
when measurements were taken in relation to the time of injury.
Lastly, although our study deeply explored the coagulopathy of
TBI in the ICU settings, other outcomes, such as long-term
incidence, are also needed further investigation.

CONCLUSIONS

In general, the present study suggested that some important
features were potentially related to the TBI-IC. The ML
model processed large number of variables and subsequently
discriminated TBI patients who would and would not develop
coagulopathy, facilitating the implement of timely yet efficient
treatments. In the future, further validation regarding its clinical
application value will become a necessity.
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