
Faster Online Computation
of the Succinct Longest Previous

Factor Array

Nicola Prezza1,2 and Giovanna Rosone1(B)

1 University of Pisa, Pisa, Italy
nicola.prezza@di.unipi.it, giovanna.rosone@unipi.it

2 LUISS Guido Carli, Rome, Italy
nprezza@luiss.it

Abstract. We consider the problem of computing online the Longest
Previous Factor array LPF [1, n] of a text T of length n. For each
1 ≤ i ≤ n, LPF [i] stores the length of the longest factor of T with
at least two occurrences, one ending at i and the other at a previous
position j < i. We present an improvement over the previous solution by
Okanohara and Sadakane (ESA 2008): our solution uses less space (com-
pressed instead of succinct) and runs in O(n log2 n) time, thus being
faster by a logarithmic factor. As a by-product, we also obtain the first
online algorithm computing the Longest Common Suffix (LCS) array
(that is, the LCP array of the reversed text) in O(n log2 n) time and
compressed space. We also observe that the LPF array can be repre-
sented succinctly in 2n bits. Our online algorithm computes directly the
succinct LPF and LCS arrays.

Keywords: Longest Previous Factor · Online · Compressed data
structures

1 Introduction

This paper focuses on the problem of computing the Longest Previous Factor
(LPF) array which stores, for each position i in a string S, the length of the
longest factor (substring) of S that ends both at i and to the left of i in S. While
the notion of Longest Previous Factor has been introduced in [10], an array with
the same definition already appeared in McCreight’s suffix tree construction
algorithm [18] (the head array) and recently in [12] (the π array).

The concept of LPF array is close to that of Longest Common Prefix (LCP)
and Permuted Longest Common Prefix (PLCP) arrays, structures that are usu-
ally associated with the suffix array (SA) data structure to speed up particular
queries on strings (for example, pattern matching).

Supported by the project MIUR-SIR CMACBioSeq (“Combinatorial methods for anal-
ysis and compression of biological sequences”) grant n. RBSI146R5L.

c© Springer Nature Switzerland AG 2020
M. Anselmo et al. (Eds.): CiE 2020, LNCS 12098, pp. 339–352, 2020.
https://doi.org/10.1007/978-3-030-51466-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51466-2_31&domain=pdf
http://orcid.org/0000-0003-3553-4953
http://orcid.org/0000-0001-5075-1214
https://doi.org/10.1007/978-3-030-51466-2_31

340 N. Prezza and G. Rosone

The problem of searching for the longest previous factor is fundamental in
many applications [10], including data compression and pattern analysis. For
example, the LPF array can be used to derive the Ziv-Lempel factorization [25],
a very powerful text compression tool based on longest previous factors [9,10].

Methods to compute the LPF array [6,9,10,21] can be broadly classified
into two categories: batch (offline) and online algorithms. For instance, in [10]
the authors give two offline linear-time algorithms for computing the Longest
Previous Factor (LPF) array. The idea of the first algorithm is that, given SA,
for any position i, they only need to consider the suffixes starting to the left of
i in S which are closest to the suffix starting at position i in SA. In the second
algorithm (see also [7] for a similar in spirit but independent work), the authors
use a similar idea, but they take advantage of the fact that this variant processes
the suffix array in one pass and requires less memory space.

In [11], the authors show how an algorithm similar to the one of [9,10] can
compute the LPF array in linear running time by reading SA left-to-right (that
is, online on SA) using a stack that reduces the memory space to O(

√
n) for a

string of length n in addition to the SA, LCP and LPF arrays. This algorithm
requires less than 2

√
2n + O(1) integer cells in addition to its input and output.

Unlike batch algorithms, an online algorithm for the problem should report
the longest match just after reading each character. The online version of the
problem can be defined as follows: given a history T [1, i − 1], and the next
character c = T [i], the goal is to find the longest substring that matches the
current suffix: T [j, . . . , j + l − 1] = T [i − l + 1, . . . , i], and report the position
and the length of the matched substring. This process must be performed for all
i = 1, . . . , n.

Okanohara and Sadakane in [21] propose an online algorithm that relies on
the incremental construction of Enhanced Suffix Arrays (ESA) [1] in a similar
way to Weiner’s suffix tree construction algorithm [24]. They employ compressed
full-text indexing methods [20] to represent ESA dynamically in succinct space.
Their algorithm requires n log σ + o(n log σ) + O(n) + σ log n bits of working
space1, O(n log3 n) total time, and O(log3 n) delay per character, where n is the
input size and σ is the alphabet size.

Another online construction of the LCP array, in this case of a string collec-
tion, appears in [8]. In this work, the authors show how to update the LCP of a
string collection when all strings are extended by one character.

Our work is a direct improvement over Okanohara and Sadakane’s [21] algo-
rithm. The bottleneck in their strategy is the use of a dynamic Range Minimum
Query (RMQ) data structure over the (dynamic) LCP array. In this paper, we
observe that the RMQ is not needed at all since we can update our structures
by computing, with direct character comparisons, just irreducible LCP values.
Since it is well-known that the sum of such values amounts to O(n log n), this
yields a logarithmic improvement over the algorithm described in [21]. On the
other hand, our strategy offers a worse delay of O(n log n) per input character.

1 In their analysis they do not report the term σ log n, which however should be
included since they use a prefix sum structure over the alphabet’s symbols.

Faster Online Computation of the Succinct Longest Previous Factor Array 341

2 Definitions

A string S = s1s2 . . . sn is a sequence of n = |S| symbols from alphabet Σ =
[1, σ], with σ ≤ n. A text T is a string beginning with special symbol # = 1,
not appearing elsewhere in T . A factor (or substring) of a string S is written
as S[i, j] = si · · · sj with 1 ≤ i ≤ j ≤ n. When defining an array A, we use the
same notation A[1, k] to indicate that A has k entries enumerated from 1 to k.

In this work we use text indices based on the principle of co-lexicographically
sorting the prefixes of a text, rather than lexicographically sorting its suffixes.
This is the same approach adopted in [21] and is required by the online left-to-
right nature of the problem we consider. Given a string S ∈ Σn, we denote by
< the standard co-lexicographic ordering among the prefixes of S.

The Prefix array PA[1, n] of a string S[1, n] [23] is an array containing the
permutation of the integers 1, 2, . . . , n that arranges the ending positions of the
prefixes of S into co-lexicographical order, i.e., for all 1 ≤ i < j ≤ n, S[1, PA[i]] <
S[1, PA[j]]. The Inverse Prefix array IPA[1, n] is the inverse permutation of PA,
i.e., IPA[i] = j if and only if PA[j] = i.

The C-array of a string S is an array C[1, σ] such that C[i] contains the
number of characters lexicographically smaller than i in S, plus one (S will
be clear from the context). It is well-known that this array can be kept within
σ log n+o(σ log n) bits of space on a dynamic string by using succinct searchable
partial sums [3,14], which support all operations in O(log n) time.

The co-lexicographic Burrows-Wheeler Transform BWT [1, n] of a text T is a
reversible transformation that permutes its symbols as BWT [i] = T [PA[i] + 1]
if PA[i] < n, and BWT [i] = # otherwise [5].

The Longest Common Suffix array LCS[1, n] of a string S [17] is an array
storing in LCS[i] the length of the longest common suffix shared by the (i−1)-th
and i-th co-lexicographically smallest text prefixes if i > 1, and LCS[1] = 0 oth-
erwise. Function LCS(i, j) generalizes this array: given a string S[1, n], LCS(i, j)
denotes the longest common suffix between S[1, PA[i]] and S[1, PA[j]]. The Per-
muted Longest Common Suffix array PLCS[1, n] of a string S stores LCS values
in string order, rather than co-lexicographic order: PLCS[i] = LCS[IPA[i]].

Function S.rankc(i), where c ∈ Σ, returns the number of characters equal to
c in S[1, i−1]. Similarly, function S.selectc(i) returns the position of S containing
the i-th occurrence of c.

Given BWT [1, n] of a text T [1, n], the LF mapping is a function BWT.LF (i)
that, given the BWT position containing character T [j] (with j = PA[i] +
1), returns the BWT position i′ of character T [j + 1]. This function can be
implemented with a rank operation on BWT and one access to the C array.
Similarly, the FL mapping is the reverse of LF: this is the function BWT.FL(i)
that, given the BWT position containing character T [j] (with j = PA[i] + 1),
returns the BWT position i′ of character T [j − 1] (assume for simplicity that
j > 1; otherwise, BWT [i] = #). This function can be implemented with a select
operation on BWT and a search on the C array.

342 N. Prezza and G. Rosone

3 Succinct PLCS and LPF Arrays

We start by formally introducing the definition of LPF array.

Definition 1 (Longest Previous Factor array). The Longest Previous Fac-
tor array LPF [1, n] of a string S[1, n] is the array containing, at each location
LPF [i], the largest integer k such that there exists j < i for which the longest
common suffix between S[1, j] and S[1, i] has length k.

Kasai et al. [16] observe that the Permuted Longest Common Prefix array is
almost increasing: PLCP [i + 1] ≥ PLCP [i] − 1. Of course, this still holds true
for the Permuted Longest Common Suffix array that we consider in our work.
Specifically, the symmetric relation PLCS[i + 1] ≤ PLCS[i] + 1 holds. In the
next lemma we observe that the same property is true also for the LPF array.

Lemma 1. For any i < n, it holds LPF [i + 1] ≤ LPF [i] + 1.

Proof. Let LPF [i] = k. Then, k is the largest integer such that the substring
T [i−k +1, i] starts at another position j < i−k +1. Assume, for contradiction,
that LPF [i + 1] = k′ > k + 1. Then, this means that s = T [(i + 1) − k′ + 1, i +
1] occurs at another position j′ < (i + 1) − k′ + 1. But then, also the prefix
T [(i + 1) − k′ + 1, i] of s occurs at j′. This is a contradiction, since the length of
T [(i + 1) − k′ + 1, i] is k′ − 1 > k = LPF [i]. ��

Note that PLCS[1] = LPF [1] = 0, thus the two arrays can be encoded and
updated succinctly with the same technique, described in Lemma 2.

Lemma 2. Let A[1, n] be a non-negative integer array satisfying properties (a)
A[1] = 0 and (b) A[i + 1] ≤ A[i] + 1 for i < n. Then, there is a data structure of
2n + o(n) bits supporting the following operations in O(log n/log log n) time:

(1) access any A[i],
(2) append a new element A[n + 1] at the end of A, and
(3) update: A[i] ← A[i] + Δ,

provided that operations (2) and (3) do not violate properties (a) and (b). Run-
ning time of operation (2) is amortized (O(n log n/log log n) in the worst case).

Proof. We encode A as a bitvector A′ of length at most 2n bits, defined as
follows. We start with A′ = 01 and, for i = 2, . . . , n we append the bit sequence
0A[i−1]+1−A[i]1 to the end of A′. The intuition is that every bit set increases the
previous value A[i−1] by 1, and every bit equal to 0 decreases it by 1. Then, the
value A[i] can be retrieved simply as 2i − A′.select1(i). Clearly, A′ contains n
bits equal to 1 since for each 1 ≤ i ≤ n we insert a bit equal to 1 in A′. Since the
total number of 1s is n and A is non-negative, A′ contains at most n bits equal to
0 as well. It follows that A′ contains at most 2n bits in total. In order to support
updates, we encode the bitvector with the dynamic string data structure of
Munro and Nekrich [19], which takes at most 2n+o(n) bits of space and supports
queries and updates in O(log n/log log n) worst-case time. We already showed

Faster Online Computation of the Succinct Longest Previous Factor Array 343

how operation (1) reduces to select on A′. Let Δ = A[n]+1−A[n+1]. To support
operation (2), we need to append the bit sequence 0Δ1 at the end of A′. In the
worst case, this operation takes O(Δ log n/log log n) = O(n log n) time. However,
the sum of all Δ is equal to the total number of 0s in the bitvector; this implies
that, over a sequence of n insertions, this operation takes O(log n/log log n)
amortized time. Finally, operation A[i] ← A[i] + Δ can be implemented by
moving the bit at position A′.select1(i) by Δ positions to the left, which requires
just one delete and one insert operation on A′ (O(log n/log log n) time). Note
that this is always possible, provided that the update operation does not violate
properties (a) and (b) on the underlying array A. ��

4 Online Algorithm

We first give a sketch of our idea, and then proceed with the details. Similarly to
Okanohara and Sadakane [21], we build online the BWT and the compressed LCS
array of the text, and use the latter component to output online array LPF. This
is possible by means of a simple observation: after reading character T [i], entry
LPF [i] is equal to the maximum between LCS[IPA[i]] and LCS[IPA[i] + 1].
As in [21], array LCS is represented in compressed form by storing PLCS (in
2n + o(n) bits, Lemma 2) and a sampling of the prefix array PA which, together
with BWT, allows computing any PA[i] in O(log2 n) time. Then, we can retrieve
any LCS value in O(log2 n) time as LCS[i] = PLCS[PA[i]].

The bottleneck of Okanohara and Sadakane’s strategy is the update of LCS.
This operation requires being able to compute the longest common suffix between
two arbitrary text’s prefixes T [1, PA[i]] and T [1, PA[j]] (see [21] for all the
details). By a well-known relation, this value is equal to min(LCS[i, j]) (assume
i < j w.l.o.g.). In Okanohara and Sadakane’s work, this is achieved using a
dynamic Range Minimum Query (RMQ) data structure on top of LCS. The
RMQ is a balanced tree whose leaves cover Θ(log n) LCS values each and there-
fore requires accessing O(log n) LCS values in order to compute min(LCS[i, j]),
for a total running time of O(log3 n). We note that this running time cannot
be improved by simply replacing the dynamic RMQ structure of [21] with more
recent structures. Brodal et al. in [4] describe a dynamic RMQ structure sup-
porting queries and updates in O(log n/log log n) time, but the required space is
O(n) words. Heliou et al. in [13] reduce this space to O(n) bits, but they require,
as in [21], O(log n) accesses to the underlying array.

Our improvement over Okanohara and Sadakane’s algorithm stems from the
observation that the RMQ structure is not needed at all, as we actually need to
compute by direct symbol comparisons just irreducible LCS values:

Definition 2. LCS[i] is said to be irreducible if and only if either i = 0 or
BWT [i] 	= BWT [i − 1] hold.

Irreducible LCS values enjoy the following property:

Lemma 3 ([15], Thm. 1). The sum of all irreducible LCS values is at most
2n log n.

344 N. Prezza and G. Rosone

As a result, we will spend overall just O(n log2 n) time to compute all irre-
ducible LCS values. This is less than the time O(n log3 n) needed in [21] to
compute O(n) minima on the LCS.

4.1 Data Structures

Dynamic BWT. Let T [1, i] be the text prefix seen so far. As in [21], we keep
a dynamic BWT data structure to store the BWT of T [1, i]. In our case, this
structure is represented using Munro and Nekrich’s dynamic string [19] and takes
nHk + o(n log σ) + σ log n + o(σ log n) bits of space, for any k ∈ o(logσ n). The
latter two space components are needed for the C array encoded with succinct
searchable partial sums [3,14]. The structure supports rank, select, and access
in O(log n/log log n) time, while appending a character at the end of T and
computing the LF and FL mappings are supported in O(log n) time (the bottle-
neck are succinct searchable partial sums, which cannot support all operations
simultaneously in O(log n/log log n) time by current implementations [3,14]).

Dynamic Sparse Prefix Array. As in Okanohara and Sadakane’s solution, we also
keep a dynamic Prefix Array sampling. Let D =
log n� be the sample rate. We
store in a dynamic sequence PA′ all integers xj = j/D such that j mod D = 0,
for j ≤ i (i.e. we sample one out of D text positions and re-enumerate them
starting from 1). Letting j1 < · · · < jk be the co-lexicographic order of the
sampled text positions seen so far, the corresponding integers are stored in PA′

in the order xj1 , . . . , xjk . In the next paragraph we describe the structure used
to represent PA′ (as well as its inverse), which will support queries and updates
in O(log n) time. We use again Munro and Nekrich’s dynamic string [19] to keep
a dynamic bitvector BPA of length i (i being the length of the current text
prefix) that marks with a bit set sampled entries of PA. Since we sample one
out of D =
log n� text’s positions and the bitvector is entropy-compressed,
its size is o(n) bits. At this point, any PA[j] can be retrieved by returning
D · PA′[BPA.rank1(j) + 1] if BPA[j] = 1 or performing at most D LF mapping
steps otherwise, for a total running time of O(log2 n). Note that, by the way we
re-enumerate sampled text positions, the sequence PA′ is a permutation.

Dynamic Sparse Inverse Prefix Array. The first difference with Okanohara
and Sadakane’s solution is that we keep the inverse of PA′ as well, that is, a
(dynamic) sparse inverse prefix array: we denote this array by IPA′ and define
it as IPA′[PA′[j]] = j, for all 1 ≤ j ≤ |PA′|. First, note that we insert integers
in PA′ in increasing order: x = 1, 2, 3, Inserting a new integer x at some
position t in PA′ has the following effect in IPA′: first, all elements IPA′[k] ≥ t
are increased by 1. Then, value t is appended at the end of IPA′.

Example 1. Let PA′ and IPA′ = (PA′)−1 be the following permutations: PA′ =
〈3, 1, 2, 4〉 and IPA′ = 〈2, 3, 1, 4〉. Suppose we insert integer 5 at position 2 in PA′.
The updated permutations are: PA′ = 〈3, 5, 1, 2, 4〉 and IPA′ = 〈3, 4, 1, 5, 2〉.

Faster Online Computation of the Succinct Longest Previous Factor Array 345

Policriti and Prezza in [22] show how to represent a permutation of size k and
its inverse upon insertions and access queries in O(log k) time per operation and
O(k) words of space. The idea is to store PA′ in a self-balancing tree, sorting its
elements by the inverse permutation IPA′. Then, IPA′ is represented simply as
a vector of pointers to the nodes of the tree. By enhancing the tree’s nodes with
the corresponding sub-tree sizes, the tree can be navigated top-down (to access
PA′) and bottom-up (to access IPA′) in logarithmic time. Since we sample one
out of D =
log n� positions, the structure takes O(n) bits of space.

To compute any IPA[j], we proceed similarly as for PA. We compute the
sampled position j − δ (with δ ≥ 0) preceding j in the text, we find the cor-
responding position t on PA as t = BPA.select(IPA′[(j − δ)/D]), and finally
perform δ ≤ D steps of LF mapping to obtain IPA[j]. Note that, without loss
of generality, we can consider position 1 to be always sampled since IPA[1] = 1
is constant. To sum up, computing any IPA[j] requires O(log2 n) time, while
updating PA′ and IPA′ takes O(log n) time.

Dynamic PLCS Vector. We also keep the dynamic PLCS vector, stored using
the structure of Lemma 2. When extending the current text prefix T [1, i] by
character T [i + 1], LCS changes in two locations: first, a new value is inserted
at position IPA[i + 1]. Then, the value LCS[IPA[i + 1] + 1] (if this cell exists)
can possibly increase, due to the insertion of a new text prefix before it in co-
lexicographic order. As a consequence, PLCS changes in two places as well: (i) a
new value PLCS[i+1] = LCS[IPA[i+1]] is appended at the end, and (ii) value
PLCS[PA[IPA[i + 1] + 1]] (possibly) increases. Both operations are supported
in O(log n) (amortized) time by Lemma 2.

The way these new PLCS values are calculated is where our algorithm differs
from Okanohara and Sadakane’s [21], and is described in the next section.

4.2 Updating the LCS Array

In this section we show how to update the LCS array (stored in compressed
format as described in the previous sections).

Algorithm. We show how to compute the new LCS value to be inserted at
position IPA[i + 1] (after extending T [1, i] with T [i + 1]). The other update, to
LCS[IPA[i + 1] + 1], is completely symmetric so we just sketch it. Finally, we
analyze the amortized complexity of our algorithm.

Let a = T [i + 1] be the new text symbol, and let k be the position such that
BWT [k] = #. We recall that the BWT extension algorithm works by replacing
BWT [k] with the new character a = T [i + 1], and by inserting # at position
C[a] + BWT.ranka(k) = IPA[i + 1]. We also recall that the location of the first
occurrence of a symbol a preceding/following BWT [k] = # can be easily found
with one rank and one select operations on BWT.

Now, consider the BWT of T [1, i]. We distinguish three main cases (in [21],
all these cases were treated with a single Range Minimum Query):

346 N. Prezza and G. Rosone

(a) BWT [1, k] does not contain occurrences of character a. Then, T [1, i + 1]
is the co-lexicographically smallest prefix ending with a, therefore the new
LCS value to be inserted at position IPA[i + 1] is 0.

(b) BWT [k−1] = a. Then, prefix T [1, PA[k−1]+1] (ending with BWT [k−1] =
a) immediately precedes T [1, i + 1] in co-lexicographic order. It follows that
the LCS between these two prefixes is equal to 1 plus the LCS between
T [1, PA[k − 1]] and T [1, i], i.e. 1 + LCS[IPA[i]]. This is the new LCS value
to be inserted at position IPA[i + 1].

(c) The previous letter equal to a in BWT [1, k] occurs at position j < k−1. The
goal here is to compute the LCS � = LCS(j, k) between prefixes T [1, PA[k]]
and T [1, PA[j]]. Integer �+1 is the new LCS value to be inserted at position
IPA[i + 1]. We distinguish two further sub-cases.

(c.1) String BWT [k+1, i] does not contain occurrences of character a. Then, we
compare the two prefixes T [1, PA[k]] and T [1, PA[j]] right-to-left simply
by repeatedly applying function FL from BWT positions j and k. The
number of performed symbol comparisons is LCS(j, k).

(c.2) There is an occurrence of a after position k. Let q > k be the smallest posi-
tion such that BWT [q] = a. Table 1 reports an example of this case. Then,
T [1, PA[j]+1] and T [1, PA[q]+1] are adjacent in co-lexicographic order,
thus we can compute �′ = LCS(j, q) as follows. Letting j′ = BWT.LF (j)
and q′ = BWT.LF (q) = j′ + 1 (that is, the co-lexicographic ranks of
T [1, PA[j]+1] and T [1, PA[q]+1], respectively), we have �′ = LCS[q′]−1.
Since j < k < q, we have LCS(j, k) = � ≥ �′. In order to compute
� = LCS(j, k), the idea is to skip the first �′ comparisons (which we know
will return a positive result), and only compare the remaining �− �′ char-
acters in the two prefixes, that is, compare the two prefixes T [1, PA[k]−�′]
and T [1, PA[j]− �′]. This can be achieved by finding the co-lexicographic
ranks of these two prefixes, that is IPA[PA[k] − �′] and IPA[PA[j] − �′]
respectively, and applying the FL function from these positions to extract
the � − �′ remaining matching characters in the prefixes. The number of
performed symbol comparisons is � − �′ = LCS(j, k) − LCS(j, q).

As noted above, the other update to be performed at position LCS[IPA[i +
1] + 1] is completely symmetric so we just sketch it here. The cases where
BWT [k, i] does not contain occurrences of a or where BWT [k + 1] = a cor-
respond to cases (a) and (b). If the first occurrence of a following position k
appears at position q > k + 1, on the other hand, we distinguish two further
cases. The case where BWT [1, k] does not contain occurrences of a is handled
as case (c.1) above (by direct character comparisons between two text prefixes).
Otherwise, we find the first occurrence of a = BWT [j] before position k and
proceed as in case (c.2), by finding the LCS �′ between the suffixes T [1, PA[q]]
and T [1, PA[j]], and comparing prefixes T [1, PA[k] − �′] and T [1, PA[q] − �′].

Amortized Analysis. In the following, by symbol comparisons we indicate the
comparisons performed in case (c) to compute LCS values (by means of iterating
the FL mapping). For simplicity, we count only comparisons resulting in a match

Faster Online Computation of the Succinct Longest Previous Factor Array 347

between the two compared characters: every time we encounter a mismatch, the
comparison is interrupted; this can happen at most 2n times (as we update at
most two LCS values per iteration), therefore it adds at most O(n log n) to our
final running time (as every FL step takes O(log n) time).

We now show that the number of symbol comparisons performed in case (c)
is always upper-bounded by the sum of irreducible LCS values.

Definition 3. A BWT position k > 1 is said to be a relevant run break if and
only if:

(i) BWT [k − 1] 	= BWT [k],
(ii) there exists j < k − 1 such that BWT [j] = BWT [k], and
(iii) if BWT [k − 1] = #, then k > 2 and BWT [k − 2] 	= BWT [k].

Condition (i) requires k to be on the border of an equal-letter BWT run.
Condition (ii) requires that there is a character equal to BWT [k] before position
k − 1, and condition (iii) states that # does not contribute in forming relevant
run breaks (e.g. in string a#a, the second occurrence of a is not a relevant run
break; however, in ac#a the second occurrence of a is). Intuitively, condition
(iii) is required since extending the text by one character might result in two
runs of the same letter separated by just # to be merged (e.g. aaa#a becomes
aaaaa after replacing # with a). Without condition (iii), after such a merge we
could have characters inside a run that are charged with symbol comparisons.

In Lemma 4 we prove that our algorithm maintains the following invariant:

Invariant 1. Consider the structures BWT and LCS for T [1, i] at step i. More-
over, let k be a relevant run break, and let j < k − 1 be the largest position such
that BWT [k] = BWT [j]. Then:

1. Position k is charged with ck = LCS(j, k) symbol comparisons, and
2. Only relevant run breaks are charged with symbol comparisons.

Lemma 4. Invariant 1 is true after every step i = 1, . . . , n of our algorithm.

Proof. After step i = 1, we have processed just T [1] and the property is trivially
true as there are no relevant run breaks. Assume by inductive hypothesis that
the property holds at step i, i.e. after building all structures (BWT, LCS) for
T [1, i]. We show that the application of cases (a-c) maintains the invariant true.

Case (a) does not perform symbol comparisons. Moreover, it does not destroy
any relevant run break. The only critical case is BWT [k+1] = a, since replacing
BWT [k] = # with a destroys the run break at position k + 1. However, note
that k + 1 cannot be a relevant run break, since BWT [1, k] does not contain
occurrences of a. It follows that case (a) maintains the invariant.

Also case (b) does not perform symbol comparisons and does not destroy any
relevant run break. The only critical case is BWT [k + 1] = a, since replacing
BWT [k] = # with a destroys the run break at position k+1. However, note that
k + 1 cannot be a relevant run break, since BWT [k − 1] = a and BWT [k + 1] =

348 N. Prezza and G. Rosone

a are separated by BWT [k] = #, which by definition does not contribute in
forming relevant run breaks. It follows that case (b) maintains the invariant.

(c.1) Consider the BWT of T [1, i], and let k be the terminator position:
BWT [k] = #. Note that, by Definition 3, k is not a relevant run break since no
other position contains the terminator, and thus by Invariant 1 it is not charged
yet with any symbol comparison. Case (c.1) compares the k-th and j-th co-
lexicographically smallest text prefixes, where j < k−1 is the previous occurrence
of a in the BWT. Clearly, the number of comparisons performed is exactly
ck = LCS(j, k): we charge this quantity to BWT position k. Then, we update the
BWT by (i) replacing BWT [k] = # with a, which makes k a valid relevant run
break since BWT [k−1] 	= a, BWT [j] = BWT [k], and j < k−1 and (ii) inserting
in some BWT position, which (possibly) shifts position k to k′ ∈ {k, k + 1}
(depending whether # is inserted before or after k) but does not alter the value
of ck = LCS(j, k′), so k′ is a relevant run break and is charged correctly as of
Invariant 1. Finally, note that (1) the new BWT position containing # is not
charged with any symbol comparison (since we just inserted it), (2) that, if two
runs get merged after replacing # with T [i + 1] then, thanks to Condition (iii)
of Definition 3 and Invariant 1 at step i, no position inside a equal-letter run
is charged with symbol comparisons, and (3) if the new # is inserted inside a
equal-letter run at, thus breaking it as at1#at2 with t = t1 + t2 and t1 > 0,
then the position following # is not charged with any symbol comparison. (1–3)
imply that we still charge only relevant run breaks with symbol comparisons:
Invariant 1 is therefore true at step i + 1.

(c.2) Consider the BWT of T [1, i], and let k, j, q, with j < k − 1 < k < q,
be the terminator position (BWT [k] = #) and the immediately preceding and
following positions containing a = BWT [j] = BWT [q]. Note that q is a rele-
vant run-break, charged with cq = LCS(j, q) symbol comparisons by Invariant 1.
Assume that LCS(j, k) ≥ LCS(k, q): the other case is symmetric and we discuss
it below. Then, LCS(k, q) = LCS(j, q) = cq. First, we “lift” the cq = LCS(j, q)
symbol comparisons from position q and re-assign them to position k. By defi-
nition, case (c.2) of our algorithm performs LCS(j, k) − LCS(j, q) symbol com-
parisons; we charge also these symbol comparisons to position k. After replacing
BWT [k] with letter a, position k becomes a relevant run break, and is charged
with cq + (LCS(j, k) − LCS(j, q)) = LCS(j, k) = ck symbol comparisons. Posi-
tion q, on the other hand, is now charged with 0 symbol comparisons; note that
this is required if q = k + 1 (as in the example of Table 1), since in that case q is
no longer a relevant run break (as we replaced # with a). Finally, we insert #
in some BWT position which, as observed above, does not break Invariant 1.

The other case is LCS(j, k) < LCS(k, q). Then LCS(j, k) = LCS(j, q), and
therefore case (c.2) does not perform additional symbol comparisons to compute
LCS[IPA[i + 1]]. On the other hand, the symmetric of case (c.2) (i.e. the case
where we update LCS[IPA[i + 1] + 1]) performs LCS(k, q) − LCS(j, q) symbol
comparisons if q > k + 1 (none otherwise); these are all charged to position
q and, added to the LCS(j, q) comparisons already charged to q, sum up to
LCS(k, q) comparisons. This is correct, since in that case q remains a relevant

Faster Online Computation of the Succinct Longest Previous Factor Array 349

run break. If, on the other hand, q = k+1, then no additional comparisons need
to be made to update LCS[IPA[i + 1] + 1], and we simply lift the LCS(j, q)
comparisons from q (which is no longer a relevant run break) and charge them to
k (which becomes a relevant run break). This is correct, since k is now charged
with LCS(j, q) = LCS(j, k) symbol comparisons. ��

Table 1. The example illustrates case (c.2). Column L is the BWT. The other columns
contain the sorted text prefixes. Left: structures for T [1, i] = #abaaabbaababa. We are
about to extend the text with letter a. Positions k, j, q contain # (to be replaced with
a) and the immediately preceding and succeeding BWT positions containing a. To find
LCS(j, q), apply LF to j, q, obtaining positions j′ and q′. Then, LCS(j, q) = LCS[q′]−
1 = 2, emphasized in italic. At this point, LCS(j, k) is computed by comparing the
j-th and k-th smallest prefixes outside the italic zone (found using IPA and PA). In the
example, we find 1 additional match (underlined). It follows that the new LCS to be
inserted between positions j′ and q′ is 1 + LCS(j, k) = 1 + (LCS(j, q) + 1) = 4. Right:
structures updated after appending a to the text. In bold on column LCS: the new
LCS value inserted (LCS[IPA[i + 1]] = 4) and the one updated by the symmetric of
case (c.2) (LCS[q′] = 3; in this example, the value doesn’t change). In bold on column
F: last letters of the j′-th and q′-th smallest text’s prefixes, interleaved with T [1, i+1].

Lemma 5. At any step i = 1, . . . , n, let k1, . . . , kr be the relevant run breaks
and ck1 , . . . , ckr

be the symbol comparisons charged to them, respectively. Then,∑r
t=1 ckt

≤ 2i log i.

Proof. By definition of ckt
, we have ckt

= LCS(j, kt) ≤ LCS(kt − 1, kt) =
LCS[kt], where j < kt − 1 is the largest position to the left of kt − 1 containing
symbol BWT [kt]. Moreover, note that {k1, . . . , kr} is a subset of the BWT run
breaks {k : BWT [k − 1] 	= BWT [k]}, therefore each LCS[kt] is irreducible.
Let S be the sum of irreducible LCS values. By applying Lemma3, we obtain:

r∑

j=1

ckt
≤

r∑

j=1

LCS[kt] ≤ S ≤ 2i log i

350 N. Prezza and G. Rosone

We obtain our main result:

Theorem 2 (Online succinct LPF and LCS arrays). The succinct LPF
and LCS arrays of a text T ∈ [1, σ]n can be computed online in O(n log2 n) time
and O(n log n) delay per character using nHk + o(n log σ) + O(n) + σ log n +
o(σ log n) bits of working space (including the output), for any k ∈ o(logσ n).

Proof. After LCS and IPA have been updated at step i, we can compute
LPF [i] simply as LPF [i] = max{LCS[IPA[i]], LCS[IPA[i] + 1]} in O(log2 n)
time. This value can be appended at the end of the succinct representa-
tion of LPF (Lemma 2) in O(log n) amortized time (which in the worst case
becomes O(n log n)). Updating BWT, PA′, and IPA′ takes O(log n) time per
character. The most expensive part is updating the structures representing
LCS: at each step we need to perform a constant number of accesses to
arrays PA, IPA, and LCS, which alone takes O(log2 n) time per character.
Updating PLCS takes O(log n) amortized time per character (which in the
worst case becomes O(n log n)) by Lemma 2. By Lemma 5 we perform over-
all O(n log n) symbol comparisons, each requiring two FL steps and two BWT
accesses, for a total of O(n log2 n) time. Note that a single comparison between
two text prefixes cannot extend for more than n characters, therefore in the
worst case a single step takes O(n log n) time. This is our delay per charac-
ter. To conclude, in Sect. 4.1 we showed that our data structures take at most
nHk + o(n log σ) + O(n) + σ log n + o(σ log n) bits of space. ��

Finally we note that, at each step i, we can output also the location of the
longest previous factor: this requires just one access to the prefix array PA.

5 Conclusions

We improved the state-of-the-art algorithm, from Okanohara and Sadakane [21],
computing online the (succinct) LPF and LCS arrays of the text. Our improve-
ment stems from the observation that a dynamic RMQ structure over the LCS
array is not needed, as the LCS can be updated by performing a number of
character comparisons that is upper-bounded by the sum of irreducible LCS
values. Future extensions of this work will include reducing the delay of our
algorithm (currently O(n log n)). We observe that it is rather simple to obtain
O(log2 n) delay at the cost of randomizing the algorithm by employing an online
Karp-Rabin fingerprinting structure such as the one described in [2]: once fast
fingerprinting is available, one can quickly find the LCS between any two text
prefixes by binary search. It would also be interesting to reduce the overall run-
ning time of our algorithm. This, however, does not seem straightforward to
achieve, as it would require finding a faster implementation of a dynamic com-
pressed prefix array (and its inverse) and finding a faster way of updating LCS
values (possibly, with a faster dynamic succinct RMQ structure).

Faster Online Computation of the Succinct Longest Previous Factor Array 351

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms 2(1), 53–86 (2004). https://doi.org/10.1016/
S1570-8667(03)00065-0

2. Alzamel, M., et al.: Online algorithms on antipowers and antiperiods. In: Brisaboa,
N.R., Puglisi, S.J. (eds.) SPIRE 2019. LNCS, vol. 11811, pp. 175–188. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32686-9 13

3. Bille, P., Christiansen, A.R., Prezza, N., Skjoldjensen, F.R.: Succinct partial sums
and fenwick trees. In: Fici, G., Sciortino, M., Venturini, R. (eds.) SPIRE 2017.
LNCS, vol. 10508, pp. 91–96. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67428-5 8

4. Brodal, G.S., Davoodi, P., Srinivasa Rao, S.: Path minima queries in dynamic
weighted trees. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS,
vol. 6844, pp. 290–301. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22300-6 25

5. Burrows, M., Wheeler, D.: A block sorting data compression algorithm. Technical
report, DEC Systems Research Center (1994)

6. Chairungsee, S., Charuphanthuset, T.: An approach for LPF table computation.
In: Anderst-Kotsis, G., et al. (eds.) DEXA 2019. CCIS, vol. 1062, pp. 3–7. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-27684-3 1

7. Chen, G., Puglisi, S.J., Smyth, W.F.: Fast and practical algorithms for computing
all the runs in a string. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp.
307–315. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73437-
6 31

8. Cox, A.J., Garofalo, F., Rosone, G., Sciortino, M.: Lightweight LCP construc-
tion for very large collections of strings. J. Discrete Algorithms 37, 17–33 (2016).
https://doi.org/10.1016/j.jda.2016.03.003

9. Crochemore, M., Ilie, L., Smyth, W.F.: A simple algorithm for computing the
Lempel Ziv factorization. In: Data Compression Conference (DCC 2008), pp. 482–
488 (2008). https://doi.org/10.1109/DCC.2008.36

10. Crochemore, M., Ilie, L.: Computing longest previous factor in linear time and
applications. Inf. Process. Lett. 106(2), 75–80 (2008). https://doi.org/10.1016/j.
ipl.2007.10.006

11. Crochemore, M., Ilie, L., Iliopoulos, C.S., Kubica, M., Rytter, W., Waleń, T.:
Computing the longest previous factor. Eur. J. Comb. 34(1), 15–26 (2013). https://
doi.org/10.1016/j.ejc.2012.07.011

12. Franěk, F., Holub, J., Smyth, W.F., Xiao, X.: Computing quasi suffix arrays. J.
Autom. Lang. Comb. 8(4), 593–606 (2003)

13. Heliou, A., Léonard, M., Mouchard, L., Salson, M.: Efficient dynamic range min-
imum query. Theor. Comput. Sci. 656(PB), 108–117 (2016). https://doi.org/10.
1016/j.tcs.2016.07.002

14. Hon, W.K., Sadakane, K., Sung, W.K.: Succinct data structures for searchable
partial sums with optimal worst-case performance. Theor. Comput. Sci. 412(39),
5176–5186 (2011)

15. Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 181–192.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02441-2 17

https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1007/978-3-030-32686-9_13
https://doi.org/10.1007/978-3-319-67428-5_8
https://doi.org/10.1007/978-3-319-67428-5_8
https://doi.org/10.1007/978-3-642-22300-6_25
https://doi.org/10.1007/978-3-642-22300-6_25
https://doi.org/10.1007/978-3-030-27684-3_1
https://doi.org/10.1007/978-3-540-73437-6_31
https://doi.org/10.1007/978-3-540-73437-6_31
https://doi.org/10.1016/j.jda.2016.03.003
https://doi.org/10.1109/DCC.2008.36
https://doi.org/10.1016/j.ipl.2007.10.006
https://doi.org/10.1016/j.ipl.2007.10.006
https://doi.org/10.1016/j.ejc.2012.07.011
https://doi.org/10.1016/j.ejc.2012.07.011
https://doi.org/10.1016/j.tcs.2016.07.002
https://doi.org/10.1016/j.tcs.2016.07.002
https://doi.org/10.1007/978-3-642-02441-2_17

352 N. Prezza and G. Rosone

16. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A. (ed.)
CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-48194-X 17

17. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993). https://doi.org/10.1137/0222058

18. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM
23(2), 262–272 (1976). https://doi.org/10.1145/321941.321946

19. Munro, J.I., Nekrich, Y.: Compressed data structures for dynamic sequences. In:
Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 891–902. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3 74

20. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv.
textbf39(1), 2-es (2007). https://doi.org/10.1145/1216370.1216372

21. Okanohara, D., Sadakane, K.: An online algorithm for finding the longest previous
factors. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp.
696–707. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87744-
8 58

22. Policriti, A., Prezza, N.: From LZ77 to the run-length encoded Burrows-Wheeler
transform, and back. In: 28th Annual Symposium on Combinatorial Pattern
Matching. Schloß Dagstuhl (2017)

23. Puglisi, S.J., Turpin, A.: Space-time tradeoffs for longest-common-prefix array com-
putation. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS,
vol. 5369, pp. 124–135. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-92182-0 14

24. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on
Switching and Automata Theory (SWAT), pp. 1–11 (1973). https://doi.org/10.
1109/SWAT.1973.13

25. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression.
IEEE Trans. Inf. Theory 23(3), 337–343 (1977). https://doi.org/10.1109/TIT.
1977.1055714

https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1137/0222058
https://doi.org/10.1145/321941.321946
https://doi.org/10.1007/978-3-662-48350-3_74
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1007/978-3-540-87744-8_58
https://doi.org/10.1007/978-3-540-87744-8_58
https://doi.org/10.1007/978-3-540-92182-0_14
https://doi.org/10.1007/978-3-540-92182-0_14
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1977.1055714

	Faster Online Computation of the Succinct Longest Previous Factor Array
	1 Introduction
	2 Definitions
	3 Succinct PLCS and LPF Arrays
	4 Online Algorithm
	4.1 Data Structures
	4.2 Updating the LCS Array

	5 Conclusions
	References

