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Abstract: Flooding limits biomass production in agriculture. Leguminous plants, important agricultural
crops, use atmospheric dinitrogen gas as nitrogen nutrition by symbiotic nitrogen fixation with rhizobia,
but this root-nodule symbiosis is sometimes broken down by flooding of the root system. In this study,
we analyzed the effect of flooding on the symbiotic system of transgenic Lotus japonicus lines which
overexpressed class 1 phytoglobin (Glb1) of L. japonicus (LjGlb1-1) or ectopically expressed that of
Alnus firma (AfGlb1). In the roots of wild-type plants, flooding increased nitric oxide (NO) level and
expression of senescence-related genes and decreased nitrogenase activity; in the roots of transgenic
lines, these effects were absent or less pronounced. The decrease of chlorophyll content in leaves
and the increase of reactive oxygen species (ROS) in roots and leaves caused by flooding were also
suppressed in these lines. These results suggest that increased levels of Glb1 help maintain nodule
symbiosis under flooding by scavenging NO and controlling ROS.

Keywords: flooding; hemoglobin; hypoxia; Lotus japonicus; Mesorhizobium loti; nitric oxide; nitrogen
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1. Introduction

Flooding often reduces crop growth and yield, causing serious problems for farmers. Plant growth
is hampered by flooding because it exposes plants to hypoxia, which inhibits aerobic respiration and
photosynthesis, reducing ATP production. Hypoxia inhibits photosynthesis by inducing production
of reactive oxygen species (ROS), which damage the chloroplast membrane and decrease the
photosynthetic potential [1,2]. Excess ROS also lead to lipid peroxidation and alterations in lipid
composition, electrolyte leakage, and ultimately cell death [3–5]. Another reactive molecule, nitric
oxide (NO), is produced in plants in response to biotic and abiotic stresses, including hypoxia [6–9].
NO serves as a signal molecule in various physiological and pathogenic responses of plants such as
stomatal opening and closing [10], protein S-nitrosylation, and cGMP nitration [11]. Excess NO is toxic
and inhibits plant growth; plants regulate NO levels by producing plant hemoglobin (phytoglobin,
Glb) [12,13].

Glbs are divided into three classes: Glb1, Glb2, and Glb3 [14–17]. Leghemoglobin (Lb) of
leguminous plants, which was the first identified Glb [18], belongs to Glb2 and is essential for
legume–rhizobia symbiosis because it regulates oxygen partial pressure in root nodules [19]. Although
the function of Glb3 is unknown, it may interact with NO [20]. Glb1 has extremely high affinity for
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oxygen [21] and scavenges NO by oxidizing it to nitrate [12,13,17,22]. Under hypoxia, overexpression
of Glb1 ameliorates the energy status and growth of both maize cells and alfalfa roots [6,8,12],
and enhances the survival of Arabidopsis thaliana [16]; in all cases, consistent low NO level strongly
suggests the role of NO-scavenging activity of Glb1 in tolerance to hypoxia. Overexpression or
ectopic expression of tobacco gene NtHb1 enhances Cd tolerance by reducing Cd and NO levels in
Nicotiana tabacum and A. thaliana [23,24]. At least eight Glb genes have been identified in the genome of
Lotus japonicus: two Glb1s (LjGlb1-1, LjGlb1-2), four Glb2s (LjGlb2 and three Lb genes) and two Glb3s
(LjGlb3-1, LjGlb3-2) [25,26]. LjGlb1-1 is the only NO-inducible Glb gene of L. japonicus [26].

The NO-scavenging activity of Glb1 is required for establishing proper root nodule symbiosis [27].
In the L. japonicus–Mesorhizobium loti symbiosis, inoculation with M. loti induces NO production in
roots with the simultaneous expression of the Glb1 gene (LjGlb1-1) [28]. NO inhibits nitrogenase [29,30]
and promotes nodule senescence [31]. A null mutant line of LjGlb1-1 shows low infection and low
nitrogenase activity of the nodules [27], whereas overexpression of LjGlb1-1 increases nitrogenase
activity [32,33]. The beneficial effects of LjGlb1-1 overexpression may be attributed to a reduced level
of NO [33]. No drastic differences have been observed in the shape and growth of plants among these
overexpression lines, the null mutant, and the wild type with supply of nitrogen source [27,33], although
the timing of bolting and flowering has not been statistically compared. In the Alnus firma (actinorhizal
plant)–Frankia (actinobacterium) symbiosis, Glb1 of A. firma (AfGlb1, accession number AB221344 in
DDBJ database) may support the nitrogenase activity of the nodules as a NO scavenger [34].

Flooding adversely affects nodule symbiosis; NO produced in the nodules in response to flooding
decreases nitrogenase expression and activity [35–37]. NO might attack nodule cells during flooding
and delay the recovery of the symbiotic activity of the nodules after flooding. Because NO-scavenging
activity contributes to hypoxia tolerance, we hypothesized that Glb1 overexpression might improve
the tolerance of nodule symbiosis to hypoxia.

In this study, we examined the tolerance of the nodule symbiosis to flooding in two transgenic
L. japonicus lines that express LjGlb1-1 or AfGlb1 driven by the CaMV 35S promoter. Our results suggest
that Glb1 overexpression improves nodule symbiosis by controlling not only NO but also ROS.

2. Materials and Methods

2.1. Biological Materials

Lotus japonicus accession Gifu B-129 and its derivative lines were used as host plants. The null
mutant line 30096642 (abbreviated hereafter as 96642), bearing the LORE1 retrotransposon inserted in
the 5′-untranslated region of LjGlb1-1 [27], was obtained from the LORE1 collection [38–40]. Binary
vectors carrying the constitutive cauliflower mosaic virus 35S (CaMV 35S) promoter and cDNA of
LjGlb1-1 or AfGlb1 were constructed with pIG121-Hm, and the lines of L. japonicus expressing these
constructs (referred to as Ox1 [33] and as Afx1, respectively) were produced according to Aoki et al. [41].
Mesorhizobium loti MAFF303099 [42] was used as a microsymbiont of L. japonicus.

2.2. Growth Conditions and Flooding Treatment

Lotus japonicus B-129 and its derivatives were germinated and grown as described previously [28].
In brief, 5 days after germination, seedlings were transferred to pots filled with vermiculite moistened
with Fåhraeus liquid medium [43] and inoculated with M. loti MAFF303099 suspension in water
(107 cells mL−1) [42]. The plants were grown under photosynthetically active radiation of 150 µmol
photons m−2 s−1 (16-h photoperiod) at 25 ◦C for 5 weeks after inoculation. At 4 weeks after inoculation,
the pots were put in wider containers filled with distilled water, so that the water level was maintained
1 cm above the soil surface for 1 week. Plants not subjected to flooding were used as controls.
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2.3. Nitrogenase Activity

Nitrogenase activity of the nodules was determined as acetylene reduction activity (ARA)
according to Shimoda et al. [32]. Whole plants or nodules detached from the roots were placed in glass
tubes containing wet filter paper. The tubes were filled with a mixture of acetylene (C2H2) and air
(1:9 v/v). After 2 h incubation at 25◦C, the amount of ethylene in the gas phase was determined by gas
chromatograph (GC-3A, Shimadzu, Kyoto, Japan).

2.4. Endogenous NO and ROS in Roots

Endogenous NO was monitored by fluorescence microscopy as described by Nagata et al. [28].
The assay used the cell-permeable DAF-FM DA probe, which is deacetylated by intracellular esterases
to DAF-FM; the latter reacts with the endogenous NO oxidation product N2O3 to form a highly
fluorescent triazole. The roots were soaked for 1 h in distilled water containing 20 µM DAF-FM DA
(Goryo Chemical, Sapporo, Japan). The endogenous ROS were monitored as NO, except that 10 µM
cell-permeable ROS probe CellROX Deep Red Reagent (Invitrogen, NY, USA) was used. The elongation
zone (1–2 cm from the root tip) was examined. Confocal images were captured under an A1si-90i
microscope and epifluorescence images under an Eclipse 90i microscope (both from Nikon, Tokyo,
Japan). Fluorescence intensity was quantified in ImageJ software (https://imagej.nih.gov/ij/).

2.5. NO Released from Nodules

The NO released from nodules was assessed by using the non-cell-permeable DAF-FM probe.
The nodules were detached and immediately soaked in 7 µM DAF-FM for 10 min. The relative
fluorescence units (RFUs) of the DAF-FM solution were measured by fluorometer (e-Spect2, Malcom,
Japan) with excitation at 495 nm and emission at 519 nm.

2.6. Leaf Chlorophyll Content

Five leaves per plant were collected, chlorophyll was extracted, and absorbance (A) at 663.8 nm
and 646.8 nm was measured and quantified according to Porra et al. [44]. The amounts of chlorophyll
a (Chl-a), chlorophyll b (Chl-b), and their sum (Chl-a+b) were calculated as follows:

Chl-a = 12.00 × A663.8 − 3.11 × A646.8

Chl-b = 20.78 × A646.8 − 4.88 × A663.8

Chl-a+b = 17.67 × A646.8 + 7.12 × A663.8

The results were expressed as the ratio to the unflooded control of WT.

2.7. Electrolyte Leakage from Leaves

Electrolyte leakage was measured according to Rolny et al. [45]. Five leaves were floated on
5 mL of deionized water with continuous shaking on a rocking shaker (SK-R1807-E, DLAB Scientific,
Beijing, China). Electrolyte content in the solution was measured immediately (C0) and after 3 h (C3) of
incubation at 25◦C with a conductivity meter (AS650, AS One, Osaka, Japan). Total electrolyte content
(TC) was determined in the same way after incubation at 80 ◦C for 3 h. Electrolyte leakage rate was
calculated as (C3 − C0)/TC and expressed as the ratio to untreated WT.

2.8. qRT-PCR Analysis of Senescence-Related Genes

Total RNA was extracted from nodules (max. 50 mg) with the RNeasy Plant Mini kit (Qiagen,
Hilden, Germany). qRT-PCR was performed in a 7300 Real-Time PCR system (Applied Biosystems,
Foster City, CA, USA) with a One Step SYBR Prime Script RT-PCR kit (Takara, Shiga, Japan).
The reverse transcription step was 5 min at 42◦C. Primers for LjGlb1-1 (Lj3g3v3338170, 5′-CCTTTGGAG
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GAGAACCCCAA-3′ and 5′-GAGCTGCTGATTCACAAGTCA-3′), heat shock protein (Lj4g3v0473190;
5′-CAGTGGGAAATTCCAGAGGA-3′ and 5′-AGTGAGAACCCCATTCTCCA-3′), osmotin precursor
(Lj2g3v2017460; 5′-GGACAGGTGCCATGATTCTT-3′ and 5′-GAAAGTGCTGGTGGGATCAT-3′),
cysteine protease LjCyp2 (Lj1g3v4047250; 5′-GGAGAACAATGGGGTGAAGA-3′ and 5′-GCCACAC
AAACCCAATACTG-3′), and LjeIF-4A (Lj6g3v1382260; 5′-TGGAAGCTTCGAAGAGATGG-3′ and
5′-GTGCCAGATTGAGCCTGAG-3′) were used with a program consisting of an initial denaturation
and Taq polymerase activation step of 10 s at 95 ◦C, followed by 40 cycles of 10 s at 95 ◦C and 31 s at 60 ◦C.
Primer specificity was confirmed by amplicon dissociation curves. The absence of genomic DNA was
confirmed by PCR on RNA samples without reverse transcription. Expression levels were normalized
to that of LjeIF-4A used as an internal reference gene. Sequences of all genes used in this study were
retrieved from the Lotus japonicus Genome Sequencing Project (http://www.kazusa.or.jp/lotus/).

2.9. Histochemical Detection of H2O2 and O2
−

H2O2 was detected in situ according to Thordal-Christensen et al. [46] and Signorelli et al. [47].
Detached leaves and roots were vacuum-infiltrated in the dark with 10 mM potassium phosphate
buffer, 10 mM NaN3, and 0.1% (w/v) 3,3′-diaminobenzidine (DAB), pH 7.8. Samples were incubated
overnight in the dark, then cleared with 0.15% (w/v) trichloroacetic acid in 4:1 (v/v) ethanol: chloroform
for 48 h, and photographed.

Superoxide radical (O2
−) was detection in situ essentially as described by Jabs et al. [48] and

Signorelli et al. [47]. Detached leaves and roots were vacuum-infiltrated with 10 mM potassium phosphate
buffer, 10 mM NaN3, 0.1% (w/v) nitro blue tetrazolium (NBT), and 0.05% (v/v) Tween 20, pH 7.8. Treated
samples were then maintained for 30 min under daylight, cleared as above, and photographed.

2.10. Light Microscopy

Nodules were fixed with 4% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M sodium
phosphate buffer (pH 7.2) at 4 ◦C overnight. The fixed samples were dehydrated through a graded
ethanol series, embedded in JB4 resin (Polysciences Inc., Warrington, PA, USA), and sectioned
(3 µm thick). Sections were stained with the Periodic Acid-Schiff (PAS) reagent (Muto Pure Chemicals,
Tokyo, Japan) according to the manufacturer’s instructions.

3. Results

3.1. Nodules of Ox1 and Afx1 Lines have High Nitrogenase Activity and Low NO Levels

Without flooding, the ARA level was significantly higher in Ox1 and Afx1 than in WT and
96642 plants (Figure 1A). Flooding significantly reduced the ARA level in WT; it tended to reduce it in
96642 but had no effect in Ox1 and Afx1 (Figure 1A).

Using the cell-permeable DAF-FM DA NO probe, we compared the endogenous production of
NO in the roots of WT and transgenic plants under flooded and control conditions. In line with our
previous findings [27,33], endogenous NO levels were lower in the roots of Ox1 and Afx1 and higher
in the roots of 96642 than in WT (Figure 1B,C). Flooding increased endogenous NO levels in WT and
96642 but not in Ox1 or Afx1 (Figure 1B,C).

To assess the NO levels released by nodules, we used the non-cell-permeable DAF-FM probe.
Flooding significantly increased NO release from the nodules of all lines tested, although the levels
remained significantly lower in Ox1 and Afx1 than in WT and 96642 (Figure 2).

http://www.kazusa.or.jp/lotus/
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Figure 1. Nitrogenase activity and NO production in roots of the WT, Ox1, Afx1, and 96642 lines. (A) 
Nitrogenase activity (estimated as ARA) was measured in the flooded and unflooded (control) 
nodules and was expressed as ethylene produced per hour and mg nodule fresh weight. (B) 
Fluorescence imaging of NO production in roots with the DAF-FM DA probe. Scale bars, 100 μm. (C) 
Quantification of fluorescence intensity in DAF-FM DA images. In A and C, values are means ± SE of 
nine biological replicates. Means denoted by the same letter do not differ significantly by Student’s t-
test at p < 0.05. 

 

Figure 2. Quantification of NO released from nodules with the DAF-FM probe. Values are means ± 
SE of nine biological replicates. Means denoted by the same letter do not differ significantly by 
Student’s t-test (p < 0.05). 

Figure 1. Nitrogenase activity and NO production in roots of the WT, Ox1, Afx1, and 96642 lines.
(A) Nitrogenase activity (estimated as ARA) was measured in the flooded and unflooded (control)
nodules and was expressed as ethylene produced per hour and mg nodule fresh weight. (B) Fluorescence
imaging of NO production in roots with the DAF-FM DA probe. Scale bars, 100 µm. (C) Quantification
of fluorescence intensity in DAF-FM DA images. In A and C, values are means ± SE of nine biological
replicates. Means denoted by the same letter do not differ significantly by Student’s t-test at p < 0.05.
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Figure 2. Quantification of NO released from nodules with the DAF-FM probe. Values are means ± SE
of nine biological replicates. Means denoted by the same letter do not differ significantly by Student’s
t-test (p < 0.05).

3.2. Glb1s Alleviate Nodule Senescence Caused by Flooding

We have reported that nodule senescence in the Ox1 line is delayed [33]. Quantification by
qRT-PCR showed that the expression of all three nodule senescence marker genes (coding a heat shock
protein, an osmotin precursor, and cysteine protease Cyp2; [33,49,50]) was increased in flooded nodules
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relative to untreated nodules of WT and 96642; the increase was much lower or absent in the nodules
of Ox1 and Afx1 (Figure 3).
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Flooding reduced total leaf chlorophyll contents in WT and 96642, mostly because of the 
decrease in chlorophyll-b, but not in Ox1 and Afx1 (Figure 5A). Flooding increased the intensity of 
DAB staining (indicator of H2O2 level) of WT and 96642 leaves, but no obvious effect was observed 
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Figure 3. Expression of senescence-associated genes in flooded and unflooded (control) nodules.
For each line, the mRNA levels in unflooded WT nodules were set at 1. Values are means ± SE of three
biological replicates, each with three technical replicates. Open bars, unflooded; filled bars, flooded.
Means denoted by the same letter do not differ significantly by Student’s t-test at p < 0.05.

Microscopic examination of nodule sections stained with PAS reagent revealed that flooding
increased the number and size of vacuoles in the infected cells of WT and 96642, indicating nodule
senescence [51], but not in those of Ox1 and Afx1 lines (Figure 4). However, accumulation of starch
granules—another typical phenotype of nodule senescence—was not observed in the nodules of WT
and 96642 (Figure 4).
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Figure 4. Microscopic images of nodules of WT, Ox1, Afx1, and 96642 plants. Sections of flooded
or unflooded (control) nodules were stained with PAS to visualize infected cells and starch granules
(arrowheads). Scale bars, 20 µm.

3.3. Glb1s Alleviate the Effects of Flooding in Leaves and Roots

Flooding reduced total leaf chlorophyll contents in WT and 96642, mostly because of the decrease
in chlorophyll-b, but not in Ox1 and Afx1 (Figure 5A). Flooding increased the intensity of DAB staining
(indicator of H2O2 level) of WT and 96642 leaves, but no obvious effect was observed in Ox1 and Afx1
(Figure 5B). Unexpectedly, NBT (indicator of O2

− level) strongly stained leaves of all lines without
flooding, whereas flooding decreased leaf staining in all lines, with no obvious differences among them
(Supplementary Figure S1). Electrolyte leakage rate did not show significant differences among the
lines or treatments (Supplementary Figure S2). In roots, flooding increased the fluorescence intensity
of CellROX reagent in WT and 96642, but it remained low in Ox1 and Afx1 (Figure 6, Supplementary
Figure S3). Although NBT and DAB staining was weaker in the roots of Ox1 and Afx1 than in those of
WT and 96642 regardless of flooding, the differences among the lines were less clear with DAB staining
than with CellROX staining (Figure 6).
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Figure 5. Relative chlorophyll content and ROS detection in flooded and unflooded (control) plants.
(A) Absorbance of chlorophylls (a, b, a+b) dissolved in DMF. Chlorophyll content in the leaves of
unflooded WT was set at 1. Values are means ± SE of three biological replicates, each with three
technical replicates. Means denoted by the same letter do not differ significantly by Student’s t-test
(p < 0.05). (B) In situ hydrogen peroxide staining with DAB in leaves of flooded and unflooded plants.
Scale bars, 5 mm.
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4. Discussion

Flooding inhibits plant growth by causing hypoxic stress in roots [52], which induces NO
production and Glb1 expression [6,12,16]. Overexpression of Glb1 enhances NO scavenging activity,
increases tolerance to hypoxic stress [6,16,53], increases nitrogenase activity, and slows down the aging
of nodule symbiosis [33].

In this study, the lines of L. japonicus stably transformed with LjGlb1-1 (Ox1) or AfGlb1 (Afx1)
allowed us to study the effect of Glb1 overexpression on the hypoxic tolerance of nodule symbiosis.
Flooding significantly decreased nitrogenase activity and increased the NO level of WT and 96642
nodules but did not alter the high nitrogenase activity and low NO level in the Ox1 and Afx1 nodules
(Figures 1 and 2). These results suggest that increased Glb1 expression enhanced NO-scavenging
activity and improved flooding tolerance of the nodules. Flooding increased the expression of three
senescence-related genes more in WT and 96642 than in Ox1 and Afx1 (Figure 3); the number and
size of the vacuoles of the infected nodule cells were increased in WT and 96642, which is typical
of aged nodules [51]. The accumulation of starch granules in the nodule also indicates senescence.
The decreased nitrogenase activity of the aged nodules does not consume the product of photosynthesis
transported from the leaves, and the residual carbon source accumulates as starch granules. However,
starch granules were not observed in any lines despite the decrease in nitrogenase activity in WT
and 96642 (Figure 4). Flooding significantly reduces the photosynthetic capacity and transpiration
rate [2,54]; in our experiments, flooding might have reduced the photosynthetic capacity or the
transport of photosynthetic products to roots.

Soil flooding can perturb the photosynthetic machinery, reducing photosynthetic potential,
possibly because of ROS production [1]. ROS damage the structure of chloroplast membranes and
inhibit the photosystem function [2]. In the present study, flooding decreased the total amount of
chlorophylls in WT and 96642, but not in Ox1 or Afx1 (Figure 5A). Leaf DAB staining was strong in
96642 and flooding increased it in WT, with no obvious difference in Ox1 and Afx1. These results
suggest that flooding increased H2O2 levels in leaves, and that Glb1s were involved. Flooding reduced
the leaf O2

− levels in all lines, with no obvious difference among them (Supplementary Figure S1).
ROS lead to electrolyte leakage [3–5], but we detected no significant difference among the lines in
electrolyte leakage rate (Supplementary Figure S2), despite the higher level of H2O2 in the leaves of WT
and 96642 (Figure 5B). The metabolism might have adapted to flooding to reduce the damage by ROS.

During flooding, roots are exposed to hypoxic stress more than the other plant parts. In our study,
ROS levels increased in the roots and leaves of WT and 96642 (Figures 5B and 6), but ROS and NO
levels remained low in the lines with increased Glb1 levels (Figure 1B,C and Figure 6). Although
the results of NBT and DAB were similar to those of CellROX fluorescence in roots, the difference
among the lines in DAB staining was less clear than that in CellROX staining (Figure 6), possibly
because of different sensitivity and specificity of these staining methods: CellROX detects various ROS
including H2O2 and O2

−, whereas DAB detects only H2O2, and NBT detects only O2
−. Under control

conditions, there was no difference in the amount of ROS between the roots of 96642 and WT, but it was
slightly higher in the leaves of 96642. We do not have a good explanation for these inconsistent results.
The null mutant 96642 showed higher NO levels in the roots (Figure 1B,C) and higher expression
levels of some senescence-related genes in the nodules than WT (Figure 3). These physiological
differences might affect the amount of ROS in leaves. In cultured alfalfa roots, Glb1 overexpression
improves the antioxidant status by increasing ascorbate levels and the activity of enzymes involved
in H2O2 metabolism [55]. In corn plants, Glb1 overexpression alleviates flooding stress by limiting
ROS-induced damage and ensuring a sustained photosynthetic rate through improvement of the
ascorbate antioxidant status and an increase in activities of several ROS-scavenging enzymes [56].
In L. japonicus, Glb1 overexpression might alleviate flooding stress by improving ROS metabolism,
although we did not investigate the expression of genes related to the regulation of ROS.
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5. Conclusions

Glb1 contributes to maintaining nodule symbiosis under flooding conditions and controls ROS by
scavenging NO.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/8/7/206/s1.
Figure S1. In situ superoxide staining with NBT. Scale bars, 5 mm. Figure S2. Electrolyte leakage rate during
flooding of detached leaves. Figure S3. Effect of flooding on the relative amount of ROS in roots.
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