
RESEARCH ARTICLE

Poleward expansion of common snook

Centropomus undecimalis in the

northeastern Gulf of Mexico and future

research needs

Caleb H. PurtlebaughID
1*, Charles W. Martin2, Micheal S. Allen2

1 Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Senator George

Kirkpatrick Marine Laboratory, Cedar Key, Florida, United States of America, 2 Fisheries and Aquatic

Sciences Program, Institute of Food and Agricultural Sciences, Nature Coast Biological Station, University of

Florida, Cedar Key, Florida, United States of America

* Caleb.Purtlebaugh@myFWC.com

Abstract

Globally, rising temperatures have resulted in numerous examples of poleward shifts in spe-

cies distribution patterns with accompanying changes in community structure and ecosys-

tem processes. In the Gulf of Mexico, higher mean temperatures and less frequent winter

freezes have led to the expansion of tropics-associated marine organisms. Our objectives

were to quantify changing environmental conditions and the poleward expansion of the com-

mon snook Centropomus undecimalis into the Cedar Keys area of Florida, USA (29 deg N).

The snook is an economically and recreationally important sport fish found from southern

Brazil to south Florida. Cedar Key and the Lower Suwannee River are north of the snook’s

historically documented range, likely due to lethal water temperatures during winter. Using

data from a long-term monitoring program, we report an increase in catches of snook in this

area since 2007. The spatial and temporal expansion of the species began with adult fish in

2007. By 2018, snook of all sizes were found in the region, and we found strong evidence of

local reproduction during 2016–2018. The locations of nursery habitat and winter thermal

refuges (e.g., freshwater springs) need to be identified and have implications for land-use

policy and minimum-flow regulations for rivers. The arrival of the snook in the northern Gulf

of Mexico could affect food web ecology and habitat interactions among estuarine preda-

tors, and future studies should evaluate snook’s food habits and competitive interactions

with resident fishes in this expanded range. Our study provides an example of how species

range expansions due to changing temperatures should result in new research priorities to

evaluate impacts of climate change on coastal systems.

Introduction

Increases in temperature have influenced the physiology, phenology, and geographic ranges of

organisms [1,2] and, with models predicting an additional increase of 2.4–6.4˚C over the next
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100 years [3], is expected to continue. These changes can therefore influence spatial habitat use

and trophic dynamic processes in food webs [4–6], and rising temperatures have been impli-

cated in the northward spread of a variety of organisms in the Gulf of Mexico (hereafter

referred to as Gulf). The lack of heavy frosts has allowed a number of tropical/subtropical spe-

cies to extend into and persist in the northernmost reaches of the Gulf. For example, black

mangrove Avicennia germinans have become common throughout the Gulf [7–10], including

Texas [11], Louisiana [12], Mississippi [13], and Florida [14]. Both red and white mangroves

(Rhizophora mangle and Languncularia racemosa, respectively) are now common in Florida’s

Big Bend region near Cedar Key (author’s, personal observation). Warmwater corals not previ-

ously observed in the northern Gulf, such as Acropora palmata, have been observed [15], and

green turtles (Chelonia mydas) have become more abundant in the northeastern Gulf [16]. Sat-

ellite telemetry and long-term data from sighting networks also indicate that the West Indian

manatee Trichechus manatus has increased in prevalence along northern Gulf states [17,18].

Comparisons of seagrass-associated fishes in Louisiana, Mississippi, Alabama, and northwest

Florida from the 1970s to 2006–2007 indicated increased abundance of tropical and subtropi-

cal fishes (e.g., yellowtail snapper Ocyurus chrysurus; sergeant major Abudefduf saxatilis; and

stoplight and emerald parrotfishes Sparisoma viride and Nicholsina usta, respectively), among

others [19].

Quantifying the spatial and temporal expansion of organisms into higher latitudes is important

in understanding how climate change is affecting food webs and fisheries. Here, we describe the

northward range expansion of common snook (Centropomus undecimalis, hereafter referred to as

snook) into the Cedar Key and Lower Suwannee River region (Fig 1). Snook are prized game fish

and support an economically important recreational fishery [20,21] in southern Gulf waters.

Snook are stenothermic and highly sensitive to cold temperatures; the first sign of cold stress is

the cessation of feeding, followed by loss of equilibrium and death [22–25]. We hypothesize that

the combination of milder winters and warmer summers has promoted the expansion of a Florida

snook population into northerneastern Gulf waters. A recent study shows a similar range expan-

sion for snook in the western Gulf [26]. We sought to quantify the changes in snook catches using

a long-term standardized sampling program, to explore the spatial extent and temporal changes

in size structure, assess evidence for local reproduction, and identify future research needs for an

expanding range of a subtropical apex predator in the Gulf.

Methods

Ethics statement

No specific permission for sampling was required, as sampling was conducted by the Florida

Fish and Wildlife Conservation Commission’s Fish and Wildlife Research Institute. However,

every effort was made to reduce stress and not harm captured fish, before releasing. No pro-

tected species were sampled.

Study site

The Suwannee River lies in the northern region of the Florida Gulf Coast and is one of the larg-

est undammed rivers in the eastern United States (Fig 1). At its mouth lies the Cedar Keys

National Wildlife Refuge and the Big Bend Seagrass Aquatic Preserve. This area of Florida,

known as the Nature Coast, has received high priority for conservation in the northern Gulf

based on the presence of imperiled species and their habitats [27]. The region around the

Suwannee River estuary also represents an ecotone between poleward-shifting mangroves and

temperate salt marshes [8,14] and in recent years has seen an increase in occurrence of tropical

species such as red mangrove, roseate spoonbill Platalea ajaja, and snook, the focus of this
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Fig 1. Map of historic and expanded range of snook on the Gulf coast of Florida.

https://doi.org/10.1371/journal.pone.0234083.g001
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study. The study area contains a diverse mix of estuarine, river, and tidal creek habitats which

includes extensive seagrass beds, oyster reefs, mangroves, salt marshes, and unvegetated bot-

tom that support valuable recreational and commercial fisheries.

Environmental conditions

To evaluate temperature changes in the region, we used a publicly available data set from a sta-

tionary weather instrument maintained and located in Cedar Key (National Oceanic and

Atmospheric Administration (NOAA) gauge CDRF1, http://www.ndbc.noaa.gov/station_

page.php?station=cdrf1). We attempted to obtain a long-term time series of water temperature

data, but data gaps precluded use of water temperatures. Therefore, we used air temperature

data from NOAA gauge CDRF-1 instead of water temperature because the use of fixed mea-

surements taken at a stationary location reduces variability and facilitates more consistent

comparisons, and data from the site had fewer missing points than data from other sources.

Finally, because the water in the larger sampling region is so shallow (<2m), water and air

temperatures are likely to be similar [14,28]. We analyzed air temperature for instances of

warm weather conditions by using linear regression to assess the relationship between the

number of days in each year that temperature reached < 12˚C (the lower lethal limit for snook

[22,24]). We included 18 years of data in this analysis, dating back to 2000, when the first

snook in the area was documented by fishery-independent monitoring.

Field sampling

The Florida Fish and Wildlife Conservation Commission’s Fisheries Independent Monitoring

program conducted monthly standardized stratified-random sampling in the Suwannee River

estuary during 1997–2018 (Fig 2). This program uses multiple gear types, including a 183-m

haul seine, a 21.3-m seine, and a 6.1-m otter trawl, to collect data on various life-history stages

of fishes and selected invertebrates from a variety of habitats. Detailed descriptions of site

selection and standardized sampling techniques can be found in two peer-reviewed journals

and a program data summary report [29–31]. In summary, the estuary was divided into geo-

graphic and logistical zones. Zones were further divided into a cartographic grid of cells mea-

suring 1-min latitude × 1-min longitude; cells were randomly selected for sampling. Sampling

cells were stratified by habitat and depth, thereby identifying the gear type and deployment

technique best suited in those areas. The 21.3-m seine and the 6.1-m otter trawl targeted pri-

marily age-0 and juvenile fishes from different depths; the 21.3-m seine sampled shallow water

(�1.8 m) along shorelines and in open-water habitat (�1.5 m), whereas a 6.1-m otter trawl

sampled relatively deep water (1.8–7.6 m). The 183-m haul seine targeted subadult and adult

fish along shorelines in water depths�2.5 m [30]. All gear types and associated techniques

were standardized with regard to amount of area fished, by following standardized sampling

procedures. Effort among gear types and deployment techniques was roughly proportional to

the available habitat. Sampling gear and effort are summarized in Table 1.

Data analysis

During 1997–2018, sampling effort and locations remained nearly constant. Thus, we com-

bined catches from all gear types each year to quantify the spatial and temporal expansion of

snook. Before 2002, changes were made regarding effort and sampling location (Table 1); for

example, the Lower Suwannee River was added to the sampling universe in 2001. These

changes in effort and location, however, were made before snook appeared in our data, except

for one snook captured in a 183-m haul seine in 2000. Sampling effort for all gear types did not

change during 2002–2018. Further, >97% of all snook catches occurred in the 183-m haul
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seine set along shorelines, and total fishing effort using the haul seine was constant during

1999–2018. Therefore, we amalgamated all the catches of snook to evaluate temporal trends in

snook catches through the time series.

We evaluated the evidence for increasing temporal trends in snook catches using Akaike

information criterion (AIC) model selection [32]. The time series of snook catches was fitted

to an exponential model C = a×expb�(Year) using maximum likelihood and a lognormal distri-

bution, where a is the intercept parameter and b is the exponent parameter. The exponential

Fig 2. Map of study area, showing all randomly selected sample sites, 1997–2018. The grid system represents the Fisheries Independent Monitoring program’s

universe.

https://doi.org/10.1371/journal.pone.0234083.g002
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model was compared to an intercept-only model fitted with a lognormal distribution, and AIC

model selection was used to evaluate the relative credibility of each model [32]. The delta AIC

values were computed between the two candidate models, and values greater than 10 are con-

sidered to have negligible credibility relative to the lowest AIC model [32].

We characterized changes in spatial distribution and quantified temporal extent of snook

catches, changes in size distribution over time, evidence that snook were reproducing locally, and

assessed seasonality. The spatial distribution of snook catches was plotted using GPS locations at

each sample site. We then assessed the spatial location of catches through time to quantify the spa-

tial expansion in the catches. The size structure of snook was plotted across time to quantify

changes in the length distribution, show how size distribution changed throughout the time series,

including presense of age-0 fish (<100 mm standard length [SL]) and subsequent juvenile fish

(100 to 300 mm SL). Mean monthly catches, all years combined, were plotted with mean water

temperature taken during each net deployment by month to evaluate seasonal patterns.

We used the same 22 years of data to assess trends in the frequency of occurrence of snook,

black mangrove, and red mangrove. Occurrence of mangroves was recorded at each seine

haul, allowing us to quantify the frequency of occurrence through time. Only data from the

183-m haul seine were used for this analysis, which sampled only shoreline areas and captured

the majority (>97%) of snook in this study. We also plotted the frequency of occurrence of

shore types coded as black mangroves or red mangroves during 183-m haul sampling, since

mangroves have been shown to be important habitat for snook [29] and the climatic factors

affecting both snook and mangroves appear to be similar [8, 33].

Table 1. Summary of snook collected by gear type, location, and effort in the Suwannee River estuary, Florida. Standard length = SL.

Gear Location Years Effort (hauls yr−1) No. fish % Total snook catch Min. SL Max. SL

183 × 2.5-m haul seine bay 1997 95 0 0 . .

1998 120 0 0 . .

1999–2018 192 610 97.6 105 885

Subtotal 610 97.6
21.3 x 1.8-m seine bay 1997 216 0 0 . .

1998–2018 252 1 0.2 220 220

tidal creeks 1997 72 0 0 . .

1998–2018 108 10 1.6 53 133

Suwannee River 2001 55 0 0 . .

2002–2018 60 3 0.5 187 376

Subtotal 14 2.3
6.1-m otter trawl bay 1997 230 0 0 . .

1998–2000 0 0 0 . .

2001 110 0 0 . .

2002–2018 120 0 0 . .

Suwannee River 2001 55 0 0 . .

2002–2018 60 1 0.2 331 331

Subtotal 1 0.2

Location included the estuary (bay), tidal creeks, and Lower Suwannee River (Suwannee River).

https://doi.org/10.1371/journal.pone.0234083.t001
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Results

Environmental conditions

Clear increases in air temperature were documented at the CDRF1 gauge (Fig 3). Regression

analysis indicated the number of days below the lethal limit of snook has significantly (F1,17 =

5.72, P<0.05) declined since 2000 (Fig 3).

Field sampling

In total, 625 snook, ranging in SL from 53 mm to 885 mm, were collected during combined

fish sampling from the Suwannee River estuary. Snook were captured primarily along shore-

lines in open estuarine areas with the 183-m haul seine (98% of total snook catch); the 21.3-m

seine and 6.1-m otter trawl comprised only 2% of the total catch. Snook captured by these two

gear types were almost exclusively (93%) from tidal creek and river habitat (Table 1).

In 2000, the first snook (703 mm SL) was captured near the Cedar Key islands during

monthly stratified random sampling (Figs 4–6), documenting the northernmost extent of its

range. Another snook was not captured again until 2007, when yearly occurrences of snook

began to appear during sampling. From 2012 through 2018, there was an exponential increase

in snook catches. Total catches in 2017 (N = 163) tripled catches from the previous year

(N = 56). In 2018, catches increased to N = 231 and was the highest of all years of sampling

(Fig 4).

The exponential model provided a substantially more credible fit to the data than a constant

temporal catches model. The delta AIC value for the intercept-only model was 188, indicating

that the constant catch through time model had near zero credibility relative to the exponential

model. Therefore, the exponential model was selected as the preferred model, indicating

sharply increasing catches in recent years (Fig 4).

Fig 3. Air temperature data from the Cedar Key NOAA buoy (CDRF1) indicate rising temperatures since 2000, in

terms of declining number of days<12˚C.

https://doi.org/10.1371/journal.pone.0234083.g003
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Expansion in spatial distribution and size composition of snook was evident through time

in the Suwannee River estuary (Figs 5 and 6). During the early years of expansion, captured

snook were almost exclusively larger, older individuals. We hypothesize that these individuals

likely immigrated to the Suwannee River estuary from southern estuaries. Early captured

(2007–2011) snook were collected primarily around the Cedar Key islands (Fig 5). During

2012–2015, the spatial distribution of snook expanded around the Cedar Key islands and to

the north toward the Suwannee River. Catches of snook continued to increase and spatial dis-

tribution continued to expand into areas north of the Suwannee River in 2016–2018. Areas in

which snook were captured also expanded into the river and tidal creek areas, with four snook

captured in the Suwannee River and 10 captured in tidal creeks (Table 1). As catches and dis-

tribution of Snook increased during 2012–2018, the size structure changed from primarily

large individuals to individuals of all sizes, including age-0 fish that had likely hatched locally.

By 2018, we found a population that appeared fully established with presumed local reproduc-

tion ongoing with fish less than 100 mm SL (Fig 6).

Snook were captured across all months during this study but were least abundant (N = 5)

during late winter (January and February), when water temperatures averaged 14.4˚C and

15.8˚C, respectively (Fig 7). Catches increased in March and April (N = 90) as water tempera-

tures approached 20˚C and decreased in May (N = 25). Catches continued to increase

(N = 207) through the summer (June–August) as water temperatures peaked. The largest

catches (N = 210) were made during a two-month period in late summer and early fall (Sep-

tember and October), as water temperatures started to decrease. Catches during November

and December (N = 88) were similar to early spring catches, as water temperature decreased

towards 20˚C. We did collect snook during relatively low temperatures, including a cold event

in December 2017, when water temperature dropped below 12˚C. During this event, two

snook were captured in water at 11.9˚C, below the reported lethal low temperature of 12.5˚C,

Fig 4. Yearly catches of snook collected in 183-m haul seines, 21.3-m seines, and 6.1-m otter trawls in the

Suwannee River estuary, Florida. Data (symbols) and the fitted exponential model (line) are shown. Data represent

total snook catches of all gear types combined.

https://doi.org/10.1371/journal.pone.0234083.g004
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and five snook were captured in water at 13.5˚C. In December 2018, another 19 snook were

captured in water at 13.9˚C.

Since 2000, when the first snook was captured at its northernmost extent, there was an

increase in the frequency of occurrence of black mangrove through 2018 (Fig 8). Frequency of

occurrence of snook and red mangrove started to increase after 2007, as well as total snook

catch per year and continued to increase throughout the study period (Figs 4 and 8). However,

Fig 5. Locations of snook catches in the Suwannee River estuary, Florida, with all sampling gear combined. Panels represent blocks of data collected, 1997–2018.

Grid system represents the Fisheries Independent Monitoring universe.

https://doi.org/10.1371/journal.pone.0234083.g005
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red mangrove, black mangrove, and snook all showed a substantial decrease in frequency of

occurrence during a hard freeze in 2010, but slightly rebounded the following year and contin-

ued to increase through our study. These data support that the exponential increase in snook

catches during 2016–2018 reflected an expansion in spatial distribution over time and did not

result from several large catches from a few sampled areas (Figs 4 and 8).

Discussion

The poleward expansion of snook in the northern Gulf of Mexico likely resulted from increas-

ing water temperatures and less frequent winter freezes. The Suwannee River estuary experi-

enced clear evidence of warming waters, in terms of temperatures above the lethal limit for

snook, a trend that may have facilitated the expansion of the subtropical snook. The last

extended cold event that extensively killed mangroves in this area was 1989 (author’s personal

observation), and while a general trend of warming temperatures is present, it is possible that

less frequent, but more intense cold events could occur via atmospheric instability in the polar

regions creating stochastic events such as polar vortexes [34].

Poleward shifts in the biogeographic distributions of marine organisms have been well doc-

umented (reviewed in [1, 35,36]). These distribution changes have been documented for pri-

mary producers such as phytoplankton [37], algae [38], and emergent plants [39], and for

invertebrates such as fouling organisms [40], bivalves [41], gastropods [42], squids [43],

amphipods [44], and crabs [45,46]. Mobile aquatic organisms such as fishes can quickly

migrate to follow optimal environmental conditions, and fish distribution patterns exhibit

similar changes. For example, southern species have begun replacing northern species in

Fig 6. Length frequency distributions of snook collected in the Suwannee River estuary, Florida, with all sampling

gear combined. Combined years align with years in Fig 5. Total number of fishes captured (N) is represented.

https://doi.org/10.1371/journal.pone.0234083.g006

Fig 7. Combined monthly catches (1997–2018) of snook collected in the Suwannee River estuary, Florida, with all

sampling gear combined. Monthly mean water temperatures, calculated from all sample sites during the study period

whether or not a snook was caught, are represented by the black line.

https://doi.org/10.1371/journal.pone.0234083.g007
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California reef fish assemblages [47], and Perry et al. [48] documented similar changes in

North Sea fishes, with around half of the species ranges expanding northward. In all these

instances, rising temperatures have been hypothesized as the mechanism driving the range

shift.

Along with poleward expansion of snook in the Gulf of Mexico (this study, [26]), there has

been substantial expansion in both red mangrove and black mangrove, which provide impor-

tant habitat for both juvenile and adult snook [29, 49,50]. It is unclear whether the mangrove

expansion northward is a mechanism for snook expansion, but clearly the habitats are shifting

from salt marsh to mangroves in this region [8, 14], which will further improve habitat for

snook. Snook commonly use mangrove habitat in southern estuaries, however are habitat gen-

eralists and use habitats in proportion to their relative availability [51]. Therefore, we predict

as mangroves expand northward, snook are likely to utilize those habitats.

Our observation of expanding mangrove habitat is consistent with Cavanaugh et al. [33],

who reported a doubling of spatial extent of mangroves along the east coast of Florida, between

latitudes 29˚N and 29.75˚N, which directly corresponded to our study area (29˚40 N–29˚200 N)

along the west coast of Florida. Cavanaugh et al. [14] found that decreases in the frequency of

cold events, rather than increases in mean air temperature, facilitated the expansion of man-

groves. Daily minimum temperature has increased faster than daily maximum or mean tem-

perature, resulting in a warming trend over the past 50 years [2, 8, 33]. Thus, the expansion of

snook in this region was likely correlated with increased temperatures overall.

The sustainability of a snook population in the Suwannee River estuary may depend on the

availability of thermal refugia or the ability of the species to adapt to colder climate. This newly

established population is still likely to be exposed to cold events greater in magnitude or dura-

tion than events in their historical range. Snook in Florida experienced extensive mortality

events during the extremely cold winters of 1989–1990, 2000–2001, and 2009–2010. Thus, we

expect that snook in the Suwannee River estuary will still experience setbacks due to cold kills.

Fig 8. Yearly frequency of occurrence of snook, black mangrove, and red mangrove observed at 183-m haul seine

sites in the Suwannee River estuary, Florida. The vertical dotted line indicates the 2010 winter freeze.

https://doi.org/10.1371/journal.pone.0234083.g008
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The winter of 2010, for example, caused an extreme cold kill of snook that extended as far

south as the Everglades and substantially altered abundance and catch by anglers [25, 52].

Recovery of snook following this cold kill took as long as four years, depending on location

[53]. Snook catches in our study area were noticeably reduced by the 2010 cold kill, but fully

recovered within three years.

Since 2010, winters have been relatively mild, and it is during this time that the snook popu-

lation expanded substantially northward, beyond the Suwannee River. However, snook in the

Suwannee River estuary survived minor cold events in 2017 and 2018, which suggests that

snook at this latitude may have developed local behavioral adaptations by finding thermal ref-

uge in the Suwannee River, tidal creeks, or areas with warm groundwater springs, common

throughout the region. During these cold events in our study, snook were captured near the

mouth of the Suwannee River. Movement patterns of snook can affect their vulnerability to

extreme cold events [28, 53]. Snook in their historic range are known to migrate into rivers,

creeks, and channels post-spawning to endure cold events [53]. Catches in our study were

greatest during the presumed post-spawning season (September and October). Snook may

have been congregating before migrating to the Suwannee River or tidal creek habitat to

endure the winter.

A key uncertainty is the degree to which thermal refugia in the form of groundwater springs

may provide resilience to this snook population and allow individuals to withstand cold kill

events. We expect snook in the Suwannee River estuary to adapt a behavioral strategy that

takes advantage of thermal refuges during winter; that is, they will seek groundwater springs

by moving into rivers and creeks as winter sets in, returning to the open estuary as water tem-

peratures warm again. The geology in the region is karst porous limestone with extensive

springs and groundwater seeps [54]. Natural springs provide constant water temperature

throughout the year, and, because spring water is warmer than ambient water temperature in

winter, the coastal springs provide thermal refugia for cold-intolerant fishes and marine mam-

mals [55]. Groundwater flow rates are strongly influenced by precipitation patterns and water

levels in the Lower Suwannee River [56,57]. Thus, changes in freshwater flow patterns could

influence the availability of thermal refugia during winter, and understanding this relationship

is a key future research need.

Research is also needed to determine whether the biology of snook differs at a more north-

ern latitude, particularly regarding differences in spawning and growth, which may influence

the persistence of snook and its impact on fishery management strategies. Cold weather in

northern latitudes begins earlier and ends later than in areas farther south. Therefore, we

expect the snook spawning season, which has been correlated to water temperature during

summer months in southern latitudes [58,59], to be shorter in more northern areas. A species

at the northern extent of its range also tends to grow faster than those at lower latitudes. This is

thought to be a compensatory response to a shorter growing season, known as the counter gra-

dient hypothesis [60]; when the species has the opportunity to grow, it does so quickly before

cold temperatures slow their growth again [61]. Thus, we expect snook growth rates in the

Suwannee River estuary to be faster than in their historic range. Similarly, fish natural mortal-

ity is affected by both growth rate and temperature [62], and future research should explore

whether growth and mortality differ in the northern expansion of the snook’s range, which

could alter optimal management plans (e.g., bag or size limits).

We found evidence for local reproduction of snook, with age-0 fish first occurring in 2010

followed by juvenile fish captured in subsequent years. The shoreline of the Suwannee River

estuary is characterized by an expansive network of coastal tidal creeks that provide ideal habi-

tat for age-0 and juvenile snook. Beginning in 2016, age-0 and juvenile snook were commonly

observed within tidal creeks, further suggesting self-recruitment. However, the variability of
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recruitment and level of survival are not clear and warrant further investigation. Additional

evidence of local reproduction is that island habitats and channels around Cedar Key are con-

sistent with descriptions of spawning sites for snook farther south [59]. Summer water temper-

atures are warm enough for spawning at the Cedar Keys, which in southern estuaries typically

begins in April or May, when water temperatures reach approximately 22˚C [63,64]. In our

study, catches decreased at that time, which may have been attributed to snook moving to

potential spawning aggregations, such as deep channels around barrier islands or offshore

wrecks and reefs, where they were not vulnerable to our sampling gear [59].

Identification of snook nursery habitat should be a high priority if resource managers wish

to encourage a sustainable recreational snook fishery in the Suwannee River estuary. Age-0

snook typically recruit to areas well into the land margin such as river backwaters, the headwa-

ters of tidal creeks and high-marsh ponds [65–67]. These habitats often lie at the interface with

coastal development and urbanization and so are particularly vulnerable to anthropogenic

impacts. Quantifying the habitat use of coastal wetlands by a recreationally important species

may help raise awareness of their value. Possible nursery habitats can be identified by expand-

ing fisheries monitoring into remote tidal creeks and marsh ponds, where snook are known to

reside. Then it may be possible to assess the relative importance of each nursery (those that

support the highest growth rates and condition [68,69]) and its contribution to the adult popu-

lation [70].

Changes in species distributions could have trophic impacts for historically native predators

and prey fish populations [1]. Snook support important fisheries and are prized by anglers, but

its spatial expansion and the resulting competition for resources could negatively impact his-

torically dominant inshore sport fish in the northern Gulf, particularly red drum Sciaenops
ocellatus and spotted seatrout Cynoscion nebulosus. Snook exhibit a high degree of diet overlap

with red drum in South Florida, where both species historically occur [71]. Red drum, snook,

and spotted seatrout are all mid-trophic-level predators that consume a range of demersal

fishes and invertebrates [71,72]. Red drum populations increased sharply in South Florida fol-

lowing an extreme statewide cold kill of snook in 2010, suggesting that release from competi-

tion with or predation by snook could have allowed an increase in red drum abundance [52].

The expansion of snook into the Suwannee River estuary could influence abundance of prey

populations and growth rates for red drum and spotted seatrout, ultimately influencing sus-

tainable harvest strategies for these species. Thus, future research should explore habitat and

diet overlap among historically native and novel predators, as well as prey population

responses to expanding predator populations like snook.
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