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A B S T R A C T

Non-coding RNAs are a complex class of nucleic acids, with growing evidence support-

ing regulatory roles in gene expression. Here we identify a non-coding RNA located

head-to-head with the gene encoding the Glioma-associated oncogene 1 (GLI1), a tran-

scriptional effector of multiple cancer-associated signaling pathways. The expression

of this three-exon GLI1 antisense (GLI1AS) RNA in cancer cells was concordant with

GLI1 levels. siRNAs knockdown of GLI1AS up-regulated GLI1 and increased cellular pro-

liferation and tumor growth in a xenograft model system. Conversely, GLI1AS overex-

pression decreased the levels of GLI1, its target genes PTCH1 and PTCH2, and cellular

proliferation. Additionally, we demonstrate that GLI1 knockdown reduced GLI1AS, while

GLI1 overexpression increased GLI1AS, supporting the role of GLI1AS as a target gene of

the GLI1 transcription factor. Activation of TGFb and Hedgehog signaling, two known

regulators of GLI1 expression, conferred a concordant up-regulation of GLI1 and GLI1AS

in cancer cells. Finally, analysis of the mechanism underlying the interplay between

GLI1 and GLI1AS indicates that the non-coding RNA elicits a local alteration of chro-

matin structure by increasing the silencing mark H3K27me3 and decreasing the
.
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recruitment of RNA polymerase II to this locus. Taken together, the data demonstrate

the existence of a novel non-coding RNA-based negative feedback loop controlling

GLI1 levels, thus expanding the repertoire of mechanisms regulating the expression of

this oncogenic transcription factor.

ª 2014 Federation of European Biochemical Societies.

Published by Elsevier B.V. All rights reserved.
1. Introduction from P.L. Lollini (University of Bologna, Italy), and RD, pur-
Antisense transcription is a common phenomenon in the hu-

man genome (Conley and Jordan, 2012; Magistri et al., 2012;

Morris and Vogt, 2010). Up to 70% of the transcriptome has

antisense partners modulating the transcription rate, mRNA

stability, transport or translation efficiency of the sense

gene. Both sense and antisense RNAs can encode proteins or

be non-protein coding transcripts; however, experimental ev-

idence indicates that antisense transcripts are generally non-

protein coding RNAs (Faghihi andWahlestedt, 2009; Katayama

et al., 2005). To date, a number of functionally-characterized

human non-coding antisense transcripts have been reported

(Carrieri et al., 2012; Ebralidze et al., 2008; Faghihi et al.,

2008; Holdt et al., 2013; Johnsson et al., 2013; Li et al., 2012a;

Morris et al., 2008; Onoguchi et al., 2012; Pandey et al., 2008;

Prensner et al., 2013; Rinn et al., 2007; Yu et al., 2008; Zhu

et al., 2012). Their role in regulating the expression of protein

coding genes is a well-established concept and has become a

subject of increasing interest (Faghihi and Wahlestedt, 2009;

Mattick and Makunin, 2006; Ozsolak et al., 2010; Werner

et al., 2009), however, the detailed mechanism underlying

the interplay between the sense and antisense remains in

part elusive.

Here using a combination of in vitro and in vivo assays, we

have identified a novel senseeantisense pair controlling the

expression of the transcription factor GLI1, a known effector

of oncogenic pathways. In different malignancies the pro-

tumoral function of GLI1 is associated with its increase

expression. Thus, understanding themechanisms influencing

gene expression of GLI1 are particularly relevant, as thesemay

represent additional means of constraining the oncogenic ca-

pacity of GLI1 (Nilsson et al., 2000). We identify a non-coding

RNA, originating from the antisense strand of the human

GLI1 gene (GLI1AS), which elicits negative feedback on GLI1

expression via local chromatin remodeling. These findings

may allow the development of novel strategies, based on

epigenetic modulation, which could achieve an effective

reduction of the capacity of GLI1 to act as an oncogene.
2. Materials and methods

2.1. Cell lines and culture

The alveolar rhabdomyosarcoma RMS13 and the pancreatic

carcinoma PANC1 cell lines were purchased from ATCC (Man-

assas, VA). The embryonal rhabdomyosarcoma cells lines

used were Rh36, a kind gift from P. Houghton (St. Jude Chil-

dren’s Research Hospital, Memphis, TN), CCA, a kind gift
chased from ATCC (Manassas, VA). The Daoy medulloblas-

toma cell line was a kind gift of F. Aberger (University of

Salzburg, Austria).

RMS13 and Rh36 cells were cultured in RPMI-1640

Medium þ 10% fetal bovine serum (FBS), Daoy cells in

EMEM þ 10% FBS. CCA, RD and PANC1 cells were cultured in

DMEM supplemented with L-glutamine and 10% FBS. All cell

lines were maintained in a 5% CO2 humidified incubator.

PANC1 cells were treated with 5 ng/ml of TGFb1 recombi-

nant ligand (R&D Systems, Minneapolis, MN) in serum free

media and collected 24 h after treatment. Daoy cells were

treated with 200 nM SAG in 0.5% FBS and harvested after 48 h.

cDNA from the PC3 and 22Rv1 prostatic carcinoma, PANC1

pancreatic carcinoma, A549 lung adenocarcinoma and AGS

gastric adenocarcinoma was generously provided by Dr. Mat-

thias Lauth, Karolinska Institutet.

2.2. Patient specimens

Human basal cell carcinoma biopsy and normal skin speci-

mens were collected at the Dermatology and Venereology

Unit, Karolinska University Hospital, Stockholm, Sweden.

The clinical diagnosis was made by a dermatologist and was

confirmed by histopathological evaluation. The studies were

approved by the Regional Committee of Ethics.

The human breast cancer samples collectionwas approved

by the ethic institutional review board for “Biobanking and use

of human tissue for experimental studies” of the Pathology

Services of the Azienda Ospedaliera Citt�a della Salute e della

Scienza di Torino or the Ethical Committee of the Universidad

del Rosario. Written informed consent was obtained from all

patients for their tissue to be used in research. The samples

were collected from residual tissue, that is tissue not used

for diagnostic and therapeutic purposes.
2.3. RNA isolation

Nuclear and cytoplasmic RNAs were isolated using the Paris

kit (Ambion Life Technologies) following the manufacturer’s

instructions. Total RNA from cells was prepared with the

RNeasy kit (Qiagen, Hamburg, Germany) or TRIzol reagent

(Invitrogen) followed by cDNA synthesis with p(dT)15 primer

(Roche) or random N6 primers (New England Biolabs) and Su-

perscript II (Invitrogen).
2.4. Transfection of cell lines with siRNA

siRNAs targeting human GLI1 and GLI1AS (Table 2 and

Figure 1A), were purchased from SigmaeAldrich. All siRNAs
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Figure 1 e Genomic organization and expression of GLI1 and GLI1AS. A. Schematic representation of the GLI1AS/GLI1 genomic region.

GLI1AS, transcribed from the same region in chromosome 12q13.2 as GLI1 but from the opposite strand, is composed of three exons without any

long open reading frame. Exons are numbered and depicted as gray rectangles. Arrowheads show the position of the siRNAs used, with the

translation termination TAG codon of GLI1 and the poly(A) signals also indicated. B. Polyadenylation of GLI1AS in RMS13 cells. Total RNA

was subjected to cDNA synthesis in the presence or absence of oligo(dT) primers followed by real-time PCR analysis. The amplicons used (Table

1, Supplementary Figure 4) were, TPB exon 3 to exon 4 (TBP E3-4), GAPDH exon 1 to exon 3 (GAPDH E1-3), GLI1 exon 11 to exon 12 (GLI1

E11-12), GLI1 exon 11 to intron 11 (GLI1 Int11), GLI1AS exon 1 to exon 2 (AS E1-2), GLI1AS intron 1 to exon 2 (AS Int1), GLI1AS exon 2 to

exon 3 (AS E2-3) and GLI1AS exon 2 to intron 2 (AS Int2). Data from triplicate experiments for each amplicon are represented as relative

expression (2LDCt values), calculated by subtracting the Ct value in the absence of oligo(dT) from the Ct value in the presence of oligo(dT) (DCt).

Note that in the presence of oligo(dT) primers the increased expression of the GLI1AS exonic amplicons is comparable to that of the TBP E3-4,

GAPDH E1-3 or GLI1 E11-12 amplicons (polyadenylated mRNAs). On the other hand, the intronic amplicons reveal a lower increase in

expression (unprocessed RNAs). Error bars indicate the standard deviation. C. Expression of GLI1AS and GLI1 in cancer cell lines. Real-time

RT/PCR analysis of the expression of GLI1AS and GLI1 in PC3 and 22Rv1 prostatic carcinoma, PANC1 pancreatic carcinoma, A549 lung

adenocarcinoma, AGS gastric adenocarcinoma, D283Med medulloblastoma, and RMS13 rhabdomyosarcoma cell lines. Data are represented as

relative expression (2LDCt values), calculated by subtracting the Ct value of the housekeeping gene ACTB from the Ct value of the GLI1 and

GLI1AS transcripts (DCt). The amplicons used (Table 1, Supplementary Figure 4) were, GLI1 exon 11 to exon 12 (GLI1 E11-12) and GLI1AS
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Figure 1 e (Continued).
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were designed using the BLOCK-iT� RNAi Designer (Invitro-

gen) and the siDESIGN Center (Dharmacon) software tools

except si1G, which had been designed by SigmaeAldrich. As

control, a non-targeting siRNA was used (MISSION� siRNA

Universal Negative Control, SigmaeAldrich). Cells were plated

in 60 mm dishes at 30e50% confluency, and transfections

were performed with Lipofectamine 2000 (Invitrogen). Trans-

fection efficiencies were confirmed by siGLO (Green Transfec-

tion Indicator, Dharmacon).
exon 1 to exon 2 (AS E1-2). Error bars indicate the standard deviation. D. C

expression of GLI1AS and GLI1 in the seven cancer cell lines determined a

cell line, by subtracting the DCt in this cell line from the DCt in all cell lin

2LDDCt values. A positive correlation was observed between GLI1 (GLI1 E

versus unspliced GLI1AS expression. Real-time RT/PCR analysis of the e

rhabdomyosarcoma cells lines. Data are represented as relative expression (

housekeeping gene GAPDH from the Ct value of the GLI1 and GLI1AS t

higher expression of intron 2 retained (AS Int2) relative to intron 2 spliced

relation of GLI1AS with GLI1 expression in rhabdomyosarcoma cell lines.

cell lines determined above was normalized to the expression in the Rh36 ce

lines, resulting in DDCt values. Data are presented as the Log10 of the 2L

GLI1AS, using amplicons GLI1 E11-12 and AS E1-2, R2 [ 0.98947 (F) an

Nuclear versus cytoplasmic distribution of GLI1AS. Real-time RT/PCR a

fractions of Rh36 (H) and CCA (I) cells. Data are represented as nuclear/c

nucleus and the cytoplasm, with the DCt obtained by subtracting the Ct valu

for both cell lines the spliced forms of GLI1AS are preferentially retained

amplicons, GAPDH E1-3, HPRT E6-7 and ACTB E2-3, of the housekee

GLI1AS (AS Int1 and AS Int2).
2.5. Expression constructs and protein detection

PCR primers were designed to amplify, a 579 bases 50 segment

of GLI1AS, a 407 bases 30 segment of GLI1AS and a full-length

GLI1AS from cDNA (Supplementary Figure 1A), and the prod-

ucts were cloned into the KpnI and BamHI sites of the

pCMV5 vector. The GLI1 expression construct (Flag-tagged)

has been described previously (Shimokawa et al., 2008). The

constructs were used to transfect Rh36 cells as described
o-relation of GLI1AS with GLI1 expression in cancer cell lines. The

bove was normalized to the expression in the PC3 prostatic carcinoma

es, resulting in DDCt values. Data are presented as the Log10 of the

11-12) and GLI1AS (AS E1-2) expression, R2 [ 0.90348. E. Spliced

xpression of GLI1AS and GLI1 in the Rh36, RD, CCA and RMS13

2LDCt values), calculated by subtracting the Ct value of the

ranscripts (DCt). Error bars indicate the standard deviation. Note the

(AS E2-3) GLI1AS transcripts in all cell lines analyzed. F and G. Co-

The expression of GLI1AS and GLI1 in the four rhabdomyosarcoma

ll line, by subtracting the DCt in this cell line from the DCt in all cell
DDCt values. A positive correlation was observed between GLI1 and

d amplicons GLI1 E11-12 and AS E2-3, R2 [ 0.75301 (G). H and I.

nalysis of the expression of GLI1AS in nuclear and cytoplasmic

ytoplasmic ratios, calculated by determining the 2LDCt values in the

e of GAPDH in the cytoplasmic fraction from all Ct values. Note that

in the cytoplasm (AS E1-2 and AS E2-3), similar to the exonic

ping genes used, while the opposite is true for the unspliced forms of
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before (Tostar et al., 2012). Western analysis was performed

using a GLI1 rabbit polyclonal antibody (Cell Signaling) and a

Vinculinmousemonoclonal antibody (SigmaeAldrich) as pre-

viously (Tostar et al., 2012).
2.6. RACE analysis

RACE was performed with the GeneRacer kit (Invitrogen) as

described in the users’ manual. Total RNA from CCA, Rh36

and RMS13 cell lines was enzymatically treated with CIP

(Calf Intestinal Phosphatase) to remove the 50 phosphates of

truncated mRNAs and with TAP (Tobacco Acid Pyrophospha-

tase) to remove the 50 cap structure, both followed by phenol

extraction and ethanol RNA precipitation. Subsequently, the

GeneRacer RNA oligo was ligated to the 50 exposed phosphate

of the RNA using T4 RNA ligase. The ligated RNA was then

reversed transcribed into first-strand cDNA using Superscript

III and the GeneRacer OligodT primer, creating knownpriming

sites at both the 50 and 30 ends. Gene specific primers

(Supplementary Table) were designed preferably at exon junc-

tions and obtained from SigmaeAldrich. Subsequently, initial

touchdown and nested PCR were performed as recommended

by the manufacturer. The RACE PCR products were analyzed

on 1e1.5% agarose gels, followed by band excision, DNA

extraction and sequencing.
2.7. Real-time PCR

Real-time PCR was carried out with Power SYBR Green

(Applied Biosystems, Foster City, CA) on a 7500 fast real-

time PCR system (Applied Biosystems) or with 1X IQ SYBR

Green Supermix (Bio-Rad) on a C1000 Thermal Cycler (Bio-

Rad) with primers designed to detect the spliced and

unspliced GLI1 and GLI1AS RNAs, PTCH1, PTCH2, ADAR2

and INHBE (Table 1, Supplementary Figure 4). All amplifica-

tions were run at least in triplicate and the fold change

was normalized to the expression of one of the following

housekeeping genes, ACTB, GAPDH, TBP or RPLPO. These

were chosen based on the least variation in the samples

analyzed. The relative expression was determined by the

DCt method. To assess the subcellular distribution of GLI1AS

equal amounts of RNA from the nuclear and cytoplasmic

fractions were reverse transcribed and analyzed in compar-

ison to the expression of the three housekeeping genes

ACTB, GAPDH and HPRT. Data are represented as ratios (R)

of the relative expression between the nucleus and the cyto-

plasm (R ¼ 2�DCt nucleus/2�DCt cytoplasm). The DCt values

were calculated by subtracting from the Ct values the Ct

value of GAPDH in the cytoplasmic fraction.
2.8. Cell proliferation e EdU incorporation assay

Cells were seeded in 60 mm dishes, treated with siRNA for

48 h, followed by a 4-h 10 mM EdU (5-ethynyl-2’deoxyuridine)

incubation. EdU was detected by fluorescent-azide coupling

reaction (Click-iT, Invitrogen, Eugene, OR), and subsequently,

10 000 cells were counted on a FACS calibur machine (BD Bio-

sciences, Stockholm, Sweden) to determine the percentage of

cells in the population that are in the S-phase.
Gating was performed to eliminate aggregated cells, and

non-stained cells were used to define on the FACS plot the

area with the cells that have incorporated EdU.

2.9. Chick chorioallantoic membrane (CAM) assay

Fertilized chicken eggs purchased from Ova Production AB

(Vittinge, Sweden) were placed in a 60% humidified, 37 �C
incubator without CO2. On day 10, a square window was

opened and transfected cells, re-suspended in 30 ml of

growing medium (around one million cells per embryo),

were applied on top to the CAM as described previously

(Brooks et al., 1994). The eggs were sealed and returned to

the incubator for an additional 7 days. On day 17, the tu-

mors were collected, weighed and measured. All tumors

were fixed in 4% paraformaldehyde, embedded in paraffin

and processed for sectioning. Additionally, the tumors

were stained with hematoxylin and eosin and further

analyzed by standard light microscopy in order to ensure

the presence of tumor tissue.

2.10. Chromatin immunoprecipitation (ChIP) assays

The ChIP analysis was carried out by using the SimpleChIP�

Enzymatic Chromatin IP Kit (Cell Signaling). Briefly, cells

were cross-linked in 1% formaldehyde, quenched with

1XGlycine and lysed according to the manufacturer’s rec-

ommendations. Subsequently, the samples were treated

with Micrococcal Nuclease to digest DNA at an average

length of 150e900 bp, then subjected to a water bath sonica-

tor (Bioruptor) for breaking the nuclear membrane and

finally incubated overnight at 4 �C with the appropriate anti-

body. ChIP Grade Protein G Magnetic Beads (Cell Signaling)

were used to pull down the antibody and the associated

chromatin. The antibody bound chromatin was eluted in

1XChIP elution buffer (Cell Signaling) followed by reverse

cross-linking and protease K treatment. DNA was purified

with ‘DNA purification spin columns’ supplied in the kit.

The following antibodies were used: Normal Rabbit IgG

(#2729, Cell Signaling) as negative control, Histone H3

(D2B12) XP� rabbit mAb (ChIP formulated) (#4620, Cell

Signaling) as positive control, Tri-Methyl-Histone H3

(Lys27) Antibody (#9756, Cell Signaling), Tri-Methyl-Histone

H3 (Lys4) (C42D8) Rabbit mAb (#9751, Cell Signaling) and

Rpb1 CTD (4H8) Mouse mAb (#2629, Cell Signaling). The

immunoprecipitated DNA was analyzed by real-time PCR

using primer sets for the INHBE, GLI1AS and GLI1 genes

(Table 1, Supplementary Figure 4). A serial dilution of the

2% input chromatin DNA (1:5, 1:25, 1:125) was used to create

a standard curve and determine the efficiency of

amplification.
3. Results

3.1. Identification of a non-coding RNA, antisense to the
GLI1 gene, GLI1AS

In silico analysis of EST databases identified a transcript,

GLI1AS, flanking the GLI1 promoter and encoded on the

http://dx.doi.org/10.1016/j.molonc.2014.03.009
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Table 1 e Primers for real-time PCR.

Primer name Sequence

TBP E3 forward 50 GCCAGCTTCGGAGAGTTCTGGGATT
TBP E4 reverse 50 CGGGCACGAAGTGCAATGGTCTTTA

GAPDH E1 forward 50 CTTCGCTCTCTGCTCCTCCTGTTCG
GAPDH E3 reverse 50 ACCAGGCGCCCAATACGACCAAAT
ACTB E2 forward 50 CAAGGCCAACCGCGAGAAGATGAC

ACTB E3 reverse 50 GCCAGAGGCGTACAGGGATAGCACA

RPLPO E6 forward 50 CCTTCTCCTTTGGGCTGGTCATCCA
RPLPO E7 reverse 50 CAGACACTGGCAACATTGCGGACAC
HPRT E6 forward 50 TGCAGACTTTGCTTTCCTTGGTCAGG
HPRT E7 reverse 50 CCAACACTTCGTGGGGTCCTTTTCA
GLI1 E11 forward 50 CAGCTACATCAACTCCGGCCAATAGGG
GLI1 E12 reverse 50 TGCTGCGGCGTTCAAGAGAGACTG
GLI1 E11 forward 50 GACCAGCTACATCAACTCCGGCCAAT
GLI1 Int 11 reverse 50 TCCTCCTCTCAACCTCAGGGCAGGT
GLI1 E1 forward 50 GAGCCCAGCGCCCAGACAGA
GLI1 Int 1 reverse 50 CTGGGATGAGTCCCTAAGAAGC
GLI1 Int 3 forward 50 GTGCATGGAGAGACATGCCCCTTT
GLI1 E4 reverse 50 GGCATCCGACAGAGGTGAGATGGAC
AS E1 forward 50 GAACACGCTGCTGTTGGCCTCAC
AS E2 reverse 50 ACCTCGTGAACCACACCCTGCAC

AS Int 1 forward 50 AGGGGGAGAAGTTCAACCGAGAACG

AS E2 reverse 50 CATCCAAAGGGTGAGGCCTGCAG

AS E2 forward 50 GGGGAACTGAAGGAGGAGCCCAGTT
AS E3 reverse 50 TGACCTCTTGATCCACCCGACTTGG
AS E2 forward 50 CCCACTTAAAAGCCCAGGAGGTGGA
AS Int 2 reverse 50 CTGCCCCTCCCTTATATCCGGTCAC
PTCH1 forward 50 AATGGGTCCACGACAAAGCCGACTA
PTCH1 reverse 50 TCCCGCAAGCCGTTGAGGTAGAAAG

PTCH2 forward 50 TCTTTCTGGGACTGTTGGCCTTTGG
PTCH2 reverse 50 CCTCCCCCAGCTTCTCCTTGGTGTA
INHBE forward 50 CCGGAGACTACAGCCAGGGAGTGTG
INHBE reverse 50 GTACAGGTGGTGGGACCGAGGAGTG
INHBE E1 forward 50 TCAGCCTTCCTGAGTCCCAGAC
INHBE E1 reverse 50 AATGAGGGCACAGTGACAGCAG

INHBE Int 1 forward 50 GCAGGGCTTGGGGAGTCTCAGAGG
INHBE Int 1 reverse 50 TTCCCTGTCTGCTCTTTGCCTGTTG
ADAR2 forward 50 ACCGCAGGTTTTAGCTGACGCTGT
ADAR2 reverse 50 CCAGCCAGCACTTTTCTGCGAGCGT
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opposite (antisense) strand. Rapid Amplification of cDNA

Ends (RACE) in Rh36, CCA and RMS13 cancer cells deter-

mined the sequence of GLI1AS RNA, which initiates 155

nucleotides upstream of the major transcription start

site of the GLI1 gene (Liu et al., 1998) in an opposite orienta-

tion (Figure 1A, Supplementary Figure 1). The 50 and 30

RACE analysis revealed that the 885-nucleotide, three-

exon GLI1AS RNA is 50 capped and 30 poly(A) tailed but

without any long open reading frame (GenBank accession

number JX675466). Polyadenylation of GLI1AS was also

confirmed by cDNA synthesis in the presence or absence

of oligo(dT) primers in RMS13 cells (Figure 1B). This would

be in-line with data from the FANTOM5 ZENBU gLyphs

Genome Browser (http://fantom.gsc.riken.jp/5/suppl/Kana-

mori-Katayama_et_al_2011), indicating a number of tran-

scription initiation sites at the 50 end of the GLI1 gene

both in the sense and antisense orientation, with some

having the potential for transcriptional overlap

(Supplementary Figure 2). Finally, evidence for the presence

of active transcription at the GLI1AS/GLI1 genomic region

was gathered from the UCSC Genome Browser

(Supplementary Figure 3).

3.2. GLI1AS and GLI1 have a concordant expression in
tumors

Expression analysis of GLI1AS in the following cancer cell

lines: PC3, 22Rv1 PANC1, A549, AGS, D283Med, RMS13, RD,

Rh36, and CCA show a remarkable co-regulation between

GLI1 and GLI1AS (Figure 1C and D). Further analysis using

exonic and intronic PCR primer sets (Table 1, Supplementary

Figure 4) defined the splicing pattern of GLI1AS in RMS13,

RD, Rh36, and CCA cells. Transcripts retaining GLI1AS intron

2 were more abundant than transcripts with the intron being

removed in all cell lines analyzed. A similar but less pro-

nounced pattern was also observed for intron 1 in RD, Rh36,

and CCA but not RMS13 cells (Figure 1E). Additionally, a corre-

lation between the expression of GLI1AS, interrogated by

spliced exons 1 and 2 or 2 and 3, and GLI1 was detected

(Figure 1F and G). These observations are reminiscent of the

finding that sense/antisense transcript pairs often reveal a

concordant regulation and a lower expression of the antisense

transcript (Faghihi et al., 2008; Faghihi and Wahlestedt, 2009;

Katayama et al., 2005).

To gain further insight into a possible biological function

of GLI1AS we also determined its subcellular localization.

Through nuclear/cytoplasmic fractionation of Rh36 and

CCA cells, followed by RNA isolation and real-time RT/PCR,

we found that the unspliced GLI1AS RNAs are preferentially

retained in the nucleus, while the spliced GLI1AS RNAs

transported to the cytoplasm (Figure 1H and I). A similar

pattern was also observed for RMS13 cells (Supplementary

Figure 5).

Finally, we determine the translational significance of

these findings by examining GLI1AS expression in a panel of

basal cell carcinomas (BCCs), a tumor type characterized by

increased GLI1 levels (Gailani et al., 1996). GLI1AS levels were

lower than GLI1 and more pronounced in the nine BCC

compared to the eight normal skin samples analyzed,

showing an apparent co-regulation with GLI1 expression,
similarly to what was previously seen in the cancer cell lines

(Figure 2A and B). Moreover, the levels of GLI1 and GLI1AS

were analyzed in breast cancer, a tumor type where GLI1

expression is thought to participate in the pathogenesis of

this malignancy (Li et al., 2012b). A well co-related pattern of

GLI1 and GLI1AS expression in the 15 tumor samples, the

three benign breast fibroadenomas and the normal breast

analyzed was observed (Figure 2C, D and E).
3.3. Opposing regulatory effects of GLI1AS on GLI1
versus GLI1 on GLI1AS

In order to investigate whether the GLI1AS transcript regu-

lates the expression of GLI1, three short interfering RNA

(siRNA) molecules targeting GLI1AS were designed

(Figure 1A, Table 2) and used as a mixture (si-ASmix). Trans-

fection of the si-ASmix into Rh36 cells resulted in a significant

GLI1AS knockdown, accompanied by an increase in GLI1

expression (Figure 3A). Similar results were found in CCA cells

(Supplementary Figure 6). Interestingly, transfection of three
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Figure 2 e Expression of GLI1AS in basal cell carcinoma and breast cancer. Co-regulation with GLI1. A. Real-time RT/PCR analysis of the

expression of GLI1AS and GLI1 in basal cell carcinoma and normal skin. Data are represented as relative expression (2LDCt values), calculated by

subtracting the mean Ct value of the housekeeping gene RPLPO from the Ct value of the GLI1 and GLI1AS transcripts (DCt). B. Co-relation of

GLI1AS with GLI1 expression in basal cell carcinoma and normal skin. The expression of GLI1AS and GLI1 in the eight normal skin and the

nine basal cell carcinoma samples determined above was normalized to the expression in the skin sample with lowest GLI1 expression, by

subtracting the DCt value of this sample from the DCt in all samples, resulting in DDCt values. Data are presented as normalized relative

expression (2LDDCt values). A positive correlation was observed between GLI1 and GLI1AS expression, R2 [ 0.82808 (Pearson

correlation [ 0.91, P< 0.05). C. Real-time RT/PCR analysis of the expression of GLI1AS and GLI1 in breast cancer, benign fibroadenoma and

normal breast samples. Data are represented as relative expression (2LDCt values), calculated by subtracting the Ct value of the housekeeping gene

ACTB from the Ct value of the GLI1 and GLI1AS (AS E1-2 and AS E2-3) transcripts (DCt). D, E. Co-relation of GLI1AS with GLI1 expression

in breast cancer. The expression of GLI1AS and GLI1 in the 15 breast tumor samples, the three benign fibroadenomas and the normal breast

sample determined above was normalized to the expression of the least expressing sample (BC1), by subtracting the DCt in BC1 from the DCt in

all samples, resulting in DDCt values. Data are presented as the Log10 of the 2LDDCt values. A positive correlation was observed between GLI1

(GLI1 E11-12) and GLI1AS (AS E1-2, D or AS E2-3, E) expression, R2 [ 0.76408 (Pearson correlation [ 0.874, P < 0.05) or 0.67895 (Pearson

correlation [ 0.824, P < 0.05), respectively.
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Table 2 e siRNAs targeting GLI1 (G) and GLI1AS (AS).

siRNA name Sequence, sense strand

si1G 50 GUCAUAGUCACGCCUCGAAdTdT

si2G 50 GCCCAGAUGAAUCACCAAAdTdT

si3G 50 CUCGCGAUGCACAUCUCCAdTdT

si1AS 50 GCUGUUGGCCUCACCCUUUdTdT

si2AS 50 GGUGAGGAGUCUAUGGAGCdTdT

si3AS 50 GCCGUUCUCACACAUGACAdTdT
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siRNAs targeting GLI1 (Figure 1A, Table 2) (si-Gmix) in the Rh36

and CCA cells resulted in a decrease of GLI1AS levels (Figure 3B

and Supplementary Figure 6). Thus, depletion of one member

of the GLI1/GLI1AS pair has opposing effects on the other part-

ner. GLI1 knockdown reduces GLI1AS but GLI1AS knockdown

increases GLI1.

To evaluate the biological implications of the impact of

GLI1AS on GLI1 expression, the siRNA-treated Rh36 cells, a

line in which proliferation is dependent on GLI1 (Tostar

et al., 2010), were further analyzed. EdU incorporation assay

showed a decrease in proliferation by the si-Gmix and an in-

crease by the si-ASmix, in-line with the changes of the GLI1

mRNA (Figure 3C).

To examine whether the endogenous modulation of GLI1

and GLI1AS levels in Rh36 cells has an impact on tumor

growth, the CAM xenograft model was used. Treatment of

Rh36 cells with the si-Gmix decreased their capacity to form

tumors in this model, On the other hand an increased tumor

weight was observed following treatment with the si-ASmix

(Figure 3D and E).

To determine the impact of increased levels of the GLI1AS

RNA on GLI1, expression constructs of a full-length GLI1AS, a

50 segment of GLI1AS and a 30 segment of GLI1AS in the pCMV5

vector were generated as described in Supplementary

Figure 1A. Interestingly, the 50 and the 30 GLI1AS constructs

did not elicited major changes in the GLI1 mRNA levels but

the full-length GLI1AS construct conferred an almost 10-fold

reduction of the GLI1 mRNA (Figure 4A). Additionally, the

full-length but not the 50 or the 30 constructs decreased the

expression of the GLI1 protein (Figure 4B) and down-

regulated well-established GLI1 target genes, PTCH1 and

PTCH2 (Shimokawa et al., 2008) (Figure 4C). These findings

suggest that the complete GLI1AS RNA sequence/structure is

needed to elicit regulatory effects on GLI1. Additionally, reten-

tion of the intron 1 sequence in the 50 construct did not confer

major changes on its limited capacity to modulate GLI1 levels/

GLI1 target genes (Supplementary Figure 7).

To determine whether the modulation of GLI1 levels by

GLI1AS overexpression elicits regulatory effects at the cellular

level, an analysis of the Rh36 proliferative capacity was per-

formed. As anticipated, GLI1AS overexpression conferred a

major reduction in Rh36 cellular proliferation (Figure 4D).

Worth noting is that overexpression of either the 50 GLI1AS
or the 30 GLI1AS construct did not alter the proliferative capac-

ity of the transfected Rh36 cells.

3.4. GLI1AS modifies the chromatin landscaping and
reduces the recruitment of RNA polymerase II at the GLI1/
GLI1AS locus

To examine whether the repressive effects of GLI1AS on GLI1

expression are gene specific, themRNA levels of INHBE, a gene

positioned tail-to-tail to GLI1AS (Supplementary Figures 3 and

4) and of an unrelated gene on chromosome 21q22.3, ADAR2,

were also analyzed. ADAR2 levels were not changed by GLI1AS

overexpression, however, INHBE expression was reduced,

albeit not to the same extent as to that seen for GLI1

(Figure 4E).

Interestingly, transfection of a GLI1 expression construct in

Rh36 cells resulted in an up-regulation of GLI1AS, similar to
other typical GLI1 target genes PTCH1 and PTCH2 (Figure 4F).

Of note, this treatment did not increase the INHBE levels

(Supplementary Figure 8). This finding rules out the possibility

that INHBE is a GLI1 target gene. Consequently, the observed

INHBE down-regulation by GLI1AS overexpression (Figure 4E)

is not an indirect result of the reduced GLI1 levels, rather an

effect of the antisense RNA on the organization of the chro-

matin locus.

To address the role of epigenetic modifications in elicit-

ing the GLI1 and INHBE down-regulation by GLI1AS overex-

pression, chromatin immunoprecipitation assays on

transfected Rh36 cells were performed. The H3K27me3

signal, a mark of repressive chromatin, was increased

throughout the INHBE/GLI1AS/GLI1 genomic regions, being

most pronounced at the 50 end of the INHBE and GLI1 genes,

at interrogated segments A and F (Figure 5A). Surprisingly,

the H3K4me3 signal was also increased up to the exon 1 of

GLI1, with the major differences observed at the 50 end the

INHBE, GLI1AS and GLI1 genes, segments A, E, and F

(Supplementary Figure 9). This may relate to the observa-

tions that this histone mark, generally considered to asso-

ciate with active transcription, has also been linked to

repression of gene expression in the context of antisense

transcription in yeast (Berretta et al., 2008; Pinskaya et al.,

2009). Additionally, the recruitment of RNA polymerase II

showed a statistical significant decrease at segments B and

E. (Figure 5B). Thus, GLI1AS acts as an epigenetic modifier

that represses gene expression at its locus.

3.5. GLI1AS expression is regulated by Hedgehog and
TGFb signaling, two known inducers of GLI1 expression

To determine whether GLI1AS has a role in signaling-

dependent regulation of GLI1, Daoy and PANC1 cell lines

were used. Activation of Hedgehog signaling by the Smooth-

ened agonist SAG in Daoy cells increased not only GLI1 but

also GLI1AS expression. Similarly, treatment of PANC1 cells

with TGFb increased not only GLI1 but also GLI1AS expression

(Figures 6A and 6B). Thus, a concordant up-regulation of GLI1

and GLI1AS is elicited by activation of Hedgehog or TGFb

signaling.
4. Discussion

In this study, we have characterized an RNA transcript from

the antisense strand of the GLI1 gene, termed GLI1AS, with

no potential to code for a long protein, which acts as a nega-

tive regulator of GLI1 expression. Moreover, GLI1, a known
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Figure 3 e GLI1AS knockdown increases GLI1 expression in the Rh36 cell line. A. Real-time RT/PCR analysis of the expression of GLI1 and

GLI1AS transcripts in Rh36 cells, following knockdown of GLI1AS by a 48-h treatment with si-ASmix, respectively. Data are represented as

relative expression (2LDDCt values), calculated by subtracting the Ct value of the housekeeping gene TBP from the Ct value of the GLI1 and

GLI1AS transcripts (DCt), and normalized to the DCt value obtained by a control siRNA (si-Control), by subtracting this control DCt value from

the DCt values of the si-Gmix and si-ASmix samples (DDCt). Error bars indicate the standard deviation. *, Statistical significant, P < 0.01

compared to control, calculated by the Student’s t-test. B. The expression of GLI1 and GLI1AS transcripts in Rh36 cells, following knockdown of

GLI1 by a 48-h treatment with si-Gmix was analyzed as in (A). Note that siRNA treatment effectively reduced expression of the targeted genes.

Additionally, the si-ASmix increased the GLI1 mRNA (GLI1 E11-12) while the si-Gmix conferred a decrease in GLI1AS (AS E1-2 and AS E2-3).
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transcription factor, also influences GLI1AS expression but in

a positive direction. GLI1AS is a polyadenylated transcript,

with all introneexon boundaries following the GU/AG

consensus (Figure 1B, Supplementary Figure 1). Interestingly,

the pattern of expression of the spliced and unspliced GLI1AS

transcripts in the rhabdomyosarcoma cells lines analyzed

highlights the predominance of intron-containing RNA forms.

Transcripts retaining intron 2 are consistently more abundant

than transcripts with this intron excised, and to a lesser

extent this is also observed for intron 1 in all cell lines but

RMS13. Additionally, splicing of exon 1 to exon 2 is more prev-

alent than exon 2 to exon 3 splicing in all cell lines but RD

(Figure 1E). Moreover, the spliced forms of GLI1AS are prefer-

entially exported to the cytoplasm and the unspliced forms

retained in the nucleus (Figure 1H and I). This finding, in addi-

tion to the evidence of capping and polyadenylation, suggest

that GLI1AS is processed similarly to a typical mRNA, even

though it lacks the potential to code for a long protein. Howev-

er, the fact that the unspliced, nuclear localized GLI1AS forms

are more abundant than the cytoplasmic, spliced forms

(Figure 1E) contrasts GLI1AS with typical mRNAs.

Our data also show that GLI1AS expression is positively co-

related with that of GLI1 in cancer cell lines (Figure 1C and D)

and in biopsies of basal cell carcinomas and breast tumors

(Figure 2). GLI1 mRNA expression levels were higher than

GLI1AS across all samples examined, consistent with the re-

sults reported for most antisense transcripts with regulatory

roles on the corresponding sense gene (Fish et al., 2007;

Katayama et al., 2005; Oeder et al., 2007).

Interestingly, transfection of Rh36 and CCA cells with a

mixture of three distinct siRNAs targeting regions of the

GLI1 mRNA resulted in a reduction of not only the targeted

GLI1 mRNA, but also the GLI1AS transcript, arguing that

GLI1AS is a target gene of the GLI1 transcription factor

(Figure 3B, Supplementary Figure 6). This is further supported

by the GLI1AS up-regulation elicited by GLI1 overexpression

(Figure 4F). On the other hand, knockdown of GLI1AS

increased GLI1 levels (Figure 3A, Supplementary Figure 6),

and the proliferation/tumor formation capacity of the Rh36

cell line (Figure 3CeE). Importantly, overexpression of GLI1AS

in Rh36 cells resulted in decreased GLI1 mRNA and protein

levels, decreased expression of the GLI1 target genes PTCH1

and PTCH2 and concomitant reduction of cellular proliferation

(Figure 4AeD). Moreover, the expression of the INHBE gene,

which is tail-to-tail with GLI1AS, was also reduced, while the

unrelated ADAR2 gene was unaffected (Figure 4E). It is worth

noting that these effects were observed only when the com-

plete GLI1AS RNA was introduced into the Rh36 cells. Trans-

fection of either a 50 or a 30 GLI1AS segment, or the intron 1

containing 50 GLI1AS segment (Figure 4D, Supplementary

Figure 7), did not elicit similar changes in gene expression/

cellular proliferation.
C. Rh36 cells, cultured for 48 h after transfection with si-Control, si-Gmix o

percentage of cells labeled with Alexa Fluor 488 azide and detected by flow

proliferation, while treatment the si-ASmix increases proliferation, in-line w

48 h after transfection with si-Control, si-Gmix or si-ASmix were introduce

assay) and tumors were collected after 10 days. Two representative tumors f

mg), from three independent experiments, are represented as box plots, with

the range from minimum to maximum, shown in E.
Chromatin immunoprecipitation assays support the

notion that GLI1AS acts as an epigenetic modifier, which

elicits repressive histone marks at the INHBE/GLI1AS/GLI1 lo-

cus, and down-regulates the expression of its neighboring

genes (Figure 5, Supplementary Figure 9). Although H3K4m3,

which is increased by GLI1AS, is generally thought to be an

active chromatin mark, there is recent evidence suggesting

that it may also have repressive functions (Wang et al., 2011;

Zhou and Zhou, 2011). These observations are in-line with

the claims that antisense transcripts can provide the means

for local spreading of regulatory signals via histone modifica-

tions (Wei et al., 2011; Xu et al., 2009).

Additionally, the observed co-relation of GLI1 and GLI1AS

RNA levels in a variety of cancer cell lines and in tumor

samples is supportive of feedback mechanisms that keep

the concordant expression of this transcript pair tightly

regulated. Our experimental data demonstrate that GLI1

positively regulates GLI1AS, while GLI1AS negatively regu-

lates GLI1. Consequently, these GLI1/GLI1AS interactions

represent a regulatory loop, which keeps the coordinate

expression of the two transcripts. This bears similarities to

the known feedback mechanism of Hedgehog signaling,

which is elicited by the PTCH1 receptor, a target gene that

also acts as a negative regulator of the pathway (Marigo

and Tabin, 1996).

Worth noting is that in the chimpanzee (Pan troglodytes)

and the Sumatran orangutan (Pongo abelii) the GLI1AS

sequence is highly conserved, with all splice sites of the two

introns being retained. In the more evolutionary distant

northern white-cheeked gibbon (Nomascus leucogenys) the

donor splice site of intron 2 is shifted from GT to AT arguing

against intron removal. In the further distant white-tufted-

ear marmoset (Callithrix jacchus) the acceptor splice sites of

both intron 1 and intron 2 are not conserved, also arguing

against intron removal. This would suggest that the splicing

of the GLI1AS exons represents a recent evolutionary novelty

and is in agreement with the fact that most of exon 3 consists

of Alu sequences (Supplementary Figure 1A). Additionally,

comparison with the mouse genome revealed conservation

within the exon 1 sequence that is reduced towards the 30

end sequences. However, efforts to detect transcripts from

this genomic region inmouse tissues and embryos were nega-

tive in our hands (unpublished observations), consistently

with the data of the UCSC Genome Browser. These observa-

tions are in-line with the recent claims of rapid evolutionary

turnover of long non-coding RNAs (Kutter et al., 2012).

Moreover and in agreement with the finding that pro-

moters can generate transcripts in both directions (Ntini

et al., 2013), GLI1AS is likely to be the product of a GLI1 bidi-

rectional promoter, as the physical distance between the 50

end of the GLI1 and GLI1AS genes is short (Supplementary

Figure 1B), and GLI1 up-regulates not only GLI1AS but also
r si-ASmix, were subjected to the EdU incorporation assay for 4 h. The

cytometry is shown. Note that treatment with the si-Gmix reduces

ith the changes in GLI1 mRNA levels. D, E. Rh36 cells, cultured for

d onto the chorioallantoic membrane of fertilized chicken eggs (CAM

rom each experimental treatment are shown in D. Tumor weights (in

the box denoting median ± interquartile range (IQR) and the whiskers
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Figure 4 e GLI1AS decreases GLI1 expression, while GLI1 increased GLI1AS expression. A. Real-time RT/PCR analysis of the expression of

GLI1 in Rh36 cells, 48 h after transfection of pCMV5 expression constructs for GLI1AS, a 579 bases 50 segment of GLI1AS (50GLI1AS) or a 407

bases 30 segment of GLI1AS (30GLI1AS). Data are represented as relative expression (2LDDCt values), calculated by subtracting the Ct value of the

housekeeping gene TBP from the Ct value of the GLI1 mRNA (DCt), and normalized to the DCt value obtained following transfection of the

pCMV5 control vector, by subtracting this control DCt value from the DCt values of all samples (DDCt). Error bars indicate the standard

deviation. *, Statistical significant, P < 0.01 compared to control, calculated by the Student’s t-test. Note that overexpression of GLI1AS

effectively reduced GLI1 expression, while this is not the case when either the 50 half or the 30 half of GLI1AS are overexpressed. B. Western blot

analysis of GLI1 protein expression in Rh36 cells, following transfection of pCMV5 expression constructs for GLI1AS, 50GLI1AS or 30GLI1AS.

C. The expression of the typical GLI1 target genes PTCH1 and PTCH2 in Rh36 cells, following transfection of pCMV5 expression constructs for

GLI1AS, 50GLI1AS or 30GLI1AS, is analyzed as in (A). *, Statistical significant, P< 0.05 compared to control, calculated by the Student’s t-test.

D. Rh36 cells 48 h after transfection with pCMV5 control vector, or expression constructs for GLI1AS, 50 GLI1AS or 30 GLI1AS were subjected

to the EdU incorporation assay for 4 h. The percentage of cells labeled with Alexa Fluor 488 azide and detected by flow cytometry is shown. Note

that overexpression of GLI1AS confers an effective reduction of proliferation, while this is not the case when either the 50 half or the 30 half of
GLI1AS are overexpressed. E. The expression of INHBE, a gene from the GLI1AS locus, and of the unrelated gene ADAR2 in Rh36 cells,

following transfection of pCMV5 expression constructs for GLI1AS, 50GLI1AS or 30GLI1AS, is analyzed as in (A). *, Statistical significant,

P< 0.01 compared to control, calculated by the Student’s t-test. F. The RNA levels of GLI1AS (AS E1-2 and AS E2-3), PTCH1 and PTCH2 in

Rh36 cells following transfection of a pCMV5 expression construct for GLI1 (Materials and methods) is analyzed as in (A). *, Statistical

significant, P < 0.01 compared to control, calculated by the Student’s t-test.
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Figure 5 e GLI1AS acts as a chromatin remodeler at the INHBE/GLI1AS/GLI1 locus. Chromatin immunoprecipitation assays for H3K27me3

(A), and RNA polymerase II (B) in Rh36 cells 48 h after transfection of a pCMV5 expression construct for GLI1AS. For real-time PCR analysis, 8

primers sets (AeH) spanning the INHBE/GLI1AS/GLI1 locus (Table 1, Supplementary Figure 4) were used. Below the schematic diagram of the

locus is a graph showing the immunoprecipitated signals relative to input control DNA for each interrogated segment. *, Statistical significant,

P < 0.01 compared to control, calculated by the Student’s t-test.
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its own gene expression (Regl et al., 2002; Shimokawa et al.,

2013, 2008) (Figure 4F). This would suggest that antisense

transcripts from bidirectional promoters can be exapted to

acquire a biological role, exemplified in this case by the

negative feedback of GLI1AS on GLI1 gene expression, and

depicted in the model of Figure 7. This model is consistent
with the findings that Hedgehog and TGFb signaling activa-

tion up-regulates not only GLI1 but also GLI1AS expression.

The function of most non-coding antisense transcripts re-

mains unknown. A certain proportion of these may constitute

transcriptional noise; however, there is a growing number of

examples with a regulatory impact that is physiologically
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Figure 6 e Signaling-dependent regulation of GLI1AS. A. Real-time RT/PCR analysis of the expression of GLI1 and GLI1AS in Daoy cells,

following a 48-h treatment with the Hedgehog signaling inducer SAG. Data are represented as relative expression (2LDDCt values), calculated by

subtracting the Ct value of the housekeeping gene TBP from the Ct value of the GLI1 and GLI1AS transcripts (DCt), and normalized to the DCt

value obtained without treatment. Error bars indicate the standard deviation. *, Statistical significant, P< 0.01 compared to control, calculated by

the Student’s t-test. B. Real-time RT/PCR analysis of the expression of GLI1 and GLI1AS in PANC1 cells, following a 24-hr treatment with the

TGFb1. Data are represented as relative expression (2LDDCt values), calculated by subtracting the Ct value of the housekeeping gene ACTB from

the Ct value of the GLI1 and GLI1AS transcripts (DCt), and normalized to the DCt value obtained without treatment. Error bars indicate the

standard error of the mean of three experiments. *, Statistical significant, P < 0.01 compared to control, calculated by the Student’s t-test.
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significant. Consequently, the results presented herein,

revealing a negative feedback of GLI1AS on GLI1 expression,

with concomitant effects on cellular proliferation, provide ev-

idence for an additional non-coding antisense RNA that is bio-

logically relevant.

In summary, our data highlight complex regulatory mech-

anisms acting on the oncogenic GLI1 transcription factor,

which are elicited by processes that include not only
Figure 7 e Schematic representation of the proposed mechanism for

the interplay of the GLI1AS and GLI1 regulatory effects. The GLI1

protein, acting as a transcription factor, up-regulates it own promoter.

This concomitantly increases transcription from both DNA strands,

resulting not only in a GLI1 positive feedback but also in a negative

feedback, which is mediated by the GLI1AS non-coding RNA.
alternative splicing (Cao et al., 2012) or RNA editing

(Shimokawa et al., 2013) but also chromatin remodeling

through non-coding RNA.
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