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Decision Making for Healthcare Resource

Allocation: Joint v. Separate Decisions on
Interacting Interventions

Helen Dakin and Alastair Gray

Abstract

Standard guidance for allocating healthcare resources based on cost-effectiveness recommends using different deci-
sion rules for independent and mutually exclusive alternatives, although there is some confusion around the defini-
tion of ‘‘mutually exclusive.’’ This paper reviews the definitions used in the literature and shows that interactions (i.e.,
non-additive effects, whereby the effect of giving 2 interventions simultaneously does not equal the sum of their indi-
vidual effects) are the defining feature of mutually exclusive alternatives: treatments cannot be considered indepen-
dent if the costs and/or benefits of one treatment are affected by the other treatment. The paper then identifies and
categorizes the situations in which interventions are likely to have non-additive effects, including interventions target-
ing the same goal or clinical event, or life-saving interventions given to overlapping populations. We demonstrate
that making separate decisions on interventions that have non-additive effects can prevent us from maximizing health
gained from the healthcare budget. In contrast, treating combinations of independent options as though they were
‘‘mutually exclusive’’ makes the analysis more complicated but does not affect the conclusions. Although interactions
are considered by the World Health Organization, other decision makers, such as the National Institute for Health
and Care Excellence (NICE), currently make independent decisions on treatments likely to have non-additive effects.
We propose a framework by which interactions could be considered when selecting, prioritizing, and appraising
healthcare technologies to ensure efficient, evidence-based decision making.
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Two different decision rules are used to interpret economic
evaluations and allocate resources between multiple com-
peting uses,1-13 depending on whether interventions are
independent or mutually exclusive.

When the alternatives are considered to be indepen-
dent, the decision rule is simply to compare the incre-
mental cost-effectiveness ratios (ICERs) for the different
interventions (each relative to their next best non-
dominated alternative) side by side.2-10,14 If we have a
league table showing the cost-effectiveness and budget
impact of all possible independent healthcare interven-
tions, we can maximize the amount of health gained by
adopting interventions in ascending order of ICER until
the available healthcare budget is exhausted. Alternatively,
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if we have an estimate of the shadow price of a quality-
adjusted life year (QALY), we can simply adopt all inter-
ventions with ICERs below this ceiling ratio.

Conversely, only one intervention from a set of
mutually exclusive alternatives will be adopted at a time.
In this situation, the decision rule requires calculating
the ICER for each option compared with its next best
non-dominated alternative.1-3,6,7,9-11,13 We then identify
the cost-effectiveness frontier2,3 by excluding any inter-
ventions that are strongly or weakly dominated by others
and adopt the most effective intervention that lies on the
cost-effectiveness frontier and has an ICER below our
ceiling ratio.6,10,13 Using net monetary benefit (NMB),
or net health benefit, simplifies the procedure further: we
can simply calculate the NMB of all alternatives at the
appropriate ceiling ratio and adopt the intervention with
highest NMB.1,2,11,12

However, the distinction between independent and
mutually exclusive interventions is not always clear.
This paper examines the role of interactions in deter-
mining when each decision rule should be used. We
define interactions as situations where the absolute
incremental costs and health benefits of one interven-
tion are affected by whether another intervention is
given. We argue that interactions are more pervasive
than commonly thought, and need to be considered
carefully within economic evaluation and health tech-
nology assessment (HTA).

The next section reviews published definitions
of ‘‘independent’’ and ‘‘mutually exclusive.’’ We then
describe situations in which interactions are likely to
arise and use numerical examples and published mathe-
matical proofs to assess the impact of using the ‘‘wrong’’
decision rule: i.e., making separate decisions on interven-
tions that interact, and treating combinations of inde-
pendent options as though they were mutually exclusive.
The paper concludes with a discussion of how HTA
organizations and decision makers, such as the National
Institute of Health and Care Excellence (NICE) and the
World Health Organization (WHO), currently deal with
interactions, and proposes a framework for identifying
and accounting for interactions within economic evalua-
tions and HTA that could enable more efficient use of
healthcare resources.

Definition of Mutually Exclusive and

Independent Alternatives

We conducted a literature review of published definitions
of ‘‘independent’’ and ‘‘mutually exclusive’’ in the context

of healthcare decision making.i The review identified
substantial variation among the 14 published definitions
(Appendix 1). Thirteen texts defined ‘‘mutually exclu-
sive’’ literally, stating that interventions are mutually
exclusive if patients cannot receive both. However, there
are relatively few interventions that are impossible to
implement together (rare examples include different lev-
els of the same intervention or different approaches to
irreversible surgery). Seven definitions stated that all
interventions given to the same patient population are
mutually exclusive and/or that interventions given to dif-
ferent populations are independent. However, 9 of the
published definitions suggested that the defining feature
that determines whether interventions are mutually
exclusive or independent is whether implementing one
intervention affects the costs or effectiveness of the other:
in other words, whether the treatments interact, rather
than having additive effects (whereby the effect of A+B
is equal to the effect of A plus the effect of B).ii

These 9 definitions suggest that whenever interven-
tions (e.g., A and B) interact (i.e., have non-additive
effects), we should treat the combinations of interrelated
interventions (e.g., no intervention, A, B and A+B) as
mutually exclusive options, comparing the intervention
combinations incrementally and selecting the single strat-
egy that maximizes NMB for that population.
Conversely, the definitions imply that, if there is no
interaction between interventions (i.e., additive effects),
we should treat A and B as independent options and
compare their ICERs against the ceiling ratio separately,
adopting those interventions with ICERs below our ceil-
ing ratio.

However, only the 2 WHO definitions18,19 mention
the word ‘‘interaction,’’ and use slightly different termi-
nology. They define mutually exclusive interventions as
those that cannot be implemented together and distin-
guish them from interventions that can be given together
but interact, and from independent interventions that do
not interact. They recommend that combinations of
interacting interventions are considered as a ‘‘cluster’’ of
interdependent interventions and evaluated incremen-
tally like mutually exclusive alternatives.

Situations When Interactions Are Likely to

Arise

Based on published studies and economic evaluations
that we have been involved in, we developed 13 worked
examples based on real or hypothetical data to illustrate
mechanisms by which interventions may have non-
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additive effects on costs, QALYs, or NMB (Appendix
2). We grouped these mechanisms into 5 categories
(Table 1), which could each arise with any type of health-
care intervention.

First, pharmacological, behavioral, and biological
mechanisms can introduce interactions20–22 (category 1).
For example: one drug may reduce or accelerate the
metabolism of the other (potentially influencing efficacy
or causing adverse effects); giving a second intervention
may affect compliance with the first intervention;23 or
biological mechanisms may mean that adding A in
patients already receiving B has less impact than when A
is given alone.

Second, interactions can arise from scale effects20,24–27

(category 2). Interventions generally have approximately
multiplicative (i.e., proportional) effects on the risk of
clinical events (e.g., death or stroke),21,28 increasing or
decreasing risk, odds, or hazard by a certain percentage
rather than an absolute amount. This means that the
absolute effect of treatment is smaller for low-risk
patients29 and therefore smaller for patients who are
already receiving treatment. If clinical events increase
costs and reduce quality or length of life, interventions
(e.g., statins and antihypertensives) that reduce event
rates by X% will have synergistic interactions for costs
and antagonistic interactions for QALYs (category
2a).17,iii All life-extending interventions are likely to have
multiplicative/proportional effects on all-cause mortality,
even if they are used to treat different diseases in the
same patients. Synergistic interactions for QALYs can
arise when one intervention (e.g., smoking cessation)
extends life expectancy, thereby increasing the QALY
gains from another intervention (e.g., joint replacement)

improving health-related quality of life (HRQoL), and
vice versa (category 2b). Many interventions and covari-
ates also have multiplicative effects on cost30 (category
2c); e.g., interventions may halve the length of stay or
numbers of consultations, generating greater savings for
high-cost patients receiving another treatment. Large,
synergistic interactions for costs have also been observed
within studies comparing dosing regimens of different
drugs.31

Third, giving further healthcare interventions to the
same patients may yield diminishing marginal returns for
utilities: Because comorbid conditions generally have
non-additive effects on utility,32,33 the improvement in
HRQoL from receiving 2 equally effective interventions
may be less than double that from receiving one interven-
tion, leading to an antagonistic interaction (category 3).
These effects are built into several utility measures. The
Health Utilities Index (HUI) assumes that attributes
have a multiplicative effect on utility,33 whereas the UK
EQ-5D-3L tariff can introduce antagonistic (category 3a)
or synergistic (category 3b) interactions. Ceiling effects
can also produce diminishing marginal returns, because
no combination of interventions can improve utilities
above 1, and patients cannot accrue more than 5 life-
years within a 5-year trial (category 3c).

Interactions can also arise from the patient pathway
(category 4). For example, the costs and benefits of
screening will always depend on the prevalence of the
condition (which, in turn, depends on the preventative
measures adopted) and on what interventions are used
to diagnose and treat the cases identified34 (category 4a).
Similarly, the costs and benefits of preventative interven-
tions will depend on the costs and effectiveness of

Table 1 A Taxonomy of Types of Interactionsa

Interactions between
interventions given to
the same patients

1: Direct pharmacological, behavioral or biological mechanisms
2: Scale effects 2a: Multiplicative effects on the risk/hazard/odds of clinical events or mortality

2b: Multiplicative effects between quality and length of life
2c: Multiplicative effects on cost
2d: Multiplicative effects between immediate mortality and remaining life expectancy
2e: Non-multiplicative scale effects

3: Non-additive
marginal effects
on HRQoL

3a: Diminishing marginal effects on HRQoL
3b: Increasing marginal effects on HRQoL
3c: Ceiling effects on quality and/or length of life

4: Patient pathway 4a: Earlier intervention affects costs, or benefits of later intervention (or vice versa)
4b: Interactions between diseases
4c: Effect of comorbid conditions on treatment costs
4d: Future costs: i.e., healthcare resource use in years of life gained

5: Interactions between interventions given to different patients treated by the same staff or in the same healthcare facilities

HRQoL, health-related quality of life.
aWorked examples of each type of interaction are shown in Appendix 2.
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subsequent screening and treatment: e.g., prevention
may have little value if all cases are diagnosed promptly
and receive a cheap, highly effective cure. Codependent
technologies (e.g., trastuzumab and human epidermal
growth receptor-2 [HER2] testing35) represent an
extreme form of interaction: a test to determine the suit-
ability of treatment has no benefit if patients will not
subsequently be treated, whereas the test increases the
health benefits from treatment and/or reduces costs. The
costs, benefits, and range of options for second-line ther-
apy may also be affected by what intervention was given
first-line (and vice versa), particularly if drug resistance
or toxicity develop during treatment.

Interactions between interventions can also arise from
interactions between diseases36 (category 4b). For exam-
ple, if heart failure changes the risk, case-fatality, cost, or
HRQoL of stroke,36 interventions reducing the risk of
heart failure will also indirectly affect the cost-
effectiveness of interventions to prevent and/or treat
stroke, even if they do not influence the incidence of
stroke in patients without comorbid heart failure. The
cost of delivering interventions may also be affected by
how comorbid conditions (e.g., obesity) are managed
(category 4c). Introducing new interventions that
increase the cost of treatment for any common condition
will also increase the cost accrued in the years of life
gained from any life-saving intervention if such ‘‘future
costs’’37,38 are included in the analysis (category 4d).

Although the above types of interactions arise between
interventions given to the same patients, interactions are
also possible between interventions given to different
patients within the same healthcare system (category 5).
Equipment purchased for one intervention may also be
used for other patients, affecting their costs and health
gains. Interventions reducing length of stay may increase
the length of stay or staffing ratios for other interven-
tions, which will introduce interactions for cost and,
potentially, health effects.

Complex interventions and changes to service deliv-
ery/organization will also change the costs and benefits
of numerous interventions; e.g., setting up or reorganiz-
ing a primary care service to offer measles vaccination
may change the feasibility, cost and outcomes of tubercu-
losis treatment that is then delivered in the same center.
Similarly, whole-genome sequencing for one condition
(e.g., cystic fibrosis) may, incidentally, detect other muta-
tions (e.g., BRCA1), which may affect the costs and ben-
efits of screening and treatment of other conditions in
the whole family.39 Conversely, adding an additional
intervention into a healthcare service can affect compli-
ance or waiting times40 for other interventions and

introduce interactions between the new service and exist-
ing ones delivered by the same healthcare professionals.

However, with the exception of complex interventions,
large interactions between interventions given to different
patients are likely to occur less commonly than interac-
tions between interventions for the same patients. This
may explain the apparent contradiction between the defi-
nitions described above: because economically important
interactions are substantially more likely between inter-
ventions given to the same patients than interventions
given to different patients (at least for ‘‘simple interven-
tions’’), ‘‘patient group’’ is a useful rule of thumb to iden-
tify situations with potentially important interactions.

Implications of Using the ‘‘Wrong’’

Decision Rule

Having shown that interactions may arise in many cir-
cumstances, and that their presence determines which
decision making rule is recommended, we now use a
numerical example and published mathematical proofs
to evaluate the implications of using the ‘‘wrong’’ deci-
sion rule: i.e., making separate decisions about technolo-
gies that interact, and making a joint decision between
different combinations of technologies that are truly
independent.

Statins and antihypertensives have non-additive
effects on costs and QALYs, as both reduce the rate of
cardiovascular events by a certain percentage (see
Appendix 2, Example 2a). If we were to make a joint
decision on statins and antihypertensives allowing for
this interaction, we would evaluate no treatment, antihy-
pertensive only, statin only, and statin + antihyperten-
sive incrementally as 4 mutually exclusive treatment
combinations (see Appendix 2, Table A5). This incre-
mental analysis suggests that the most cost-effective
treatment at a £20,000/QALY ceiling ratio is statin
monotherapy, which costs £13,541/QALY v. no treat-
ment, whereas combination therapy costs £54,760/
QALY v. statin monotherapy.

In contrast, making separate decisions on statins and
antihypertensives (as was done by NICE41,42) and ignor-
ing interactions between them would lead to us adopting
both statin (£13,541/QALY v. no statin) and antihyper-
tensive (£16,119/QALYs v. no antihypertensive; see
Appendix 2, Table A6). We therefore implement combi-
nation therapy even though this does not have the high-
est NMB when we allow for interactions.

The literature on factorial trials demonstrates that
ignoring interactions and estimating the average treat-
ment effects for A across patients with and without B
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gives a biased estimate of the effect of A alone v. no treat-
ment, unless the true interaction is equal to zero.15,20,43

Even if we estimate the effect of A v. no A and B v. no B
only in patients who received no other treatment, we will
get a biased estimate of the effect of A+B together
unless the interaction equals zero.iv Conducting separate
economic evaluations on A and B also means that we
cannot compare treatment combinations incrementally,
excluding dominated alternatives. Consequently, analy-
ses ignoring interactions may give biased estimates of
incremental effectiveness, costs, and NMB whenever the
interaction is not equal to 0.

Accounting for interactions will change our decision
about which treatment to adopt whenever there is a qua-
litative interaction that changes which treatment has
highest NMB.17 If we make decisions on many sets of
interacting interventions, we are therefore likely to adopt
a different set of interventions if we make separate deci-
sions (ignoring interactions), compared with the interven-
tions that would be adopted if we make joint decisions
(considering all interactions). Laska et al.11 demonstrated
that the standard decision rules for independent and
mutually exclusive interventions produce more effective-
ness from the fixed budget than any other possible alloca-
tion of resources. Because these decision rules rely upon
accurate estimates of incremental cost, incremental effec-
tiveness, and ICERs, any resource allocation based on
biased estimates of these parameters must produce less
health from the fixed budget than a resource allocation
based on unbiased estimates.

In contrast, when there is no interaction between 2
interventions, we will make the same resource allocation
decision regardless of whether we make a joint or sepa-
rate decision,17 because incremental costs and effective-
ness are unbiased15,20,43 and not affected by the other
intervention. For example, we make the same resource
allocation decisions and obtain the same ICERs regard-
less of whether we make joint or separate decisions on
independent treatments for ovarian cancer and benign
prostatic hypertrophy (see Appendix 2, Tables A31-
A32).

Furthermore, interactions will only change treatment
adoption decisions if they affect which treatment has
highest NMB,17 which can only arise if the interaction is
qualitative: i.e., is larger than the incremental NMB and
has the opposite sign. Such a qualitative interaction for
NMB occurs within Example 2a, which means that the
analysis treating statins and antihypertensives as inde-
pendent options gives the misleading conclusion that
antihypertensive + statin is best value for money, when
in fact statin alone has highest NMB. Interactions are

therefore unlikely to change the conclusions if they are
small, or if the intervention will be cost-effective (or never
be cost-effective) regardless of the size of interactions.

Current Decision Making Methods

HTA organizations such as NICE, Scottish Medicines
Consortium (SMC), Pharmaceutical Benefits Advisory
Committee (PBAC), and the Canadian Agency for
Drugs and Technologies in Health (CADTH) currently
make separate resource allocation decisions on different
interventions used for the same conditions. For example,
NICE made separate recommendations for cervical can-
cer screening (TA69) and cervical cancer treatment
(TA183), which did not explicitly discuss the interactions
between them. The decision about whether to allow for
interactions between interventions is left up to individual
analysts, with no explicit guidance given in the ‘‘scope’’
document, in which NICE defines the decision problem.

Making separate decisions on different interventions
simplifies decision making and enables decisions to be
made relatively quickly by different teams. However, this
approach has several limitations. First, considering inter-
ventions one at a time means that the study question
does not explicitly address what, if any, concomitant
interventions given alongside treatment and means that
interactions may be ignored, leading to suboptimal deci-
sion making. Second, even in situations where A+B
combination therapy is inappropriate, evaluating inter-
ventions one at a time can mean that A is not considered
as a comparator when B is evaluated, which may mean
that dominance is overlooked and that ICERs are calcu-
lated relative to a comparator that does not lie on the
cost-effectiveness frontier.v Third, recommendations
based on separate decisions frequently do not explicitly
state whether interventions are recommended alone or in
combination with other interventions. For example,
NICE commonly recommends interventions ‘‘as an
option for’’ the condition in question, without explicitly
discussing what, if any, concomitant intervention is
assumed or recommended.

By contrast, the WHO framework for generalized
cost-effectiveness analysis (GCEA) models clusters inter-
related interventions (e.g., cervical cancer prevention,
screening and treatment47) simultaneously, and explicitly
allows for interactions between interventions.18,48

Different combinations of interventions are compared
against a ‘‘null’’ (comprising costs and health benefits if
the entire cluster of interventions was withdrawn) to
assess the cost-effectiveness of current interventions and
ensure that results can be generalized to other
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populations. The WHO population model (PopMod)
also directly allows for different types of interactions
between diseases.36 However, the evidence on interac-
tions is frequently weak and relies on assumptions of
multiplicative effects.18,49

A Framework for Identifying Interactions

This paper has shown that it is always correct to evaluate
interventions jointly while making separate decisions on
interacting interventions (even if there is no interaction),
and that failing to consider interactions will often fail to
maximize health gains from the budget.

In practice, small interactions are likely to arise
between nearly all interventions given to the same
patients and many of those used in different patients in
the same healthcare system. However, considering differ-
ent combinations of multiple interventions incrementally
in a joint decision would greatly increase the complexity,
cost, and length of HTA processes, and raise practical
challenges. Accurate, efficient HTA therefore requires us
to identify which interactions must be considered and
which can safely be ignored.

Figure 1 presents a framework that could be used to
identify potential interactions, allowing for those interac-
tions likely to change the conclusions of the analysis while
ignoring small, unimportant interactions. Appendix 3 pre-
sents a tabular version of the framework with a worked
example.

When assessing the impact of interactions, we must first
identify what other interventions are (or could be) given in
the same treatment pathway. This may include: interven-
tions targeting other conditions (or even other patients),
particularly complex interventions; conditions where many
patients have a comorbid condition; or conditions where
the intervention requires purchase of costly equipment/
resources likely to be used for other conditions.

For each intervention identified, we should then assess
whether it is possible to implement it at the same time as
the intervention of interest. Depending on the decision
problem, this question may be posed at the level of indi-
vidual patients (e.g., is it possible to give both interven-
tions to the same patient?) or at the level of healthcare
systems (e.g., is it possible to implement both interven-
tions within the same hospital/region?). We can then use
the taxonomy in Table 1 to assess whether the interven-
tions interact; i.e., whether one intervention is likely to
affect the incremental costs and/or health outcomes of
the other.

Next, we must consider whether any interaction is
likely to be large enough to change the conclusions.

Interactions likely to be much smaller than the differ-
ences between treatments can generally be ignored.
Furthermore, interactions are unlikely to change the con-
clusions if both interventions will be highly cost-effective
(or will never be cost-effective) regardless of the interac-
tions. Whereas all interventions given to overlapping
populations are likely to interact to some extent (e.g.,
through impacts on mortality), such interactions may
frequently be small and unlikely to change the conclu-
sions of the analysis. This is particularly so if interven-
tions have only a small impact on total life expectancy or
if the overlap between populations is small. It may there-
fore be appropriate to make a pragmatic decision about
whether the added complexity of making a joint decision
is justified, given the strength of the interactions.18

Some interventions may also interact in the long term
but be independent in the short term. For example, the
cost-effectiveness of screening for cervical cancer will
depend on the availability and coverage of human papil-
lomavirus vaccination, which will reduce the incidence,
whereas the cost-effectiveness of vaccination will depend
on the screening conducted in the future.47 However
given the delay between vaccination at age 12 to 13, and
screening from age 25, it may be reasonable to make sep-
arate decisions about vaccination and screening today,
providing that these are reviewed regularly to allow for
changes in future incidence and intervention patterns.

The terms ‘‘independent’’ and ‘‘mutually exclusive’’
are currently used inconsistently in the literature, poten-
tially causing confusion. We propose using the terms
‘‘incompatible’’ (i.e., the technologies cannot be used
together) and ‘‘interacting’’ (i.e., the technologies can be
used together but have non-additive effects on costs and/
or QALYs) in place of ‘‘mutually exclusive.’’ If interac-
tions are nonexistent or ignorable, separate decisions can
be made, treating the options as independent. If the
interventions are incompatible or have important inter-
actions, it will generally be necessary to make a joint
decision and evaluate incremental cost-effectiveness.

However, the effect of some interactions can be miti-
gated by careful sequencing of appraisals. For example,
the options for cervical cancer treatment could be
appraised before assessing screening/prevention. Although
screening may increase the chance that cancers are
detected at an early stage, providing that costs, HRQoL
and mortality within each stage are independent of screen-
ing, we can make stratified decisions about the appropri-
ate treatment for any given stage, independent of what
screening is offered. The appraisal of screening or preven-
tion strategies could be started after the treatment apprai-
sal was completed and could assume that we have already
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adopted the most cost-effective strategy for treating the
cancers detected (example 4a). It may also be appropriate
to schedule appraisals that evaluate first-line treatment
after appraisals evaluating second or subsequent-line
treatment, so that the pathway of subsequent treatment
can be optimized before first-line treatment is evalu-
ated. Using this strategy, we can make optimal deci-
sions by first comparing all possible last-line therapies
in a range of different subgroups who have already
failed to respond to/tolerate different sets of treatments
previously. Once the last-line treatment is optimized
for each group, we can evaluate the penultimate-line
treatment, assuming that everybody has the optimal
last-line treatment (i.e., assuming technical efficiency).
Each line of treatment can be evaluated in reverse
order, eventually enabling us to assess first-line treat-
ment conditional on patients subsequently receiving
the optimal sequence of treatments in their subsequent
care. This approach simplifies the decision about first-
line treatment compared with the alternative, namely,
modeling all possible sequences of drugs to identify
the best treatment pathway overall, which can require

comparisons between hundreds of different treatment
strategies (e.g., Dakin et al 46).

If intervention A is likely to be highly cost-effective
(or extremely poor value for money) regardless of
whether interactions are considered, whereas the cost-
effectiveness of B is likely to depend on A, we can ignore
interactions when evaluating A, and subsequently assess
B based on the assumption that A has already been
adopted (or will not be adopted).

Even after ignoring unimportant interactions and
sequencing decisions logically, many clusters of interven-
tions will still need to be evaluated jointly. For example,
prevention and screening/treatment should be considered
jointly when there is only a short delay before onset of
disease (e.g., vaccination and prophylactic treatment for
influenza). Similarly, decisions about dosing regimen
cannot be made separately from decisions about which
treatment to give and it would be meaningless to evalu-
ate codependent technologies separately.

Joint decisions on interacting treatments will require
evidence or assumptions on the magnitude and direction
of interactions. Adequately powered factorial randomized

Figure 1 Flow diagram illustrating proposed terminology and decision rules.
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controlled trials would provide the best evidence on inter-
actions.21 Even factorial trials lacking prospective collection
of resource use or HRQoL data can inform the interactions
used in decision-analytical models. Factorial trials with eco-
nomic evaluations can also directly assess the magnitude of
interactions for costs, QALYs, and NMB, and evaluate the
cost-effectiveness of both interventions simultaneously, con-
sidering any observed interaction.17

Information on interactions can also be provided by
network meta-analysis, which synthesizes evidence on an
entire network of interventions and uses head-to-head
randomized controlled trials and indirect comparisons to
estimate the relative efficacy of each intervention com-
pared with all alternatives.50–52 However, more research
is needed on the best ways to estimate interactions and
allow for factorial trials within network meta-analyses.

In principle, subgroup analyses stratifying patients by
concomitant treatment could be used to estimate interac-
tions or test whether effects are additive or multiplica-
tive. However, subgroup analyses will not give unbiased
estimates of the efficacy of any intervention to which
patients were not randomly assigned. (For example, a
trial randomizing patients to receive A or placebo that
stratified patients into those who received concomitant B
and those who did not, will give unbiased estimates of
the efficacy of A v. not-A with/without B and could be
used to inform decisions about which patients should
receive A. However, this study would not inform a joint
decision about whether patients should receive A, B, or
A+B, since selection bias could confound any differ-
ences between the groups with and without B.)

Factorial trials, subgroup analyses, or epidemiological
studies may also provide evidence suggesting that interven-
tions have multiplicative effects on outcomes, such as
reducing the rate, odds or probability of clinical events by
a certain percentage. Even in the absence of such studies,
it may be reasonable to assume, as is commonly done in
WHO-CHOICE studies,18,49 that interventions affecting
the chance of subsequent events have multiplicative effects.

Interactions that arise from the clinical pathway can
also be built into the model structure based on expert
opinion or guidelines. For example, models assessing the
cost-effectiveness of screening can allow for different
downstream treatment options, whereas those on first-
line treatment can allow for second-line (and subsequent)
treatments. Expert opinion or pilot studies could be used
to evaluate the impact of changes to service organization
or delivery on the costs and benefits of the interventions
delivered through that service.

In many cases, the evidence on interactions may be
weak. However, given that decisions cannot be deferred,

it is more appropriate to use the most plausible assump-
tions about interactions within any model, rather than
assuming that the interaction is zero. Uncertainty
around interactions should be explored in sensitivity
analyses alongside other forms of model uncertainty.
Furthermore, making a joint decision between mutually
exclusive combinations forces analysts and decision mak-
ers to explicitly consider the direction and magnitude of
interactions, prompts the collection of evidence on inter-
actions, and enables the explicit consideration of the
uncertainty around the interaction.

Conclusions

We have shown that interactions determine whether it is
appropriate to make independent decisions on different
interventions, and have developed a taxonomy of
mechanisms by which interactions may arise. We demon-
strated that making a joint decision on multiple interven-
tions, considering interactions, will always maximize
health gains from the budget, whereas making indepen-
dent decisions on interacting technologies can lead to
inefficient resource allocation decisions.

HTA organizations, such as NICE, could improve
decision making by using our framework to consider the
likelihood, type, and magnitude of interactions among
interventions at all stages in the appraisal process and
allow for potentially influential interactions in decision
making. Using Figure 1 at the pre-scoping or horizon-
scanning stage could help sequence appraisals to mitigate
interactions and identify which interventions are likely to
have no important interactions and can be evaluated sep-
arately v. which must be considered jointly (e.g., as guide-
lines or multiple technology appraisals). Manufacturers
and academic groups could be advised to consider the
interactions identified at the scoping stage and address
the most appropriate research questions. At present, this
is left to the analysts’ discretion. Well-conducted analyses
following existing best-practice guidelines may impli-
citly account for some interactions, although other
studies may benefit from explicitly considering the
potential for interactions between interventions. Other
researchers may also use the framework to plan eco-
nomic evaluations and ensure that the assumptions
they make about concomitant interventions and inter-
actions between interventions are explicitly stated in
publications.
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Notes

i. The literature review was conducted by one author (HD).
Definitions were identified by searching Google scholar

(first 100 hits only) and Medline (through PubMed) on 5
November 2013 and 15 February 2016 for terms including
‘‘mutually-exclusive’ cost-effective,’ ‘independent option
cost-effective’ and ‘independent alternative cost-effective.’
Key health economic textbooks and the reference lists
from identified papers and books were also reviewed.
Fourteen references with definitions were identified
(Appendix 1)

ii. We follow the factorial trial literature in defining interac-
tions as the effect of interventions A and B together (com-
pared with no intervention), minus the sum of the effects
of interventions A and B separately.15,16 In each case,
treatment effects are defined as the difference in any out-
come (whether that is costs, QALYs or other endpoints)
between the intervention in question and no intervention.
Although treatment effects can be analyzed on a logarith-
mic scale or subjected to other transformations, we focus
on treatment effects measured on a natural scale and there-
fore define interactions as deviations from additive effects,
because efficient allocation of healthcare resources must be
based on absolute differences in costs and QALYs mea-
sured on a natural scale.17

iii. Interactions may be either antagonistic (i.e., the effect of
A+B together is less than the effect A and B individually)
or synergistic (i.e., the effect of A+B is greater than the
effect of A and B individually). Very large antagonistic
interactions may be qualitative if adding A to B has the
opposite effect to adding A to no treatment, which means
that the interaction changes the ranking of treatments with
respect to the outcome in question.

iv. Interactions mean that the effect of adding A to B
(mab � mb) is not equal to the effect of adding A to no
treatment (ma � mo). Consequently, adding the effect of A
alone (ma � mo) and the effect of B alone (mb � mo) to the
outcomes with no treatment (mo) will only equal the out-
comes for A+B if there is no interaction.
mab =m0 +(mb � m0)+ (ma � m0) only if the interac-
tion15,16 (m0 +mab � ma � mb) equals zero. Making sepa-
rate decisions based on the effect of A alone (ma � mo) and
the effect of B alone (mb � mo) therefore gives biased esti-
mates of the effect of mab whenever the interaction does
not equal zero but gives unbiased estimates if the interac-
tion equals zero.

v. For example, NICE evaluated tenofovir and entecavir in
separate appraisals and recommended both treatments for

hepatitis B,44,45 despite entecavir being substantially more
expensive, with no evidence of higher efficacy.46

Supplementary Material

Supplementary material for this article is available on the
Medical Decision Making Web site at http://journals.sagepub
.com/home/mdm.
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