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Abstract

Background: The isochore, a large DNA sequence with relatively small GC variance, is one of the most important structures
in eukaryotic genomes. Although the isochore has been widely studied in humans and other species, little is known about
its distribution in pigs.

Principal Findings: In this paper, we construct a map of long homogeneous genome regions (LHGRs), i.e., isochores and
isochore-like regions, in pigs to provide an intuitive version of GC heterogeneity in each chromosome. The LHGR pattern
study not only quantifies heterogeneities, but also reveals some primary characteristics of the chromatin organization,
including the followings: (1) the majority of LHGRs belong to GC-poor families and are in long length; (2) a high gene
density tends to occur with the appearance of GC-rich LHGRs; and (3) the density of LINE repeats decreases with an increase
in the GC content of LHGRs. Furthermore, a portion of LHGRs with particular GC ranges (50%–51% and 54%–55%) tend to
have abnormally high gene densities, suggesting that biased gene conversion (BGC), as well as time- and energy-saving
principles, could be of importance to the formation of genome organization.

Conclusion: This study significantly improves our knowledge of chromatin organization in the pig genome. Correlations
between the different biological features (e.g., gene density and repeat density) and GC content of LHGRs provide a unique
glimpse of in silico gene and repeats prediction.
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Introduction

A number of studies [1–4] have revealed that eukaryotic genomes

of warm- and cold-blooded vertebrates, and even a few plants, are

mosaics of isochores. The term isochore refers to a relatively long

DNA segment (above 300 kb on average) that has a fairly

homogeneous (either GC-rich or AT-rich) base composition (above

3 kb in size), as well as sharp boundaries with neighboring isochores

[2,5]. According to different levels of GC content, isochores can be

assigned to a number of families. Although the origin of isochores

has not yet been fully clarified, some evidence indicates that the

isochore structure is closely connected with chromosome bands, as

well as many important biological properties including gene density,

repeat sequence distribution, CpG distribution, and replication

timing [2]. Hence, the isochore pattern greatly increases our

appreciation of the compositional heterogeneity and the complexity

of eukaryotic genomes [6] and is now widely recognized as ‘‘a

fundamental level of genomic organization’’ [7].

Two of the foremost problems in isochore research are the

identification of isochore boundaries and the definition of

homogeneity; hence, a variety of isochore assignments have been

proposed to resolve the two issues [8–14]. However, assignments of

the sa‘me sequence occasionally differ among the different methods

[15], since the criteria for isochore homogeneity vary widely among

these methods. As a result, some isochore-like regions, which have

somewhat less-constant but significantly more-heterogeneous GC

contents relative to the adjacent regions, may be neglected by some

methods. To better understand the compositional features of the

genome, the method of non-overlapping long homogeneous

genome regions (LHGRs) [16] is proposed to reflect homogeneities

and heterogeneities, not only in the isochores, but also in the

isochore-like regions in each chromosome.

The pig (Sus scrofa) is an economically important species and is

an excellent medical model for humans due to the extensive

similarities between the two species. Early studies [17,18] that

employ compositional DNA fractionation and in situ hybridization

have shown that the pig genome is compositionally similar to the

human genome. The pig genome also has isochores belonging to

the five known families [2,10], however, further details about the

isochore pattern, such as numbers and boundaries at base

resolution, have not yet been determined. Luckily, the availability

of a high coverage (46) assembly of the pig genome released in
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September 2009 now provides an unprecedented chance to

explore novel compositional features in the pig genome.

The goals of this study are: (1) to evaluate the LHGR

architecture and pattern in the pig genome, (2) to compare the

compositional heterogeneities between the pig and human

genomes, and (3) to identify the relationship between LHGRs

and gene/repeat density. Here, we initially determine the locations

of 2,491 LHGRs in the pig genome, as well as 2,568 LHGRs in

the human genome. All pig LHGRs are then classified into

isochores and isochore-like regions. Thereafter, we describe the

architecture of the LHGRs in each chromosome by z’ curves [19]

to simultaneously reveal the gradual and abrupt LHGR

boundaries. By examining the LHGR patterns, including the

proportions and size distributions of the five LHGR families, we

find some compositional features displaying the same patterns as in

warm-blooded vertebrates. Relatively similar LHGR patterns

between pigs and humans provide evidence of the compositional

similarity between the two species. Moreover, we find the evidence

of the correlation between LHGRs and some biological sequences,

such as genes and LINEs, which have been observed experimen-

tally in portions of pig chromatins [17].

Results

z’ curves for 19 pig chromosomes
In comparison to traditionally sliding-window-based method

[2], z’ curve is a windowless tool used to illustrate intuitively the

GC content fluctuations in a sequence. Deviation of any point

from the z’ curve is inversely proportional to the GC content of the

corresponding site in a sequence [19].

The z’ curves of pig chromosomes (Figure 1 and S1) indicated

that the GC content along the chromosomes were heterogeneous,

inasmuch as each curve underwent dramatic fluctuations.

However, in these curves, there were some regions that

approximately fit straight lines, indicating that these regions had

nearly constant GC contents. Such regions could be regarded as

isochores, whereas other regions that showed pronounced

fluctuations could be regarded as isochore-like regions [20]. In

fact, when the curves were divided into sufficiently small segments,

they could be considered as approximately straight lines; the

regions corresponding to the straight lines were then referred to as

LHGRs (Figure S1). Therefore, non-overlapping LHGRs along

each chromosome were comprised of isochores and isochore-like

regions (see detailed classification of LHGRs in Materials and

Methods).

According to the slopes of the straight lines on z’ curves, all of

the LHGRs could be divided into two types: AT-LHGRs and GC-

LHGRs. As shown in Figure 1, a negative slope represents a

higher GC content in one LHGR compared to the average GC

content of the chromosome. Thus, LHGRs with negative slopes

were designated as GC-LHGRs, whereas those with positive slopes

were designated as AT-LHGRs [4].

LHGR mapping
In the present study, GC-Profile [11] was applied to divide the

genome into LHGRs using the segmental halting parameter (t0)

Figure 1. z’ curves for 19 pig chromosomes. A positive slope indicates a decrease in GC content, whereas a negative slope indicates an increase
in GC content. Each curve is composed of regions that either are approximately straight (referred to as isochores) or have large fluctuations (referred
to as isochore-like regions).
doi:10.1371/journal.pone.0013303.g001
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and the minimum length (i), which were equal to 100 and 300,000,

respectively (see Materials and Methods). The two parameters

were chosen because the plots of the average standard deviations

(SD) of the GC content against t0 and i (Figure 2) indicated that

their SD values increased following an increase in the GC content

of the family, but dropped when the t0 and i values were 100 and

300,000, respectively.

As a result, a total of 2,491 LHGRs were identified in the pig

genome (Table 1), as well as 2,568 LHGRs in the human genome.

Furthermore, 1,204 LHGRs, nearly half of the pig LHGRs, were

classified as GC-LHGRs, and the rest were classified as AT-

LHGRs (Table S1).

The distribution of compositional differences (DGC) between

adjacent LHGRs in the pig genome was tested and an obvious

skewed distribution was found in each family. As shown in Figure

S2, the DGC value was asymmetrical, with dispersion skewed to

the lower side of the median. The average DGC of the LHGRs

was 4.24% in the pig genome and 3.83% in the human genome.

Isochore mapping
The homogeneity of the GC content in each LHGR was

evaluated by an index h [4], defined by the division between GC

content variances of the LHGR and the host chromosome where

the LHGR was located. As a result, 342 LHGRs were classified

into isochores, while 2,149 were classified into isochore-like

regions (Table S1). The h values of the isochores varied from

0.0015 to 0.1989; in contrast, the corresponding values of

isochore-like regions ranged from 0.2022 to 3.5842. Of the 342

isochores, 80 were greater than 1 Mb in length, and the longest

was 6.18 Mb. In addition, 151 of the identified isochores belonged

to GC-poor families, whereas 191 belonged to GC-rich families.

Table 2 lists 24 isochores in chromosome 16. More information,

including the h value, length, and classification of each LHGR, is

listed in Table S1.

LHGR pattern: the relative numbers
When all the LHGRs in the pig and human genomes were

pooled in bins of 0.5% GC content, the two species showed a high

degree of similarity in the distribution of the five LHGR families;

i.e., there was a regular decrease in the GC distribution of the

LHGRs from GC-poor to GC-rich families. In Figure 3, the L2

and H1 families dominated the LHGRs, while the H3 LHGRs

were scarce. In comparison to the human genome, the pig genome

had a higher percentage of GC-rich LHGRs (see also Table 3a).

LHGR pattern: the size
LHGRs vary in size following the fluctuation of GC content.

The strongly skewed size distributions of the LHGRs (Figure 4) in

pigs and humans showed not only similarities but also differences

between the corresponding LHGR families. The particular

differences are the followings: (1) a smaller size (,1 Mb) and a

narrower size distribution of the GC-rich LHGRs; and (2) a larger

size (.3 Mb) and a wider size distribution of the GC-poorest

LHGRs. The longest LHGR in pigs was localized in the

chromosome 3 and was 8.08Mb in length (Table S1). Further-

more, the average size (0.91 Mb) of pig LHGRs was much shorter

than that (1.20 Mb) of human LHGRs (Table 3b).

Compositional distribution of pig genes
An association between gene density and GC content variation

was recognized. In the study by Federico et al. [17], due to a lack of

accurate isochore pinpointing, the gene densities in the pig

isochores were examined indirectly using GC3 (the GC content at

the third codon position). When the same GC3 criteria [17], i.e.,

Figure 2. Plots of the SD value of the GC content within each LHGR family against t0 and i. Plots are shown for all of pig LHGRs, produced
under the given threshold and partitioned into five families according to GC contents. Colors and labels of these curves stand for different i values
and families, respectively. Among all the LHGRs, the H3 family has the greatest SD variation. When both t0 and i are set to smaller values in the H3
and L1 families, larger SD values are observed.
doi:10.1371/journal.pone.0013303.g002
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L1 (GC3 %,37.5), L2 (37.5#GC3 %,50), H1 (50#GC3

%,65), H2 (65#GC3 %,80), and H3 (GC3 %$80), were

applied to classify the LHGR families, the following result was

observed: the pig gene density varied from very low in GC-poor

families to very high in GC-rich families (Figure 5a). This

conclusion was in accordance with the previous results reported

for a considerable number of warm-blooded and cold-blooded

vertebrate genomes [2,17,21]. However, the correlation (r2 = 0.35,

p,1026) between the gene GC3 and the host LHGR GC content

showed that GC3 is somewhat an accurate index to assess the GC

content of LHGRs (Figure S3), which is inconsistent with the

report of Elhaik et al. [22]. To circumvent such possible problem,

the compositional features of the pig genes were re-examined using

the real GC contents of host LHGRs instead of the GC3. As

shown in Figure 5b, the progression of gene density from GC-poor

families to GC-rich families did not show the same smooth ascent

as seen in Figure 5a. Furthermore, two t-test results showed that

the gene densities in certain GC content ranges, H2 (50%–51%)

and H3 (54%–55%), were significantly (both p,1026) higher than

in other ranges. Although the highest density still appeared in the

H3 family, in accordance with the classification of all of the genes

into the host LHGRs families, the number of genes residing in the

H3 family was significantly (p,1026) fewer than in other two GC-

rich families (Figure S4).

Density of repeats in LHGRs
The densities of Alu and LINE repeats vary with the changes in

the GC content of isochores [23]. To investigate whether or not

this relationship was also applicable to LHGRs, the variations in

LINE density along LHGRs were analyzed in detail, whereas the

Alu repeats were ignored because of the fewer number of data sets

for the pig Alu repeats in Repbase [24]. As shown in Figure 6, the

LINEs were frequent in L1 LHGRs, but practically absent in H3

LHGRs (r2 = 0.93, p,1026), and the results followed the patterns

previously found in isochores.

Discussion

One challenge in the partition of complex eukaryotic genomes

based on GC content is to find a set of parameters suitable for

coping with the significantly different levels of GC fluctuations in

the GC-rich and GC-poor regions. To reduce the fluctuations in

GC content within each family, the SD value of the GC content in

each LHGR family was first analyzed against the two important

parameters (t0 and i ) in the GC-Profile, after which the

parameters that could produce the minimum SD value in each

family were chosen. Thereafter, the GC difference between

adjacent LHGRs was tested. The average DGC of the human

LHGRs (3.83%) nearly reached the value (3.90%) obtained

through the window method from Costantini et al. [10]. This result

confirms the reasonability of the segmentation method on LHGRs

used in the present study.

The number of LHGRs reflects the extent of homogeneity in a

chromosome. In our study, the pig chromosome 12 is longer than

chromosome 17, even though both chromosomes are divided into

71 segments (Table 1). This implies that chromosome 12 has a

higher homogeneity than chromosome 17. Accordingly, the z’

curve of chromosome 17 should fluctuate more substantially than

that of chromosome 12. Indeed, this was confirmed by our z’ curve

assay (Figure 1).

Table 1. The length, GC content and number of LHGRs in 19
pig chromosomes.

chr No.
chr.Length
(bp)

chr.Length (bp)
(excluding gaps)

G+C
content (%)

No. of
LHGRs

1 295,534,705 291,978,373 40.32 321

2 140,138,492 138,150,962 42.16 162

3 123,604,780 121,517,467 43.86 142

4 136,259,946 135,000,183 41.44 168

5 100,521,970 98,837,867 41.65 116

6 123,310,171 121,214,429 44.41 150

7 136,414,062 135,056,527 43.17 157

8 119,990,671 117,775,145 39.42 117

9 132,473,591 130,657,580 41.05 134

10 66,741,929 65,778,119 42.25 70

11 79,819,395 78,559,732 40.43 79

12 57,436,344 56,502,398 46.96 71

13 145,240,301 142,767,306 39.96 161

14 148,515,138 147,418,116 43.24 178

15 134,546,103 132,149,378 39.78 136

16 77,440,658 76,457,938 40.47 81

17 64,400,339 63,427,956 44.27 71

18 54,314,914 53,590,780 42.61 53

X 125,876,292 124,474,993 40.13 124

doi:10.1371/journal.pone.0013303.t001

Table 2. Isochores in the chromosome 16 of pig.

No. Start (bp) Stop (bp)
Length
(bp)

GC content
(%) Family h

1 1 561,070 561,070 40.93 L2 0.0091

2 561,071 1,129,138 568,068 39.12 L2 0.0262

3 1,129,139 2,265,069 1,135,931 36.00 L1 0.0408

4 2,265,070 2,709,575 444,506 39.39 L2 0.0413

5 2,709,576 3,036,775 327,200 43.25 H1 0.0529

6 3,036,776 3,497,556 460,781 45.24 H1 0.0850

7 3,497,557 5,126,374 1,628,818 40.81 L2 0.1427

8 6,354,085 11,524,640 5,170,556 35.01 L1 0.1136

9 11,524,641 12,254,555 729,915 33.41 L1 0.0631

10 43,172,563 44,816,542 1,643,980 39.60 L2 0.0487

11 44,816,543 45,306,029 489,487 41.59 H1 0.0590

12 45,306,030 45,953,195 647,166 43.80 H1 0.0576

13 45,953,196 46,406,468 453,273 42.05 H1 0.0381

14 46,406,469 46,773,633 367,165 40.13 L2 0.0359

15 46,773,634 48,635,681 1,862,048 45.71 H1 0.0476

16 48,635,682 49,272,472 636,791 50.27 H2 0.0683

17 49,272,473 49,934,493 662,021 45.02 H1 0.0694

18 49,934,494 50,634,448 699,955 39.51 L2 0.0744

19 50,634,449 51,009,856 375,408 50.03 H2 0.1071

20 51,009,857 51,324,060 314,204 47.14 H2 0.1247

21 51,324,061 51,885,056 560,996 42.73 H1 0.1853

22 70,778,047 71,335,207 557,161 42.23 H1 0.1917

23 71,335,208 72,505,936 1,170,729 44.82 H1 0.0794

24 72,505,937 72,972,167 466,231 51.57 H2 0.1952

doi:10.1371/journal.pone.0013303.t002
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The search for isochore patterns involves the assessment of two

properties in each isochore family: the relative number and the

average LHGR size. Analysis of these key LHGR characteristics

reveals that the LHGR patterns in both the pig and human

genomes follow the conservatively evolutionary isochore pattern,

and display the general compositional pattern in mammalian

genomes [17]. Both the distributions of relative number and

average size of each LHGR family show a steady decrease from

GC-poor families to GC-rich families. On average, a higher GC

content in the pig genome (42.48%) was observed compared to the

human genome (41.55%); however, the GC content of each

LHGR family in the two species is relatively conserved (p,0.05).

These conserved patterns may indicate some special functions

relevant to chromatin structure [25]. Indeed, the number of

LHGRs (2,568) estimated for the human genome is in agreement

with the maximum number (3,000) assessed by Yunis et al. [26]

using experimental methods of high resolution bands. The high

proportion of GC-poor LHGRs is seemingly due to the preferred

insertion of interspersed repeated sequences in these families, as

well as the sequence expansion phenomena [26]. Moreover, the

GC-skewed repeats also appear to explain the larger size and

larger spread of the GC-poor LHGRs families (Figure 4). The

presence of large gaps (more than 1% of the chromosome) in the

human genome, but not in the pig genome, may also give rise to

the long tail in the size distribution of human L1 LHGRs

(Figure 4), which is virtually absent in the pig L1 LHGR

distribution. This implies that more complete sequence data will

be needed to obtain a reliable comparison of the size of the GC-

poorest LHGRs between the pig and human genomes.

The conservation mode of isochore evolution was originally

explained by ‘‘negative selection acting at a regional (isochore)

level to eliminate any strong deviation from the presumably

functionally optimal composition of isochores’’ [27]. An alterna-

tive proposal for the formation and maintenance of isochores,

which states that ‘‘biased gene conversion (BGC) is probably the

most likely cause of isochores’’ [7], is probably more reasonable

but requires further confirmation. However, the existence and the

importance of BGC are not disputed.

In this study, the gene density pattern of LHGRs in the pig

genome is found to be identical to the pattern of isochores found in

many other species [2]; i.e., there is a regular increase from GC-

poor to GC-rich LHGRs (Figure 5). Despite of a much higher

gene density in GC-rich than in GC-poor LHGRs, a relatively low

gene density is found in the GC-richest LHGRs (see GC content

from 55% to 64% in Figure 5). In addition, two peaks of gene

density are present: i.e., one peak resides in the GC-content of

50%–51% and the other in 54%–55%. A classical explanation for

the high gene density in the GC-rich region is a direct

consequence of BGC [28–30]. GC-bias in the mismatch repair

machinery often leads to gene conversion bias favoring GC-alleles

Table 3. The relative amount, average GC level and average
size of LHGR families from pig and human (a, b, c).

L1 L2 H1 H2 H3 Total

(a) Relative
amount (%)

pig 13.45 33.36 29.55 19.63 4.01

human 15.69 38.58 27.96 15.22 2.56

(b) Average
GC (%)

pig 35.80 38.98 43.23 48.94 56.24 42.48

human 35.87 38.94 43.18 48.74 55.27 41.55

(c) Average
size(Mb)

pig 1.31 0.89 0.86 0.79 0.68 0.91

human 1.57 1.08 1.09 0.92 0.95 1.20

doi:10.1371/journal.pone.0013303.t003

Figure 3. Number distributions of LHGRs according to GC content. The histograms show the distribution of LHGRs in bins of 0.5% GC
content. The colors represent different LHGR families: L1 (blue), L2 (green), H1 (yellow), H2 (orange), and H3 (red).
doi:10.1371/journal.pone.0013303.g003
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Figure 4. Size distributions of the LHGRs from their corresponding families. The histograms show the size distribution of each LHGR family
in the pig and human genomes, and all of the LHGRs were pooled at intervals of 0.2 Mb. The vertical line at 3 Mb indicates the control.
doi:10.1371/journal.pone.0013303.g004
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to AT-alleles and, thus, a high level of recombination should be

GC-rich [31–33]. In addition, when gene transcription promotes

DNA recombination [34–36], gene regions should be more subject

to BGC and thus have a higher GC content. However, the highest

GC content region does not have the highest gene density: What

factors then lead to this contradiction? One possible explanation is

that the time and energy consumption of gene transcription is too

high for the organismal body when the gene region has an

exceedingly high GC content [37,38]. Hence, according to the

time- and energy-saving organization of the genome, a high GC-

content region often does not represent a high gene density.

Therefore, based on the previous two explanations, a high gene

density resides in a high GC content region, rather than the

highest GC content region. However, this model can only account

for one of the two gene density peaks in the GC-rich region (54%–

55%), and the other peak of gene density locating in a slightly

biased GC-rich region (50%–51%) needs to be further explained.

To our knowledge, some authors [39,40] proposed that GC

content is positively correlated with the gene expression level,

while others [41–43] reached a distinct result: GC content is

weakly positively or even negatively correlated with gene

expression. The two entirely different conclusions were probably

due to the slightly biased GC-rich region (50–51%). Hence, we

hypothesize that the GC content and gene density are both

correlated with the gene expression levels, and the other peak of

gene density is constrained by the gene expression levels in the

Figure 6. LINE density in LHGRs. A total of 120,870 LINEs were
applied to the study of LINE density, which was calculated based on a
1 Mb non-overlapping sliding window. The straight line indicates the
regular decrease in LINE density from GC-poor to GC-rich LHGRs.
doi:10.1371/journal.pone.0013303.g006

Figure 5. Compositional distribution of coding genes. a and b illustrate the gene density (the number of genes per Mb window) along the
LHGRs according to gene GC3 and host LHGR GC, respectively. A total of 2,785 known coding genes from the pig genome were studied.
doi:10.1371/journal.pone.0013303.g005
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slightly biased GC-rich region. However, even though this

hypothesis may be true, we still know little about the two peaks

of gene density in the corresponding GC content regions. We hope

that further research on these scenarios would be carried out in the

near future to identify the reasons for the generation of the two

gene density peaks.

In addition, the small number of pig genes concentrated in the

GC-rich LHGRs suggests that GC-rich LHGRs may be more

likely to harbor genes. Consequently, LHGRs or isochores could

be used for in silico gene identification. The same is true for the

prediction of repeats. Furthermore, repeat identification could be

improved by considering LHGRs instead of moving windows,

since repeats depend heavily on the GC content of the LHGRs. In

fact, Carpena et al. [44] showed that the predictive effect of the

coding proportion in a sequence is better when isochores, rather

than moving windows, are used. Related gene prediction tools,

such as ZCURVE [45] and GS-Finder [46], have been developed

and were found to perform well.

Materials and Methods

LHGR and isochore assignments
The high-coverage Sscrofa9 assembly for chromosomes 1 to 18

and X of the pig genome was downloaded from the Ensembl

database (http://www.ensembl.org/index.html, version 56, re-

leased in Sep. 2009), while the human genome was downloaded

from UCSC (http://hgdownload.cse.ucsc.edu/goldenPath/hg18/

chromosomes/). The genome sizes for the pigs and humans are

2.26 and 3.08 Gb, respectively. A PERL script was written to

calculate the GC content of each pig chromosome.

The GC boundaries of each LHGR family were defined

according to Bernardi’s proposal [10]: two types of GC-poor

LHGRs — L1 (,37%) and L2 (37%–41%), and three types of GC-

rich LHGRs — H1 (41%–46%), H2 (46%–53%), and H3 (.53%).

A windowless tool, GC-Profile (http://tubic.tju.edu.cn/GC-

Profile/) [11], was applied to provide an intuitive survey of the

heterogeneity in the pig genome through z’ curves [19] based on

the Z curve method [47,48]. At the same time, GC-Profile

recursively partitioned the input sequence into two subsequences,

left and right, by searching for the position producing the

maximum quadratic divergence DS(Pl ,Pr) based on the genome

order index S(P). The definitions of the two values are described

as follows: DS(Pl ,Pr)~w1S(Pl)zw2S(Pr){S(w1Plzw2Pr),
S(P)~a2zc2zg2zt2, where w is the weight coefficient, and a,

c, g, and t represent the frequencies of the four nucleotide bases A,

C, G, and T, respectively. The segmentation procedure was

continued until the halting parameter was less than the given

threshold t0, or the resulting sub-sequence was shorter than the

given minimum length i. In this work, a total of 24 groups of t0

and i were used in GC-Profile to divide the pig genome. For each

group of resulting LHGR families, the average standard deviation

(SD) of the GC content was calculated, and both t0 and i were

determined according to the plot variances of the SD values. In

addition, to emphasize the overall compositional characteristics of

a chromosome, gaps shorter than 1% of the chromosome were

ignored, the others were reserved, and then the segmental

algorithm was applied to the contigs, which were the original

sequences segmented by those unfiltered gaps.

The GC content variance of a LHGR was measured by the

homogeneity index h [4], defined by h~dLHGR=dchromosome, where

dLHGR~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
n~1

(zn{kn)2=M

s
and dchromosome~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n~1

(zn{kn)2=N

s
,

where zn and k denoted the distribution of base and the slope

of the fitted straight line, respectively. If h is far less than 1, the

GC content of the LHGR could be considered relatively

constant compared to that of the whole chromosome. Only

when h~0 can the GC content of the LHGR be considered

absolutely constant. Accordingly, the lower the h value is, the

higher the homogeneity of the LHGR becomes. In this study,

the h values of isochores were found to be less than 0.2, which is

consistent with the study of Zhang et al. [4].

Analysis of Compositional Distribution of Genes
A total of 2,785 pig protein-coding gene annotations and

sequences were retrieved from Ensembl 56 using a BioMart tool

[49], and the GC3 of each gene was calculated. The genes and

LHGRs were then assigned window numbers according to their

locations when a 1 Mb non-overlapping window slid along the

chromosome. The compositional distributions of the pig coding

genes were determined by the two indices: the GC3 of the genes and

the GC content of the host LHGRs. Whichever index was chosen,

the gene density was defined as gene number per Mb window.

Identification of repeats in LHGRs
Repeat information in LHGR sequences was detected by the

REPEATMASKER mail server (University of Washington

Genome Center, Seattle, http://ftp.genome.washington.edu/cgi-

bin/RepeatMasker, Repbase 20090604). There were 89 LINEs

for the pig species in the Repbase [24]. Ultimately, 120,870 LINEs

in the 2,041 LHGRs were used to calculate the LINE density

(LINE numbers per Mb window) within different LHGR families.

Due to the limited Alu data available for the pigs in Repbase, the

Alu density along the LHGRs was ignored in this study.

Supporting Information

Figure S1 Relationship between the GC content of LHGRs and

the gene density in the chromosome 12 of pig. The region between

two segmentation points on the z’ curve represents one LHGR,

and the GC content of this LHGR is illustrated in the

corresponding site in the lower figure.

Found at: doi:10.1371/journal.pone.0013303.s001 (0.09 MB EPS)

Figure S2 The distribution of GC difference(DGC) between

neighboring LHGRs is shown for five LHGR families, as well as

the total LHGRs. The plot and bar within each box indicate the

average and median of DGC, respectively, in each family. Among

the five families, the DGC values for H3 (median 5.78, mean 6.59)

are the largest, whereas the DGC values for L1 (median 2.47,

mean 3.16) are the lowest. The mean of the total DGC is 4.24 and

the median is 3.58.

Found at: doi:10.1371/journal.pone.0013303.s002 (0.04 MB EPS)

Figure S3 GC content of host LHGR vs. GC3 of gene (r2 = 0.35,

p,1026). A total of 2,785 protein coding genes were included in the

comparison. The ellipse shows 95% confidence intervals.

Found at: doi:10.1371/journal.pone.0013303.s003 (0.26 MB EPS)

Figure S4 Distribution of gene numbers according to the GC

contents of host LHGRs. The fewest genes resided in H3 LHGRs

compared with other families.

Found at: doi:10.1371/journal.pone.0013303.s004 (0.05 MB EPS)

Table S1 The coordinates, lengths, GC levels, DGC, SD,

families, types, and h values of the pig LHGRs. DGC indicates the

difference in GC content between neighboring LHGRs. SD

represents for the average standard variance of the GC content in

the family to which the LHGR belongs.

Found at: doi:10.1371/journal.pone.0013303.s005 (0.44 MB XLS)
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