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Abstract: Background: As adolescent suicide rates continue to rise, innovation in risk identification is
warranted. Machine learning can identify suicidal individuals based on their language samples. This
feasibility pilot was conducted to explore this technology’s use in adolescent therapy sessions and
assess machine learning model performance. Method: Natural language processing machine learning
models to identify level of suicide risk using a smartphone app were tested in outpatient therapy
sessions. Data collection included language samples, depression and suicidality standardized scale
scores, and therapist impression of the client’s mental state. Previously developed models were used
to predict suicidal risk. Results: 267 interviews were collected from 60 students in eight schools by ten
therapists, with 29 students indicating suicide or self-harm risk. During external validation, models
were trained on suicidal speech samples collected from two separate studies. We found that support
vector machines (AUC: 0.75; 95% CI: 0.69–0.81) and logistic regression (AUC: 0.76; 95% CI: 0.70–0.82)
lead to good discriminative ability, with an extreme gradient boosting model performing the best
(AUC: 0.78; 95% CI: 0.72–0.84). Conclusion: Voice collection technology and associated procedures
can be integrated into mental health therapists’ workflow. Collected language samples could be
classified with good discrimination using machine learning methods.

Keywords: machine learning; natural language processing; suicidal risk; risk assessment; mental
health; therapy; suicidal ideation

1. Introduction

Suicide rates among adolescents have risen steadily over the last decade, and suicide is now
the second leading cause of death among 10–34 year olds [1]. In settings where suicidal thoughts
and behaviors are assessed, such as mental health centers, traditional methods for evaluating risk
employ survey screening tools, such as the Patient Health Questionnaire 9 [2] and the Columbia Suicide
Severity Rating Scale [3]. Although these scales are frequently used and have been widely tested [2–10],
assessed accuracy of suicide risk is often subject to both the rater’s intuition and the responder’s
ability to answer the questions while in distress. Youth in particular may have difficulty responding
to such screeners, for reasons such as social desirability [11], lack of engagement with the rater [12],
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and lack of understanding [13]. Therefore, exploring more objective approaches to identifying youth
at risk for suicide is warranted. Additionally, the dynamic and fluid state of suicidality [14] can be
challenging to measure with static screeners. A person’s mental state’s nuances are too idiosyncratic
for measurement tools often tested with homogenous populations. Instead, suicide risk data collection
should be derived from the content of thoughts of the individual’s experience.

Speech is one of the most complex human activities [15], coordinating diverse brain regions, and
is affected by physical, neurological, and mental health conditions [16]. Prior research has shown
how machine learning models can classify these conditions based on the linguistic and acoustic
markers in speech [16–22]. Underlying machine learning models’ success is that these conditions cause
neurophysiological changes that can be consistently measured with voice data (linguistic and acoustic
markers) [17,21,23]. While much of the brain’s structure–function relationship remains unknown [24],
studies on the brains of those with suicide attempts or who died by suicide have found notable
differences compared to controls, including a decrease in gray matter and activity changes of specific
brain regions [25,26].

Machine learning (ML) has emerged as a method by which data from human characteristics, such
as speech [16,17], physical and social media activity [27], and electronic medical records [28,29], can be
analyzed in higher concentration and with better precision. Natural language processing (NLP) has
been previously used to identify mental health and suicide-related states using both written and spoken
samples, and it has shown that, in addition to content words (what we say), function words (how we
say it) are also important to language identification [18,19,30–33]. Often during these classification
tasks, language from controls (those without a condition) and cases (those with a condition) is turned
into a vector representing the frequency words—or sequences of words—occurring in each language
sample. These vectors are then used to “train” ML models to recognize patterns and create rules that
allow for discrimination between cases and controls. The different types of ML models (e.g., support
vector machines and extreme gradient boosting) approach the same goal of classifying language as case
or control as accurately as possible using different mathematical methods, leading to the emergence of
unique rules to accomplish this task.

After an ML model is trained, different evaluation strategies and metrics are used to evaluate
performance on data that was not used to train the model [34,35]. During validation, new language
vectors are shown to the ML model. Given unknown data, the trained ML model returns the probability
for a sample belonging to a target class (i.e., case). This result can then be compared to the actual
class (i.e., what is known about that language sample) to determine the performance of the ML model.
A preferred performance metric for evaluating ML models is the area under the receiver operating
characteristic curve (AUC) [34], which may be interpreted as the probability that a randomly selected
case will receive a greater probability for belonging to the case group than a randomly selected
control [36]. An AUC of 0.5 represents a model that predicts as well as random chance, and an AUC of
1.0 is a perfect model. Many mental health diagnostic checklists and inventories perform with AUCs
under clinically realistic conditions in the range of 0.7–0.8 [36,37].

Previous research explored using NLP to classify suicide risk. In 2016, Pestian et al. performed
the Adolescent Controlled Trial (ACT) with 60 adolescents admitted to a large, urban, pediatric
emergency department (ED) with suicidal complaints (case) or orthopedic injuries (control) [18]. They
completed the Columbia Suicide Severity Rating Scale (C-SSRS) and a semi-structured interview based
on characteristics of suicidality (called the Ubiquitous Questionnaire, UQ). The UQ was designed to
elicit language for machine learning model training [18]. Resulting transcripts were analyzed with a
combined NLP/ML approach, which successfully classified 58 of the 60 participants (96.7%) [18].

Expanding on the ACT, the Suicide Thought Markers (STM) Study recruited 379 adults and
children across three sites [19]. The procedure was similar to the previous study; however, participants
with mental illness were also included with the suicidal and control cohorts [19]. Results from this
study suggested that the NLP/ML method identified suicidal people from the interview transcripts
with over 90% accuracy [19]. Specifically, classifiers trained on interview transcripts performed with
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an AUC of 0.87 ± 0.02 when classifying suicidal thoughts and behaviors versus those with and without
mental illness, and an AUC of 0.93 ± 0.02 when classifying suicidal thoughts and behaviors versus
controls without mental illness, using a leave-one-interview-out cross-validation technique [19].

All suicidal participants in the ACT and STM studies demonstrated a risk for suicide that led
to their admission to the ED or a psychiatric unit [18,19]. Participants’ suicide-related thoughts and
behaviors ranged from suicide-related ideations to suicide-related behaviors, including self-harm (type
I and II) and suicide attempt (type I and II) [38], with over 75% of suicidal STM participants scoring ≥
4 on the C-SSRS’s intensity of suicidal ideation scale [3,20]. Therefore, models trained on this language
aim to identify those within this range of risk for suicide.

Due to limited innovation and person-centered measurement tools in suicide risk assessment,
machine learning, specifically NLP, is timely. This method of both data collection and analysis offers
an objective and less biased approach to identifying people with suicidal thoughts and behaviors
(STBs). While this study procedure has been successfully implemented to identify these individuals
in a variety of settings, such as the ED, in- and outpatient clinics [18,19], and in a recent study of
individuals with epilepsy and psychiatric comorbidities [21], it has yet to be implemented as part of
outpatient mental health therapy sessions. This feasibility study was conducted in partnership with a
child and adolescent mental health agency to understand how this technology integrates into a mental
health professional’s (MHP) workflow with adolescents and if the collected language samples can be
analyzed with ML methods to predict risk for suicide. Overall, we found MHPs were accepting of the
technology and procedures, and ML models trained on language samples from the ACT and STM
studies performed well when predicting suicide risk in this new population.

2. Methods

This study’s objectives were to (1) explore the feasibility of incorporating previous study procedures
to capture the language and predict the level of suicidal risk into mental health therapy sessions, and (2)
evaluate if machine learning methods accurately identify level of suicide risk by classifying language.

All subjects gave their informed consent and assent for inclusion before they participated in the
study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol
was approved by the Ethics Committee of Cincinnati Children’s Hospital Medical Center Institutional
Review Board 2019-0391 (project identification code).

2.1. Participants and Setting

2.1.1. Mental Health Professionals

Ten licensed mental health professionals (MHPs) from eight schools in three school districts in a
Midwestern urban city in the United States participated. MHPs were recruited through a collaboration
with local mental health agencies that primarily serve children and adolescents. The MHPs recruited
client participants from among their existing caseloads (adolescents already in therapy) being seen at
school during school hours for various mental and behavioral health conditions.

MHPs attended one of two training sessions where the smartphone app, called MHSAFE (renamed
from the Ubiquitous Questions in previous studies: Hope, Secrets, Anger, Fears, and Emotional Pain),
was installed on their smartphones (iOS and Android). During the training sessions, the MHPs learned
the study procedures and participated in the human subject’s protection and good clinical practice
training, outlined in Figure 1.
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Figure 1. Schematic of study procedure.

2.1.2. Adolescent Clients

The criteria for adolescent recruitment were: (1) currently receiving services from a mental health
agency at a school, outpatient, or at a college/university health services center, (2) age ≥ 8 years and <

23 years, (3) able to provide informed consent or parental permission and assent, (4) age 8–18 must
have parental permission to participate in the study, and (5) English as a primary language. At the
first therapy session for the study (most participants had a prior relationship with their therapist),
the MHPs introduced the study to their clients. Parents were contacted electronically (text or email)
to arrange a telephone call to discuss the study and review the consent process. Informed consent
was completed via REDCap software [39,40]. Participants provided assent through the MHSAFE app
during their first study visit.

The participants and MHPs received a $25.00 gift card for their time in the study.

2.2. Study Procedure

During therapy sessions, the participant’s MHP administered the Patient Health Questionnaire
9-Item Modified for Adolescents (PHQ-A) and the MHSAFE probes. Figure 1 outlines these study
procedures. The PHQ-9 is a rigorously tested, reliable, and valid instrument for depression in
adolescents, with a sensitivity and specificity of 89.5% and 77.5%, respectively, corresponding with a
threshold score ≥ 11 out of 27 [41]. The PHQ-A has two more suicide-related questions than the PHQ-9
and has not been widely tested for suicidal risk in youth, though scores on the PHQ-9, especially item
9, are a strong predictor of suicide attempts and death by suicide [4–8]. However, in comparative trials,
the Columbia Suicide Severity Rating Scale (C-SSRS) has shown to be a stronger predictor as a full scale
of suicide risk than the single question on the PHQ-9 [9,10]. The MHSAFE probes are modeled after the
UQ, described in previous work [18,19,42,43]. In brief, the MHSAFE probes are a semi-structured, 5–10
min open interview process designed to elicit an emotional response from participants by asking about
their hopes, secrets, anger, fear, and emotional pain. Following the therapy session, MHPs entered
their clinical impression of the client’s mental state into the app, rating the participant on a 0–100 scale
on imminent suicide risk compared to a population baseline. This clinical impression was developed
from the MHP’s best clinical judgment during the session.

The MHSAFE app was used to record the entire therapy session. The audio files were manually
transcribed and diarized (speaker identified) using a HIPAA compliant service that reports 99% accuracy.
The conversation segments containing the probes were manually identified by two reviewers trained
to identify the beginning and ending of the probe segments from the full therapy session transcript.
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2.3. Data Analysis

All analysis was performed using the Python programming language (version 3.7.5) [44]. The
open source Python libraries Pandas (version 1.1.2) [45,46], Numpy (version 1.18.5) [47,48], scikit-learn
(version 0.23.2) [49], Matplotlib (version 3.7.5) [50], SciPy (version 1.5.2) [51], NLTK (version 3.2.2) [52],
spaCy (version 3.0.0a16) [53], and XGBoost (v. 0.90) [54] were used for data analysis and all NLP/ML
model building.

The number of probes asked during the interviews was determined automatically using word
vectors to find semantically similar words to the five areas of the probes [53,55]. The counts were then
validated by a single reviewer trained to manually assess the number of probes present in a transcript.

The NLP/ML pipeline used in this study followed similar techniques used by Pestian et al.,
focused on the term frequency of n-grams (contiguous sequence of n number of words) [18–21]. The
text was normalized by expanding contractions and lemmatizing (replacing words by their root) [52].
N-grams were then vectorized to be fed into ML models. Due to the many words spoken and the size
of n-grams analyzed, the language vectors were large (>1000 dimensions). Because not every n-gram
will meaningfully influence a model’s output, the language vectors’ size can be reduced. Scikit-learn’s
SelectKBest function was used to identify features with the highest ANOVA F-value [49], with the
number of features selected as a tunable hyperparameter to optimize model performance.

Previous work focused primarily on support vector machines (SVMs) [18–21]; however, we also
explored the performance of logistic regression (LR) and extreme gradient boosting (XGB) models. SVM
models have demonstrated excellent performance in previous tasks classifying suicidal language from
semi-structured interviews, perform well in high-dimensional spaces, and resist overfitting [18–21].
During SVM tuning, hyperparameters considered include: the regularization parameter (C), the kernel
(radial basis function and linear kernels), the kernel coefficient (gamma, if applicable), and the class
weight [49]. LR is a popular machine learning model for classification because it is relatively simple.
During LR tuning, hyperparameters considered include: the inverse of regularization strength (C), the
algorithm used during optimization, and the class weight [49]. For extreme gradient tree boosting,
the XGBoost system was used, which has given state-of-the-art results on various problems [54].
During XGB tuning, hyperparameters considered include: the minimum child weight, the minimum
loss reduction required to partition a leaf (gamma), step size shrinkage (eta), the subsample of the
training instances, and the maximum depth of a tree [56]. These different ML models may allow for
the development of unique rules and potential interactions among classification features.

During model training, the only input was the participant’s language, labeled as case or control.
During model testing, a participant’s language was fed into the model, and a probability for belonging
to the case group was returned. Model performance was then evaluated by comparing model
predictions to the participant’s labeled group (case or control). The model’s AUC was used as the
primary evaluation criteria for model performance. AUC confidence intervals (CI) were calculated
using the DeLong method [57].

2.4. Machine Learning Model Performance on Training Data (Internal Validation)

Data from the ACT and STM studies have been internally validated in separate publications and
report AUCs from 0.69–0.93, depending on the features (acoustic or linguistic) or participants included
(control, those with mental illness not suicidal, those without mental illness and suicidal) [18,19]. The
best performing model used an SVM with only linguistic features to classify between suicidal and
non-mentally ill controls for adults and adolescents [19]. The lowest performing model used acoustics
(e.g., fundamental frequency and pause lengths) to differentiate between suicidal adolescents from
mentally ill adolescents [19], which can be partially explained by the low variability of acoustic features
for mental states along with known overlaps between acoustic markers for suicide, depression, and
other mental illnesses [17]. Only linguistic features were considered in this study.

As mentioned, the ACT and STM studies were collected with similar procedures; however, this
pilot differed to better accommodate fitting into the workflow of an MHP. As a baseline for model
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performance, a leave-one-site-out cross-validation technique was used with the ACT and STM study
data, which included data from four sites: ACT, University of Cincinnati Medical Center (UCMC),
Ohio; STM, UCMC; STM, Cincinnati Children’s Hospital Medical Center (CCMHC), Ohio; and STM,
Princeton Community Hospital (PCH), West Virginia. We differentiated between the two UCMC
sites because they were collected as part of separate studies with different participants at different
times [18,19]. In this method, data from all sites except one were used to train the model, with
data from the final site used as the test site to evaluate model performance. During training, model
hyperparameters were tuned [58], including the number of features. This was done iteratively so that
every site served as the test site, and highlighted model generalizability challenges and performance
expectations across different sites. Table 1 displays a summary of the training data.

Table 1. Summary of machine learning model training data.

Site No. Suicidal (%) No. Mentally Ill (%) No. Control (%) Total (%)

ACT Study

UCMC 30 (18.6) 0 30 (19.6) 60 (13.9)

STM Study

UCMC 44 (27.5) 42 (33.3) 42 (27.5) 128 (29.2)
CCHMC 43 (26.9) 42 (33.3) 41 (26.8) 126 (28.7)
PCH 43 (26.9) 42 (33.3) 40 (26.1) 125 (28.5)

Total 160 (36.4) 126 (28.6) 153 (34.8) 439

2.5. Machine Learning Model Performance on Pilot Data (External Validation)

For external validation, different machine learning algorithms were trained and tuned on
subsections of the ACT and STM dataset (control, suicidal, or mentally ill), and then used to predict
suicidal risk from the language samples collected in this pilot. The number of features (i.e., the number
of n-grams) available to the classifier was used as a tunable hyperparameter, ranging from 5–2000
features. The suicidal risk for model performance evaluation was determined by answers to the
PHQ-A, which has three items related to the immediacy of suicide risk and self-harm, shown in
Table 2. Answers to item 9 and item 12 on the PHQ-A were used to identify cases (suicidal risk) and
controls (no suicidal risk) in this study. This suicidal risk can be characterized by recent suicide- and
death-related ideations.

Table 2. Suicide-related items on the Patient Health Questionnaire 9-Item Modified for Adolescents
(PHQ-A).

PHQ-A Item Question Response Options

Item 9
How often in the past two weeks have you been

bothered by thoughts that you would be better off
dead, or thoughts of hurting yourself in some way?

Not at all (0), Several days (1),
More than half the days (2),

and Nearly every day (3)

Item 12
Has there been a time in the past month when you
have had serious thoughts about ending your life?

Yes or No

Item 13 Have you EVER, in your WHOLE LIFE, tried to kill
yourself or made a suicide attempt? Yes or No

3. Results

3.1. Population and Data Collection

Between April to August 2019, 10 therapists agreed to participate in the study and enrolled 60
participants. Participants attended 1–16 sessions, which resulted in a total of 267 recorded therapy
sessions. The PHQ-A was collected in 249 (93%) sessions, and MHPs provided their ratings for
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imminent suicidal risk for every session. Participant demographics and general questionnaire results
are found in Table 3.

Table 3. Adolescent participant demographics and PHQ-A answer summaries.

Sessions with Clinically Relevant Symptoms N = 249 Participants
N = 60

Participants Sessions PHQ-A
≥ 11 Item 9 Item 12 Item 13

Item 9 |
Item 12 |
Item 13

Item 9 |
Item 12 |
Item 13

Count (%) 60 267 77 (31) 68 (27) 39 (16) 59 (24) 96 (39) 29 (48)

Average Age
(years) (SD) 12.8 (2.4) 12.5 (2.5) 13.6 (2.4) 13.7 (2.5) 14.7 (2.2) 13.8 (2.5) 13.5 (2.5) 13.5 (2.5)

Male (%) 50.0 41.6 28.6 33.8 35.9 59.3 39.6 37.9

Race

White (%) 78.3 78.7 80.5 88.2 79.5 76.3 82.3 79.3

Biracial or
Multiracial (%) 10.0 13.9 14.3 10.3 15.4 10.2 8.3 6.9

Black/African
American (%) 8.3 5.6 3.9 0.0 0.0 8.5 5.2 6.9

Not Reported
(%) 3.3 1.9 1.3 1.5 5.1 5.1 4.2 6.9

Note: Total scores ≥ 11 on the PHQ-A have been used for diagnosing depression with the greatest sensitivity
and specificity in adolescents [41]. The suicide-related questions on the PHQ-A are broken out on a session and
participant basis. The vertical bar | indicates a logical OR statement.

Of those who completed the PHQ-A, 96 sessions reported some degree of suicide risk by answering
positively to one or more of the three questions related to suicide on the PHQ-A, representing 29
participants. Total scores of 11 on the PHQ-A are often used as thresholds for clinically relevant
depression measures in adolescents [41]. Over 31% of the PHQ-A measures suggested the presence of
depression in the participants. During the study, six CSSRS-SF screeners were administered to further
assess for suicide risk. Additional information can be found in Table S1.

Participants’ electronic medical records were also collected. Many participants had multiple
mental health diagnoses: 46 had anxiety disorders, 4 had adolescent onset, 33 had mood disorders, 4
had development disorders, 3 had substance abuse, and 1 had a physical behavior diagnosis. Of the 60
participants, 43 were on medications.

3.2. Usage of the MHSAFE Probes

Table 4 shows a summary of the number of probes asked in each session, the average word count
of those sessions, and the number of cases present. At least one of the five MHSAFE probes were asked
in 264 (99%) therapy sessions, and at least three probes were asked in 247 (93%) of the sessions. On
average, the MHSAFE probe segments were 11.8 ± 6.6 min, and transcripts of only the participant
were 868 ± 795 words per session. However, 84% of the segments were less than 13 min, and 85% of
the sessions were less than 1000 words. The high standard deviation of length and the word count
may be attributed to therapists’ training to prioritize therapy over the study procedures. The MHSAFE
probes reportedly revealed topics discussed for the majority of the session in ~15% of the sessions.
The manually transcribed probe segments of the participant were used as linguistic features for the
ML models.
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Table 4. Summary of MHSAFE probe usage.

No. of Probes
Discussed Zero One Two Three Four Five

No. of Sessions (%)
N = 267 3 (1.1) 5 (1.9) 11 (4.1) 20 (7.5) 29 (10.9) 198 (74.2)

Full Session Average
Participant Word

Count (SD)
532 (338) 1737 (1430) 1866 (1418) 1469 (947) 2117 (1430) 1721 (1182)

Probe Segment
Average Participant

Word Count (SD)
N/A 774 (611) 1438 (1020) 941 (690) 1051 (1079) 813 (740)

No. of Sessions with
PHQ-A (%) N = 249 3 (1.2) 3 (1.2) 6 (2.4) 15 (6.0) 25 (10.0) 196 (78.7)

No. of Cases (Item 9 |
Item 12) (%) N = 70 3 (4.3) 0 (0) 2 (2.9) 2 (2.9) 10 (14.3) 53 (75.7)

3.3. Leave-One-Site-Out Validation with Training Data

Figure 2 shows leave-one-site-out cross-validation results for our training data for different ML
models. In general, NLP/ML models were better able to discriminate between controls without mental
illness and suicidal individuals (Figure 2a, AUC: 0.8–0.9) than a combination of controls with and
without mental illness versus suicidal individuals (Figure 2b, AUC: 0.7–0.8), regardless of the ML
model used and the site serving as the test site. This was consistent with previous studies using these
data [18,19].

ACT CCHMC PCH UCMC
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Figure 2. Leave-one-site-out results for training data with different machine learning (ML) models
using (a) controls without mental illness and suicidal thoughts, and (b) controls with and without
mental illness and suicidal thoughts. Error bars indicate a 95% confidence interval. ML models used
include logistic regression (LR), support vector machines (SVM), and extreme gradient boosting (XGB).
Studies and test sites include the ACT study (collected at UCMC) and the STM study collected at
CCHMC, PCH, and UCMC.

The logistic regression (LR) model performed the best on the training data when controls with
mental illness were included (average AUC = 0.80; 95% CI = 0.82–0.88) and when they were not (average
AUC = 0.87; 95% CI = 0.79–0.95). Support vector machines (SVMs) displayed similar discriminative
ability as LR when controls with mental illness were included (average AUC = 0.78; 95% CI = 0.69–0.87)
and when they were not (average AUC = 0.87; 95% CI = 0.79–0.95). Extreme gradient boosting (XGB)
had lower discriminative ability when mentally ill controls were included (average AUC = 0.69; 95%
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CI = 0.58–0.80) and when they were not (average AUC = 0.80; 95% CI = 0.70–0.90). These performance
ranges served as a baseline to compare against for language collected in this study.

3.4. Model Performance on Language Collected from Pilot

The best performing model was the extreme gradient boosting model (AUC = 0.78; 95% CI =

0.72–0.84) trained on controls without mental illness and suicidal language samples for predicting
suicidal risk as identified by item 9 and item 12 on the PHQ-A, based on language collected in this study.
The logistic regression (AUC = 0.76; 95% CI = 0.70–0.82) and support vector machine models (AUC =

0.75; 95% CI = 0.69–0.81) trained on controls without mental illness and suicidal language samples
performed with slightly lower discriminative ability. Models that included the language samples from
controls with mental illness in the training data had lower discriminative power than models trained
without these language samples, as summarized in Table 5, along with the top five features for each
model. The top features were determined from the training data, and their root replaced words (e.g.,
“am” is the first-person singular version of the verb “be”). Logistic regression and the support vector
machine’s feature weights were positive or negative, indicating whether these features influenced the
model’s prediction towards the case (+) or control (−). Extreme gradient boosting models’ feature
importance is always positive and reflects how frequently a feature was used to make decisions.

Table 5. Model performance predicting suicidal risk in pilot language data.

Model AUC (95% CI) Optimal No. of
Features

Top 5 Features (Feature Importance or
Weight)

Training Data: Controls Without Mental Illness and Suicidal

Extreme Gradient
Boosting 0.78 (0.72–0.84) 11 feel like, me angry, i be angry, no no,

depression

Logistic Regression 0.76 (0.70–0.82) 11 yeah it (+), and i (−), play (+), no no (+),
depression (−)

Support Vector
Machine 0.75 (0.69–0.81) 9 and (−), yeah it (+), play, no no (+),

depression (−)

Training Data: Non-Mentally Ill Controls, Controls with Mental Illness and Suicidal

Extreme Gradient
Boosting 0.72 (0.65–0.79) 22 and i, anymore, because of, college,

depression

Logistic Regression 0.72 (0.66–0.79) 27 at my (−), you (+), yeah it (+), attempt (−),
college and (−)

Support Vector
Machine 0.72 (0.65–0.78) 27 you (+), yeah it (+), at my (−), attempt (−),

college and (−)

Note: Feature importance was determined from the training data and their root has replaced words (e.g., “am” is
the first-person singular version of the verb “be”). Logistic regression and the support vector machine’s feature
weights were positive or negative, indicating whether these features influenced the model’s prediction towards the
case (+) or control (−). Extreme gradient boosting models’ feature importance is always positive and reflects how
frequently a feature was used to make decisions.

3.5. Data Collected from Mental Health Professionals

Table 6 shows a summary for each MHP’s enrolled participants and suicide risk score statistics.
We found that the top three MHPs enrolled 63% of the participants and produced 70% of the sessions,
attributed primarily to varying caseloads and consent ratios. Table 6 also shows each MHP’s average
suicidal risk score, along with their standard deviation and ranges. We found that the average score for
all MHPs was 11.0 ± 8.3, with the maximum score of 70 corresponding to one of the most serious cases,
in which mobile crisis support was contacted, and the participant was referred to the hospital. Several
MHPs reported technical issues inputting their clinical impression scores into the app with a slider bar.
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Table 6. Summary of therapist suicidal risk scores, participants, and sessions.

Therapist No. of
Participants

No. of
Sessions

No. of
Cases

Average Suicidal
Risk Score (SD)

Suicidal Risk Score
Range (Min–Max)

A 15 66 2 14.4 (3.1) 8–26
B 14 54 9 6.9 (8.7) 1–51
C 9 67 36 11.2 (7.3) 4–43
D 6 26 10 12.2 (13.5) 3–70
E 5 16 3 10.9 (13.2) 3–54
F 4 18 3 10.2 (3.4) 6–16
G 3 9 1 4.3 (1.9) 2–8
H 2 4 1 9.8 (3.0) 7–14
I 1 5 5 16.4 (7.1) 7–24
J 1 2 0 13 (7.1) 8–18

All 60 267 70 11.0 (8.3) 1–70

Note: Cases are defined as item 9 scores > 0 or answering “yes” to item 12 on the PHQ-A.

The MHPs also recorded relevant actions following therapy sessions. The majority (>94%) of
sessions resulted in participants marked as “stable, resumed normal schedule.” One participant was
sent home, parents were contacted seven times, MHPs consulted with their supervisor three times,
safety plans were developed three times, two participants were referred to the hospital, and the mobile
crisis was called once. The ~6% of cases where a participant was not marked as “stable, resumed
normal schedule” may have been a result of these other actions or the MHP not recording actions
following a session.

4. Discussion

In this study, we find integrating technology via a smartphone app into mental health therapy
sessions and collecting language samples for machine learning models feasible. Models trained on
language samples from separate studies that were not collected as part of a mental health therapy
session were used to assess how well suicidal risk identified through the PHQ-A could be predicted
based on language samples from this pilot. These techniques to capture the language and measure
level of suicide risk using NLP and ML methods produced acceptable results, despite being collected
in the less controlled environment of adolescent mental health therapy sessions compared to previous
trials [18,19].

Clinical applications could grant MHPs a different perspective on a client’s level of suicide risk
determined by their language, a more dynamic and person-centered characteristic than specific risk
factors that do not meaningfully predict outcomes [59]. It would be reasonable for MHPs to ask the
MHSAFE probes as part of regular therapy sessions or at specific intervals to assess congruence of
their client’s language, standardized scales, and the MHP’s clinical impression. These data, when
combined, may provide a more complete picture of a client’s mental state, and ultimately improve
outcomes. In future clinical trials, MHPs will be provided a “dashboard” that displays all collected
information entered about a client, with the aim of using the data to inform clinical decision-making.
We intend to study how these data may be used clinically to assess and monitor the degree of suicide
risk and related mental states over time, and how clinical decision-making is aligned with the dynamic
changes of the client’s mental states.

While most of the MHSAFE probe segments were less than 13 minutes, it should be noted that the
average interview time in the multi-site STM study was shorter (8.1 ± 4.5 min) [19]. During training
in current trials, we now provide more specific guidelines on asking the probes to make them more
concise, although, as noted, some MHPs reported voluntarily using the entire therapy session for the
probes if they revealed details that warranted further discussion. We are also investigating model
performance on clinical language samples without the MHSAFE probes to determine if the probes
are needed for accurate classification; however, previous studies have found the probe responses
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statistically significant in a hierarchical classifier’s ability to discriminate suicidal and non-suicidal
language elicited from the probes versus a combination of 11 other open-ended questions [43].

Of the ML models tested, the XGB model provided the best discriminative ability when evaluated
on the language collected in this study. Interestingly, this model had the poorest discriminative power
on all but one site during internal validation of the training data, as seen in Figure 2. XGB models can
create more complex rules for classification than LR and SVM models, which can lead to the model
learning from unimportant characteristics (i.e., overfitting). We see in Table 5 that LR and SVM models
had the same top five features for each training group, while the XGB models’ top five features were
the most unique. It should be noted the amount of training data varied in the creation of Figure 2, and
it may be that when all of the training data was made available when evaluating model performance
on language from this study, the XGB model was better able to identify important features and became
more robust.

Figure 3 demonstrates the varying potential for complexity among LR, SVM (radial basis function
kernel), and XGB models. Through a singular value decomposition (SVD), large language vectors that
represent entire conversations can be reduced into two dimensions [51,60]. While some information is
lost in this process and model performance is not fully represented in Figure 3, it may provide insights
into model behavior. The red and blue regions of Figure 3 represent the coordinates learned from the
training data (controls without mental illness and suicidal language) for classification as case or control,
respectively, and where these regions meet is referred to as the decision boundary. The red and blue
points represent language samples collected in this study. In Figure 3, the decision boundary for the
LR (Figure 3a) and SVM (Figure 3b) models are smooth, continuous curves, while XGB’s (Figure 3c)
decision boundary has more characteristics, emphasizing its capacity to create more complex, flexible
rules for classification. As noted, NLP/ML techniques assume voice data is consistently changed by
mental illness in measurable ways [17,23]. While in this study we have found a change of setting does
not significantly impact model performance, it is likely that as these methods are extended to larger
and more diverse groups of individuals, models like XGB that accommodate more complex rules will
be required for accurate identification of suicidal risk based on language.
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Figure 3. Decision boundaries for (a) logistic regression (LR), (b) support vector machine (SVM), and
(c) extreme gradient boosting (XGB) models. Controls without mental illness and suicidal language
samples from ACT and STM studies were dimensionally reduced using singular value decomposition.
ML models were trained on dimensionally reduced language samples and used to classify coordinate
points to create decision boundaries. The red and blue regions indicate coordinates that correspond
to case and control classification, respectively. The red and blue points show dimensionally reduced
language samples collected in this pilot. The LR model (a) shows the simplest rules used for classification
and the XGB model (c) creates the most complex rules. Model performance indicated in these figures
does not represent performance on non-dimensionally reduced data.
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While machine learning models are often referred to as “black boxes” due to their overall technical
complexity and lack of transparency into why specific predictions are made, new tools in explainable
artificial intelligence (XAI) are being developed to answer this challenge [61–63]. Indeed, model
interpretability will be essential for therapists and other users to trust and accept this technology, as
well as to meet other ethical and regulatory considerations [61]. Future studies will employ these tools
to focus on how specific features and feature interactions influence individual model predictions.

Limitations and Lessons Learned

Some limitations should be noted. First, suicidal risk in this study is determined by the PHQ-A, a
less accurate tool than the C-SSRS, and the reason for visit used in previous studies [18,19]. The PHQ-A
does not discriminate between self-harm and passive thoughts of dying, and each question uses a
different time frame reference (two weeks, last month, or whole life). Therefore, the suicidal risk may
be overestimated in this sample, although it is also possible that some participants did not disclose
suicidal thoughts or behaviors. An overestimation of suicide risk could result in clinical decisions
that may not be aligned with the actual present risk. To correct for this, we have now included the
C-SSRS short form screener version in each session to provide a more consistent, timely, and accurate
standardized risk assessment. This will allow for better data validation during model development.

Second, because the goal of this pilot study was to understand how this tool can work in therapy
sessions, some of the procedures were modified from the original ACT and STM studies, and the
procedures were carried out at the discretion of the MHP. As noted, the MHSAFE probes are modeled
after the UQ, but were altered to support generalizability across multiple settings. MHPs were not
always consistent in how they administered the probes. Some began recording at the beginning of the
session and stopped after the probes were completed. Some recorded the entire therapy session, and
some waited to administer the probes at the end of the session and only began recording when asking
the probes. MHPs also reported occasionally asking the probes with slight variations that may have
been more age appropriate. For example, instead of asking about emotional pain, one MHP asked if
there is “anything that’s really hurting your heart right now?” Going forward, after the pilot, we have
revised the training, specifying to record the entire session and to administer the probes preferably
at the beginning of therapy. However, we also continue to support flexibility with the therapist and
the client’s needs for the session. A final limitation related to procedures was the use of the therapist
impression slider rating system. The slider (1–100) was intended for the clinician to provide their
impression of the client’s mental state, however, feedback from the clinicians about the slider was that
it was not intuitive. The slider was investigator developed and not previously validated, therefore it
was not used to assess model performance. We have modified this for future trials to reflect a five-point
Likert scale with specific anchor descriptions to better rate the severity of the conditions.

Third, the technology, both with the smartphone app and voice collection, presented some
difficulties. Therapists deployed the app on their personal or work phones, and occasionally there were
issues with connectivity, app updates, or interruptions from other notifications. Manual transcriptionists
reported challenges with a few of the audio files due to poor audio quality that may have been from
background noise in the therapist’s office or if the phone was not placed in the optimal position for
voice capture. While this likely did not significantly affect the resulting manual transcripts, for this
technology to be scalable, this step will need to be automated using automatic speech recognition
technology, with a performance that is dependent on audio quality [64,65]. We have worked to resolve
these issues by improving the app technology, providing a version that can go on a therapist’s computer
instead of their smartphone, and is better at instructing the therapists during training where to place
the phone or microphone for optimal voice capture.
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Lastly, this study was conducted with a single, regional, mental health partner, and the sample
recruitment was limited to therapist participation and invitation of clients from their caseloads. A few
therapists recorded a majority of the sessions. Although we were able to identify some successes and
drawbacks of the process for this pilot, we anticipate that more concerns and barriers might arise when
implementing on a broader scale. We are including feedback loops within the larger study design
to make continual improvements to assist in maintaining the flow of the session while preserving
the integrity of the data/data capture. We are also now recruiting nationally and working to increase
diversity and inclusivity in our therapist sample.

5. Future Directions

As suggested in the limitations and lessons learned, we have made numerous modifications with
the expectation of improving the research design and implementation for future studies. In these larger
studies, we aim to collect data to continue to build models, as well as identify differences in language
and acoustics related to suicide risk by person-level characteristics, such as gender, age, race, sexuality,
and geographic location (dialect), and, additionally, the setting of the interview. We are also testing the
use of the dashboard (described earlier) in clinical decision-making. Soon we anticipate providing
a return-of-results from the ML models, with the idea being that clinicians will have real-time data
output to make in-session decisions with the client. The vision is for the dashboard to be employed as
a shared decision-making tool, where the client and the clinician may view the dashboard together to
inform a collaborative and evolving treatment plan.

6. Conclusions

This study found that the implementation of a smartphone app to record speech in adolescent
mental health therapy sessions is feasible. Previously developed procedures to elicit language samples
for suicidal risk prediction machine learning models were adapted for use in therapy sessions. Machine
learning models were trained on language collected from separate studies and used to predict suicide
risk levels based on language collected in this study. These findings are an opportunity to implement
new methods to support decision-making during a time of increased suicide and other mental health
concerns. Lessons learned from the pilot have provided us a path forward to make improvements for
a larger study.
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