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Abstract

This report outlines a neuroimaging pipeline that allows a robust, high-throughput, semi-automated, template-based
protocol for segmenting the hippocampus in rhesus macaque (Macaca mulatta) monkeys ranging from 1 week to 260
weeks of age. The semiautomated component of this approach minimizes user effort while concurrently maximizing the
benefit of human expertise by requiring as few as 10 landmarks to be placed on images of each hippocampus to guide
registration. Any systematic errors in the normalization process are corrected using a machine-learning algorithm that has
been trained by comparing manual and automated segmentations to identify systematic errors. These methods result in
high spatial overlap and reliability when compared with the results of manual tracing protocols. They also dramatically
reduce the time to acquire data, an important consideration in large-scale neuroradiological studies involving hundreds of
MRI scans. Importantly, other than the initial generation of the unbiased template, this approach requires only modest
neuroanatomical training. It has been validated for high-throughput studies of rhesus macaque hippocampal anatomy
across a broad age range.
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Introduction

The rhesus macaque (Macaca mulatta) is an animal model often

used to model human brain development. As an increasing

number of neurodevelopmental and neurodegenerative disorders

show hippocampus pathology as an early presenting feature

[1,2,3], it has become increasingly important to reliably quantify

the volumes and shape of the in vivo hippocampus both in

humans and in nonhuman primates across ages (cf., [4]). At

present, there are only sparse data concerning the typical

maturation of the nonhuman primate brain [5,6]. Such data are

crucial towards understanding the maturation of the human brain,

particularly during early postnatal brain development.

There currently exists many ways to obtain hippocampal

volumes. Manual segmentation, where a trained experimenter

traces the hippocampus slice by slice, is the accepted gold standard

for hippocampal measurement [7,8,9,10]. The principle drawback

to manual segmentation is the extensive time required of the

operator, both in terms of the months of dedicated neuroanatom-

ical training as well as the actually time spent performing the

segmentations. Our experience is that it takes at least 45 minutes

(and often well over an hour) to trace a single monkey or human

hippocampus, resulting in around 2 hours of tracing per brain.

The quality of manual segmentation is also highly dependent on

consistent training among raters, and is subject to fluctuations due

to inter- and intra-rater bias [7]. Mitigating any systematic bias or

flow in tracing protocols across time typically involves tracing

brains from earlier experiments as a part of every experiment

along with 10% of the experimental sample to generate reliability

estimates. Only upon obtaining consistent reliability across these

test brains are hand tracings considered unbiased. Each tracer

continues to practice tracing hippocampi until their reliability is

consistently maintained across a number of brains. This require-

ment of establishing reliability increases the amount of time and

effort required to obtain reliable data. For studies that have a small

number of subjects, this may be an acceptable situation. But, in

studies involving hundreds of participants, the time demands of

manual tracing greatly diminish productivity.

Manual tracing may also lead to inaccuracy due to biased

perceptual processes of even gold standard human tracers. For

example, it has recently been demonstrated that there is a strong

tendency for even experienced researchers to trace the same

hippocampus as larger if it is on the right side of the computer

screen (i.e., volumes will be different for the same hippocampus

when traced in neurological compared to radiological space; cf.,

[11]). These types of systematic human errors raise the prospect

that human instructed semi-automated algorithms, which do not

suffer from perceptual biases, may actually be better than the gold

standard for carrying out morphometric analyses of regions of

interest in MRI studies.
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Several automated methods have been developed to perform

segmentations more quickly. Commonly, normalization is per-

formed between each subject and a predefined template, and then

a hippocampus that is defined in template space is warped back

into the native space of the subject using B-spline or other

nonlinear warping methods (cf., [12]). Other methods use shape

matching and boundary definitions to perform the whole

segmentation in native space [13,14]. While these methods have

been shown to create relatively accurate segmentations, they are

particularly poorly suited to the segmentation of anatomy that has

been affected by disease, injury, or aging (e.g., optimal template

effect [15,16,17]). Moreover, none of these methods have been

validated in nonhuman primate models.

Previous semi-automated algorithms attempt to make segmen-

tation of abnormal structures possible by requiring initial

involvement from the user to guide the automated segmentation.

Typically this involves the experimenter placing landmarks to

guide the nonlinear warping of a hippocampal mask. However,

many of the existing methods that have achieved a reasonable

degree of agreement with manual segmentations require an

impractical number of landmarks, upwards of 200 per hippocam-

pus [18]. This results in challenges similar to those encountered

with standard manual tracing including significant training

requirements in hippocampal neuroanatomy and large expendi-

tures of time. There have been reports about methods that employ

fewer landmarks [19,20,21], but these typically return less reliable

and somewhat less accurate results.

The goal of the current study was to develop an easy to use

methodological pipeline that would be accessible to any research

laboratory to partially automate the segmentation of anatomical

regions of interest. The first goal was to use freely available tools

that had similar dependencies and did not rely upon any

commercial software packages to implement. The second goal

was to develop a pipeline that would facilitate consistent data

across laboratories by removing experimenter bias as much as

possible without sacrificing neuroanatomic rigor.

We have adapted for use in the rhesus macaque model an

incomplete label matching strategy for diffeomorphic template

based hippocampus segmentation reported by Pluta et al. [22]

originally used in human populations. This method requires fewer

than a dozen landmarks per hippocampus and shows a high

reliability and spatial overlap between semi-automated and

manual segmentations, while providing dramatic time saving. To

improve upon the semi-automated methods, the resulting hippo-

campus segmentations were subsequently corrected with a

machine learning-based (SegAdapter) wrapper developed by

Wang et al. [23]. The resulting corrected segmentations showed

an increase in spatial overlap and appear to reach an asymptotic

level of reliability that approaches the level of accuracy and

reliability of high quality manual segmentation experiments. The

advantage of this process is that it, requires much less

experimenter time and thus facilitates larger sample sizes and

more comprehensive analyses.

Materials and Methods

Ethics Statement
All work was conducted in accordance with the recommenda-

tions of the Weatherall Report ‘‘The use of nonhuman primates in

research’’. This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

University of California, Davis Institutional Animal Care and Use

Committee approved all animal experimental protocols (Protocol

Number 13483). All testing procedures were developed through

consultation with the veterinary staff at the California National

Primate Research Center (CNPRC). Every possible effort was

undertaken to minimize animals’ stress and promote their well

being.

Subjects
Rhesus macaque monkeys (Macaca mulatta) were studied from

birth through five years of age for behavioral and structural brain

development. Naturalistic behavioral observations were conducted

in their home environments regularly. At periodic intervals (1, 4, 8,

13, 26, 39, 52, 156, and 260 weeks of age), subjects were brought

in from their naturalistic outdoor enclosures for behavioral tests,

measurements of physical development, and MRI scans of the

brain.

Twenty-eight rhesus macaque monkeys (14 males, 14 females)

were selected from the CNPRC in the spring of 2007. Infants were

raised in social troops by their biological mothers in outdoor, half-

acre enclosures that house 70 to 155 animals. Subject selection was

based on characteristics of the mother. Mothers were selected

based on the following factors: (1) rank of matriline (high, n = 8;

middle, n = 9; low, n = 10); (2) previous reproductive experience

(multiparous, n = 25; primaparous, n = 3); (3) absence of previous

medical problems such as diabetes, arthritis, etc. Three of the

subjects were hospitalized during the course of the analysis for

symptoms of dehydration caused by bacterial or parasitic

gastrointestinal infection. These subjects were successfully treated

and remained in the study. Treatment included administration of

fluids and antibiotics. Two subjects were removed after 1 year of

age due to recurrent illness. One subject was removed from the

study at 4 months of age due to non-pathogenic diarrhea that was

not responsive to treatment. Therefore, 24 subjects (n = 12 male

and n = 12 female) received MRI scans at all ages and only data

from these subjects will be reported in this manuscript.

Cohort characteristics occasionally changed after the selection

of subjects. For example, rank shifted for multiple matrilines. So,

the social rank was assessed monthly based on two, 30-minute

observations by CNPRC behavioral specialists. All dyadic

aggressive and displacement interactions, with and without food

as a precipitating stimulus, were recorded and used to determine

the hierarchy of the females in each troop. Rank status was

determined to have changed when displacements (submission to a

lower ranking rhesus macaque in the selection of food) were

observed twice for the mother of the infant. Rank was

consequently raised for the primate that displayed dominance in

the food challenge. Social rank was raised for one primate (low to

mid) and shifted downward for two others (mid to low) and (high

to mid). For the latter two animals, this shift took place when their

mothers were removed from their home enclosures after weaning

and the infants remained with their respective matrilines.

Infants were born and reared by mothers that resided in large,

2000 m2 outdoor corrals. All seven of the corrals that housed study

animals were chain-link and consisted of grass and gravel ground

substrate and included a variety of hanging, climbing, and resting

structures. The number of animals that lived in these corrals

ranged from 70–155 individuals and all the kin relationships of the

monkeys were known. Primates were fed twice per day, in the

morning and afternoon, with chow (Lab Diet 5047, PMI Nutrition

International Inc., Brentwood, MO) and supplemented with fresh

fruit and vegetables.

Animal Husbandry
For MRI scans collected at 1, 4, 8, 13, and 26 weeks of age,

infants were relocated with their mothers and were housed
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together in a standard macaque indoor housing cage (61 cm in

width by 66 cm in depth by 81 cm in height) one day prior to

behavioral testing. On days when testing was to occur, mothers

were lightly sedated with ketamine hydrochloride (7 to 8 mg/kg

i.m.) and infants were removed from the cage for testing.

Beginning at 39 weeks of age, each rhesus macaque subject was

removed from its respective home enclosure without the mother

the day prior to behavioral testing and was temporarily housed

indoors as described above.

Structural MRI Acquisition
After behavioral testing at the CNPRC, animals were trans-

ported to the Imaging Research Center (IRC) for the MRI scan.

Each subject was fasted a minimum of two hours prior to sedation

for scanning. Subjects were transported from the CNPRC to the

IRC by van either in incubators (30.5 cm in width by 30.5 cm in

depth and 30.5 cm in height; at 1, 4, 8, and 13 weeks of age) or in

a transport box (31.0 cm in width by 51.0 cm in depth by 40.0 cm

in height; at 26, 39, 52, 156, 260 weeks of age). Animals were

anesthetized and monitored by a veterinarian at 1 and 4 weeks of

age, then by an animal health technician from 8–260 weeks of age.

Each macaque was sedated with ketamine hydrochloride (1 mg/

kg i.m.) during catheter placement and intubation. During the

scanning procedures, each rhesus macaque was anesthetized with

propofol (2 ml/kg/hr i.v.). The anesthesia rates were managed

remotely from the control room of the scanner suite using a

Harvard Apparatus 4500 infusion pump (Harvard Apparatus;

Holliston, MA). Intravenous saline was administered throughout

the scanning procedure to reduce the possibility of dehydration.

Heart rate and oxygen saturation were monitored in the control

room remotely using a Nonin 8600 pulse oximeter (Nonin;

Plymouth, MN). A video camera was also placed at the opening of

the scanner bore for visual monitoring of the rhesus macaque on a

screen in the control room. Each rhesus macaque was positioned

supine on the scanner bed and the head was centered in the RF

coil. A heated saline pack and blankets were used to help maintain

the body temperature and animal position during the scan.

Oxygen was delivered in proximity to the nose at a rate of 0.5–

1.0 L/hr to maintain oxygen saturation .90%. A vitamin E

capsule was used as a fiducial mark on the left side of the head

during scanning.

MRI data were acquired using a 3T Siemens Trio scanner with

a circularly - polarized, 8 - channel dedicated RF head coil with an

internal diameter of 18.4 cm (Litzcage, Doty Scientific; Columbia,

SC). At each age, a high resolution T1 - weighted magnetization

prepared rapid acquisition gradient echo (MP - RAGE) 3D MRI

sequence was collected in the sagittal plane (slices = 192; slice

thickness = 0.70 mm; number of excitations (NEX) = 1; repetition

time (TR) = 2200 ms; echo time (TE) = 4.73 ms; inversion time

(TI) = 1100 ms; flip angle = 7u; field of view (FOV) = 180 mm;

matrix = 2566256). The total scan time for this sequence was

approximately 19 minutes. Additional sequences were also

employed but are not reported in this manuscript.

Upon completion of the scans, propofol was discontinued. The

total time of sedation ranged from 60 to 90 minutes. During

recovery from sedation, the infants were given subcutaneous fluids

with 5% dextrose in order to rehydrate and elevate blood glucose

levels following fasting. The infants also had access to glucose-

enriched water in their incubators. Each macaque was transported

back to the CNPRC following the scan and returned to their

mothers, and then with their mothers they were returned to their

home enclosures at 1, 4, 8, 13, and 26 weeks of age. Each rhesus

macaque was returned directly to their home enclosures at 39, 52,

156, and 260 weeks of age.

Neuroimaging Pipeline
All MRI processing was carried out using an Apple iMac

computer running Mac OSX 10.8.2 with 4GB RAM (Apple, Inc.;

Cupertino, CA). Annotated pipeline codes used during the course

of this experiment and described in this report are freely available

and publicly hosted at http://mrhunsaker.github.io/

NeuroImaging_Codes/. T1 images were selected for this segmen-

tation pipeline over other collected sequences because the quality

of the T1 images was maintained across ages better than other

sequences. Additionally, the manual segmentation protocols being

used within our laboratory were developed using T1-weighted

scans. The protocols below do work for T2-weighted scans, so long

as care is taken at each processing step to verify the quality of the

result.

MRI Preprocessing
As a first step, the DICOM images were converted into gzipped

NIfTI-1.1 [.nii.gz] format using the dcm2nii tool in MRIcron

(http://www.mccauslandcenter.sc.edu/mricro/) using the follow-

ing terminal bash command:

dcm2nii -a n -g y -f y -n y -e n -i y ,DICOM

directory.

Of the three outputs from the dcm2nii pipeline, the cropped

output (resulting file containing a -co prefix) was selected for

further processing as dcm2nii automatically cropped out the

primate’s neck and shoulders.

Next, the scans were aligned along the anterior and posterior

commissures (AC-PC alignment) by using a rigid transformation

[brain could only be rotated and translated, but never warped,

stretched, or compressed] to a previously manually aligned, age-

appropriate template brain using the Advanced Normalization

Tools package (ANTS; http://stnava.github.io/ANTs/; [16]).

This was accomplished using the following commands with

,experimental. referring to the experimental image being

aligned to the ,template. using a mutual information similarity

metric to guide the registration:

./ANTS 3 -m MI[,template..nii.gz,,experi-

mental..nii.gz,1,32] -o ,output. -i 0–do-rig-

id true

./WarpImageMultiTransform 3,experimental.

.nii.gz ,output..nii.gz ,output.Align.txt -R

,template..nii.gz

The next preprocessing step was to minimize the influence of

the bias field signal obscuring grey/white matter boundaries on

the registration algorithms. We implemented the N4ITK bias field

correction methodology using ANTS [24] with the following three

commands; the ,input. for each call being the ,output. from

the previous process as recommended by the developers:

./N4BiasFieldCorrection -d 3 -i ,input.

.nii.gz -o ,output..nii.gz -s 8 -b [200] -c

[50650650650,0.000001]
./N4BiasFieldCorrection -d 3 -i ,input.

.nii.gz -o ,output..nii.gz -s 4 -b [200] -c

[50650650650,0.000001]
./N4BiasFieldCorrection -d 3 -i ,input.

.nii.gz -o ,output..nii.gz -s 2 -b [200] -c

[50650650650,0.000001]
The final preprocessing step was to re-slice the AC-PC aligned

images using cubic interpolation and to define a standardized field

of view using the convert3d tool bundled with ITK-SNAP (http://

www.itksnap.org/pmwiki/pmwiki.php?n = Convert3D.Convert3D)

using the following command:
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./c3d ,input. -interpolation Cubic -resam-

ple-mm.356.356.35 mm -trim-to-size 25662566256
vox -verbose -o ,output.

Semi-Automated Hippocampus Segmentation
To segment the primate hippocampus at all ages, a semi-

automated pipeline from ANTS that involves diffeomorphically

warping a template brain with fully labeled hippocampus to an

individual experimental brain using partial labeling [22] was

adopted. The primary strength of this semi-automated pipeline is

that it does not require extensive neuroanatomical on the part of

the end user. This is important since one of the difficulties in

hippocampus segmentation protocols is the time required to

adequately train multiple individuals to trace with a consistent

level of expertise. However, the placement of limiting markers and

the interpretation of any resulting segmentations does require a

modest level of training in hippocampal neuroanatomy.

The partial labeling protocol was modified from the original

protocol as follows: Instead of using the six 3D landmark points as

in the original study, we modified the protocol to err on the side of

systematically, yet sparsely, adding a greater number of landmarks

(Figure 1). The first landmark was placed using Multi-image

Analysis GUI (Mango; University of Texas Health Science Center;

San Antonio, TX) in the sagittal plane at the most lateral section in

which the hippocampus was clearly differentiated from the

temporal horn of the lateral ventricle. Subsequently, two

landmarks were placed on every fourth section of the hippocam-

pus (sagittal separation between subsequent landmarks was

1.4 mm) at the most rostral (anterior) and the most caudal

(posterior) extent of the hippocampus. Special care was taken to

place a landmark on the medial-most section of the uncus (the

most rostral and medial portion of the hippocampus) regardless of

spacing from the other landmarks. Between 10–14 landmarks were

placed in each hippocampus, depending upon the age of the

primate at the time of the scan. Once completed, the landmark

points were propagated 1 slice in each direction (i.e., instead of

being placed on 1 slice, the landmarks were now 3 slices thick).

Dilating the 2D landmarks in this manner was done to make the

2D landmarks placed in Mango more similar to the 3D landmarks

placed using the 3D ROI tool in ITK-SNAP by Pluta et al. [22].

Mango was used for the present study rather than ITK-SNAP

because our lab had previously compared ANALYZE and Mango

for manual tracing regions of interest and found each to return

similar segmentation volumes. Additionally, Mango seemed to be

the more stable program when handling the MRI scans resulting

from the preprocessing pipeline. Preliminary work directly

comparing the performance of Mango and ITK-SNAP did not

identify any differences between the two programs for placing

landmarks, so long as the landmarks were dilated in Mango so as

to be similar to those placed in ITK-SNAP.

Once the landmarks were placed in the hippocampus, an age-

appropriate atlas brain with a manually segmented hippocampus

was diffeomorphically warped with each of the experimental

brains. A fully labeled hippocampus was then mapped onto each

experimental brain using the landmarks to specifically guide the

registration of the hippocampus. The shell script containing the

landmark matching protocol and documentation is freely available

and publicly hosted at http://github.com/stnava/ANTs/blob/

master/Scripts/guidedregistration.sh. Briefly, this script calls a

bidirectional, nonlinear diffeomorphic warping of the template (,

template.) to the experimental (,experimental.) brain. This

warping algorithm specifically uses the landmarks (,experimen-

tal_landmarks.) as a guide for warping the template hippocampus

(,template_roi.) into the space of the ,experimental. image.

The template hippocampus is then warped into the space of the

experimental image.

sh ./guidedregistration.sh ,template.

.nii.gz ,template_roi..nii.gz ,experimen-

tal..nii.gz ,experimental_landmarks..nii.gz

,output._hippocampus 1006100610 3

For later processing, the hippocampus segmentations need to be

in 8 bit rather than 32 bit floating point format. So, we used the

following command in convert3D to make the conversion and

binarize the segmentation (hippocampus mask = 1, back-

ground = 0) with the input into this script being the segmented

hippocampus that was the output from the above process (i.e.,

,output._hippocampus from above = ,input. in the call below):

./c3d ,input..nii.gz -binarize -o ,output.

.nii.gz

Machine Learning Algorithm Based Segmentation
Correction

We were able to improve the semiautomatic hippocampal

segmentations by using a machine-learning algorithm that corrects

systematic errors in semiautomatic segmentations (Automatic

Segmentation Tool Adapter; SegAdapter; freely available and

publicly hosted at http://www.nitrc.org/projects/segadapter/;

[23]). This tool takes advantage of the nature of computers to

commit primarily systematic errors, rather than random errors.

What this means is that if a series of subjects are scanned using the

same sequences on the same MRI scanner, then the errors of any

automated segmentation protocol will be similar across brains (e.g.,

consistent partial volume effects or inclusion of choroid plexus or

CSF as hippocampus tissue, etc).

This SegAdapter is trained by providing a number of manually

traced, fully labeled hippocampi with a set of semi-automated

hippocampal segmentations using the following codes [with the.txt

files containing lists of images and corresponding ROIs]:

./bl ./inputIMAGEFILE.txt ./manualSegmen-

tationFile.txt./autoSegmentationFile.txt 1 2

46464 .1 500 ./TRAINING/SegAdapter

This SegAdapter learning algorithm corrects the semi-automat-

ed output from the partial labeling protocol to correspond to the

fully labeled manual tracings. In the present experiment, 2 MRI

scans (1 male and 1 female) from each age

(1,4,8,13,26,39,52,156,260 weeks of age) were used to train the

learning wrapper (i.e., a total 18 scans were used for the training of

the 216 studies that were available). We specifically included cases

where there was poor signal to noise ratio at all time points or

inconsistent signal inversions present in the scans from 1 week-old

primates. These imperfect scans were selected so that the machine

learning algorithm would have a complex dataset encompassing

many different types of segmentation errors from which to develop

a template used to correct automatic segmentations. We selected

only 2 scans at each age to demonstrate how robust the

SegAdapter actually was since a greater number of training

images results in better algorithm performance. Preliminary

experimentation showed that this algorithm did a more reliable

job in adjusting the segmented hippocampi when given a diverse

data set than if provided only cases devoid of scanning artifacts.

Once the SegAdapter had been trained, each partially labeled

hippocampus was corrected by using the following command:

./sa ,input..nii.gz ,segmented_ROI.

.nii.gz./TRAINING/SegAdapter ,output..nii.gz

Once all of the segmentations were obtained, they were

compared with manually segmented hippocampi. To evaluate

the goodness of fit of the hippocampus segmentation that was

acquired through the partial labeling protocol as well as the
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segmentation corrected by the SegAdapter learning algorithm,

spatial overlap (DICE) was computed using convert3d with the

following commands, with ‘‘1’’ referring to the label of the

segmented hippocampus:

./c3d -verbose -overlap 1,input..nii.gz ,

segmented_ROI..nii.gz ,Manual_ROI..nii.gz

.. ,output..txt

Specifically, the DICE overlap is calculated as 26 the

overlapping voxels divided by the total number of voxels from

the semiautomated segmentaion (A) and the result of the

SegAdapter correction (B) (i.e., 2(A>B)/(A+B)).

Manual Hippocampus Tracing
All of the hippocampi evaluated in the present study were

manually segmented by a single trained experimenter as part of a

separate study (MRH; Hunsaker et al., in revision; the hippocampus

manual tracing protocol is publicly hosted at http://mrhunsaker.

github.io/Hippocampus_Protocol). For each scan, the hippocam-

pus was manually traced using Mango. To control for any effects

of hemispheric bias (i.e., right volumes being larger than left

volumes), the second time the images were traced they were

converted from neurologic to radiologic space. The intra-rater

reliability across these tracings was maintained at ..86. The

hippocampal volumes for the right and left hippocampi traced in

Mango were exported into a.csv file for later analysis and the

ROIs saved in gzipped NIfTI-1.1 format. Each of the volumes of

the individual regions of interest were quantified in the FMRIB

Software Library (FSL v5.0; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/;

[25]) with the following command:

./fslstats ,input..nii.gz -V .. ,output.

.txt

For three-dimensional visualization of the reconstructed hippo-

campus, the regions of interest were imported into MRIcroGL

(http://www.mccauslandcenter.sc.edu/mricrogl/) and Mango for

3D rendering.

Results

Partial Labeling Protocol
The partial labeling protocol was able to segment the

hippocampus within a very reasonable tolerance (Table 1 and

Figure 2). However, there was a systematic inclusion of white

matter ventral to the body of the hippocampus as well as a small

amount of inclusion of the temporal horn of the lateral ventricle

(Figure 2). In one 26 week-old scan, a small area of temporal

cortex located lateral to the body of the hippocampus was

misclassified as hippocampus.

For the present experiment, placing the landmarks in the

hippocampus of each of the rhesus macaque scans took between 5

and 10 minutes. Overall, the MRI preprocessing steps took 3.25

hours for each brain. The guided registration script in ANTS took

approximately 38 minutes of computational time for each brain.

SegAdapter Algorithm
The SegAdapter was able to correct the vast majority of the

systematic errors that resulted from the partial labeling protocol

and semi-automated segmentation pipeline (Figure 2). The

subhippocampal white matter, temporal horn, and extra-hippo-

campal voxels were now excluded from the tracing and the overall

Figure 1. Diagrammatic representation of the partial labeling protocol used in the present study. Sagittal views of landmarks placed
every 4th section through the hippocampus are shown for A. 1-week-old, B. 39-week-old, C. 260-week-old rhesus macaque. Note the presence of a
susceptibility artifact between brain and the floor of the skull at the level of the entorhinal cortex (white arrows). This artifact was present in all scans.
However, it did not interfere with the hippocampus segmentation protocol at any age. Scale Bar = 1 cm.
doi:10.1371/journal.pone.0089456.g001
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region traced was smoother and appeared more visually similar to

a manually traced hippocampus (Figure 2, 3). The similarity

between SegAdapter corrected and manual segmentations is

confirmed by the high DICE (spatial overlap) coefficient that

approached, but remained lower than the intra-rater reliability

results (Table 1). Example of manually segmented hippocampi

compared to the results of the Partial Label guided segmentation

as well as the SegAdapter corrections are shown in Figure 4.

For the present experiment, final training of the SegAdapter

took approximately 22.5 hours of computational time. Once the

SegAdapter had been trained, it took under 3.5 seconds to correct

each partially labeled hippocampus. The training set used for

training the algorithm was available from an earlier experiment,

but took approximately 25.5 hours to hand trace the pairs of

hippocampi from the 18 rhesus macaques used in the training set.

There was a dramatic overall temporal benefit of this method

over a complete hand tracing study. Tracing all the hippocampi

included in this report took approximately 540 hours for the first

pass, and they were traced a second time for reliability analyses,

resulting in approximately 1080 person hours to reliably acquire

the hippocampal ROIs. This did not include the initial reliability

training, which required another 20–25 hours. The preprocessing

steps reported above were identical for the two experiments. The

present method required substantially less time, and the compu-

tational time was not limited to the workday, as scripts could be

run overnight or whenever the computer was not in use.

Discussion

The goal of the current study was to develop an easy to use

processing pipeline that would be accessible to any research

laboratory to partially automate the segmentation of anatomical

regions of interest. The first goal was to use freely available tools

that had similar dependencies and did not rely upon any

commercial software packages to implement. The second goal

was to develop a pipeline that would facilitate consistent data

across laboratories by removing experimenter bias as much as

possible without sacrificing anatomic rigor. Although not explicitly

stated at the outset, a related goal was to minimize experimental

time as much as possible.

This effort was implemented by applying tools that depended

primarily on the platform independent ITK image-processing

library and more particularly on ANTS, a neuroimaging toolkit

developed as a simplified program that lets the end user take

advantage of ITK without having to acquire specialized knowl-

edge or learn extensive computer coding skills. All of the software

packages used in this protocol are freely available, open source

packages that remain under active development, and primarily

depend upon the Insight Segmentation and Registration Toolkit

(ITK), a freely available cross-platform image analysis library. By

using these tools, we were able to segment the rhesus macaque

hippocampus from MRI scans collected as early as 1 week of age

and out to 260 weeks of age.

The strategy for hippocampal tracing was applied to a large

database of longitudinal MRI scans of 24 rhesus macaque

monkeys (12 male and 12 female). Nine scans were available

from each monkey from 1 to 260 weeks of age, for a total of 216

MRI scans to segment. Each of the MRI scans had previously

been manually traced using a rigorous protocol by a single reliable

tracer as part of a separate study (Hunsaker et al., in revision;

http://mrhunsaker.github.io/Hippocampus_Protocol/).

We have presented a validation of a robust method for highly

accurate semi-automated segmentation of rhesus macaque hippo-

campus from 1 week to 260 weeks of age. By applying a machine

correction algorithm to eliminate systematic errors in the semi-

automated segmentation, it is clear that these methods are capable

of producing hippocampal masks that approach the same levels of

anatomic rigor and level of quality as segmentations generated by

gold-standard manual tracers. Even MRI scans from rhesus

macaques as young as 1 week of age were reliably segmented using

these protocols. This is not a trivial outcome since there was often

either very little gray/white matter contrast or a complete gray/

white matter signal inversion that made hand tracing difficult.

Despite this signal inversion, the fact that the semi-automated

segmentation protocol and landmark guidance relied on manual

placement, these methods appeared to be sufficient to reliably

Figure 2. Example segmentation for of the partial labeling protocol across ages. The coronal slices are from the same primate at 1 week, 4
weeks., 13 weeks, 26 weeks, 52 weeks, and 260 weeks of age. In red is the landmark guided partial label segmentation. In green are results of the
SegAdapter adjustment. The outlines in blue are the manual segmentations for these sections. Note that the segmentation error (in red) appears to
be systematic across ages. This error is primarily due to erroneously segmenting temporal horn as hippocampus. Scale bar = 1 cm.
doi:10.1371/journal.pone.0089456.g002

Table 1. Comparison of Hippocampus Segmentation Methods.

Age Manual v Semi-Automated Label Manual v SegAdapter Manual Reliability

1 week .68+/2.13 .86+/2.08 .88+/2.10

4 week .73+/2.09 .89+/2.09 .92+/2.12

8 week .74+/2.14 .91+/2.06 .92+/2.07

13 week .69+/2.10 .93+/2.09 .94+/2.08

26 week .77+/2.08 .90+/2.07 .93+/2.11

39 week .74+/2.06 .92+/2.05 .96+/2.14

52 week .78+/2.09 .94+/2.09 .95+/2.09

156 week .70+/2.14 .91+/2.10 .94+/2.10

260 week .79+/2.13 .95+/2.09 .97+/2.11

Average DICE coefficients for semi-automated segmentation and SegAdapter methods compared to manually segmented hippocampi. Data are from 24 rhesus
macaques, 12 male and 12 female. Error given +/2 standard deviations from the mean (sd).
doi:10.1371/journal.pone.0089456.t001
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place the hippocampus on each individual scan and the

SegAdapter algorithm was able to correct most of the systematic

errors introduced by the small differences in the MRI scans, as

demonstrated in Figure 2.

During the development of this pipeline, we found that a more

complex training set (i.e., a training set with suboptimal signal to

noise, signal inversion, artifacts, etc.) results in better corrections

than a less complex set. This is presumed to occur because the

SegAdapter algorithm is capable of learning the full complement

of systematic errors that result from the diffeomorphic hippocam-

pus-warping algorithm. By training the algorithm on as diverse a

training set as possible, more of the systematic errors were

identified and corrected. If a pristine, error free dataset were used

for training, then the learning algorithm would not have sufficient

errors to identify, and thus would fail to correct errors resulting

from the semi-automated segmentations. We observed this

phenomenon in our preliminary experimentations, similar to what

Wang et al. [23] have reported. Although a larger training set

provides more reliable segmentations, we chose 1 male and 1

female from each age as a training set to maximize the quality of

the segmentations while minimizing the computational time spent

to train the machine learning algorithm.

It is further notable that the methods employed within this

manuscript were originally developed and validated in preclinical

human neuroimaging research (cf., [15,16,17,22,23]). This study

has validated these protocols for the nonhuman primate – even for

scans that were carried out in very young rhesus macaques. The

relative ease by which these tools were able to work for the primate

scans suggests that they could facilitate cross-species comparisons

not only using the same suite of tools, but also exactly the same

functions within those tools (cf., [26]). This will undoubtedly

improve cross-species comparisons of developmental or degener-

ative trajectories.

A further benefit of the present pipeline, as opposed to using

other freely available tools such as Freesurfer, is the inherent

flexibility in the methodology. Freesurfer does not always reliably

perform segmentations, particularly in the presence of abnormal

or pathological anatomy (cf., [15,16,17,23]). Moreover, to date

there is no reliable way to modify Freesurfer for the segmentation

of rhesus macaque or rodent MRI data, which are relatively

straightforward using the present pipeline.

An additional benefit of this approach is the possibility for

extension into different regions of interest within the brain. If a

researcher has a template for any region of interest (or multiple

regions), the only requirement for these methods to work is the

careful determination of where to place landmarks. The present

protocol is currently being applied to provide concurrent

hippocampus and amygdala segmentation, with relatively high

Figure 3. Example Renderings of hippocampi segmented via the partial labeling protocol and SegAdapter corrections 1 week, 4
week, 8 week, 13 week, 26 week, 39 week, 52 week, 156 week, and 260-week-old rhesus macaque. Red renderings are the semi-
automated hippocampus segmentations and green renderings are SegAdapter corrected hippocampus segmentations. Manual tracings are shown in
blue, and are obscured due to high overlap with SegAdapter segmentations. Scale Bar = 0.5 cm.
doi:10.1371/journal.pone.0089456.g003
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reliability with manual tracings of both neuroanatomical loci, at

least in primates older than 39 weeks of age. By extension, if

researchers have maps for cortical regions of interest (e.g., the

UNC Primate Brain Atlas available at http://www.nitrc.org/

projects/primate_atlas/; [27]), so long as systematic landmarks

can be placed across brains, it is possible to increase the reliability

of diffeomorphic warping of the cortical tracings onto experimen-

tal MRI scans.

While neuroanatomical expertise is essential for interpreting

changes in neuroal structures, the present method requires rather

modest neuroanatomical training. In the present report, only a

single trained hippocampal tracer was required. Manually

segmented hippocampi were required to provide a training set

for the SegAdapter pipeline. Once this training set is established,

all that is required is for another experimenter to place landmarks

on the hippocampus in a very clear, repeatable manner that does

not require extensive neuroanatomical expertise. Specifically, as

long as landmarks are placed consistently in the hippocampus, the

partial labeling protocol is able to segment the hippocampus. The

consistent difference is that not placing a landmark on the most

lateral aspect of the hippocampus results in a small amount of

hippocampus tissue segmented as temporal horn rather then as

hippocampus. Importantly, so long as the actual MRI scanner

hardware and the scan sequence are maintained, additional

contributions from the neuroanatomist other than basic quality

control during pilot experiments are unnecessary.

One limitation of the tools used in the present study is the

amount of computational time required to perform the necessary

transforms. Using a computer system with 4 GB of RAM, it took

on average 2.25 hours/brain to perform the N4ITK bias field

correction, approximately 4.75 hours per brain to perform the

semi-automated hippocampus segmentation, and approximately

22.5 hours to train the SegAdapter using 18 scans (longer if the

pilot experiments are taken into account). All other steps took

under 2 minutes per brain. This limitation can easily be overcome

with access to a computer with a greater amount of RAM, cloud

computing, or distributed cluster computing systems since the

pipeline made heavy use of ANTS and ITK, which are optimized

for distributed computing (cf. [16,23]). Despite this limitation, the

method reliably performed as well as manual segmentations.

These methods also required far fewer trained personnel, and took

substantially less time to acquire hippocampus ROIs than manual

tracing methods.

In summary, we describe a simple protocol and provide sample

code for semi-automatic hippocampus segmentation in rhesus

macaque monkeys from the early postnatal period into adulthood

Figure 4. Plots of Hand Traced manual hippocampus segmentations compared to the results of Partial Label guided
semiautomated segmentation as well as SegAdapter corrected volumes. Note the Partial Labeling consistently over-estimated
hippocampus volumes, whereas the SegAdapter results fall along the unity line with manually segmented volumes.
doi:10.1371/journal.pone.0089456.g004
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(1 week-260 weeks). This method requires very little neuroana-

tomical expertise and can be performed using commercially

available, off the shelf, computational resources and public domain

software. This protocol results in hippocampus segmentations that

show reliably high DICE overlap with manually segmented

hippocampi. Virtually any laboratory can easily apply this method

with access to MR Images; the only limiting factor is the computer

processing time. Further developments in the tools used in this

pipeline may serve to mitigate this limitation and increase the

utility of this semi-automated pipeline, opening a door to increased

throughput of MRI based anatomical research.
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