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Abstract: Diabetes mellitus is a non-communicable disease entity currently constituting one of
the most significant health problems. The development of effective therapeutic strategies for the
prevention and/or treatment of diabetes mellitus based on the selection of methods to restore and
maintain blood glucose homeostasis is still in progress. Among the different courses of action,
inhibition of dipeptidyl peptidase IV (DPP-IV) can improve blood glucose control in diabetic patients.
Pharmacological therapy offering synthetic drugs is commonly used. In addition to medication,
dietary intervention may be effective in combating metabolic disturbances caused by diabetes mellitus.
Food proteins as a source of biologically active sequences are a potential source of anti-diabetic
peptides (DPP-IV inhibitors and glucose uptake stimulating peptides). This study showed that in
silico pork meat proteins digested with gastrointestinal enzymes are a potential source of bioactive
peptides with a high potential to control blood glucose levels in patients with type 2 diabetes mellitus.
Analysis revealed that the sequences released during in silico digestion were small dipeptides (with
an average weight of 270.07 g mol−1), and most were poorly soluble in water. The selected electron
properties of the peptides with the highest bioactivity index (i.e., GF, MW, MF, PF, PW) were described
using the DFT method. The contribution of hydrophobic amino acids, in particular Phe and Trp,
in forming the anti-diabetic properties of peptides released from pork meat was emphasized.
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1. Introduction

In recent years, the rate of diabetes mellitus morbidity has systematically grown, becoming one
of the most common health problems among people around the world. It is estimated that in the
past thirty years, the percentage of patients has increased almost four-fold, reaching approximately
422 million adults with diabetes mellitus in 2014 (for comparison, 108 million people were reported as
having diabetes mellitus in 1980) [1]. Diabetes mellitus is a serious chronic disease associated with
abnormal blood glucose levels in the body. It belongs to the group of non-communicable diseases
(NCDs) caused by metabolic disorders [1]. Type 1 diabetes mellitus (T1DM) and type 2 diabetes
mellitus (T2DM) are the main types of diabetes, wherein T2DM is much more common and represents
90%–95% of all diabetes cases [1,2]. The causes of the epidemic of T2DM are embedded in the very
complex relationship between genetic systems (e.g., ethnic origin, age) and environmental factors (e.g.,
unhealthy diet, sedentary lifestyle leading to the growth of obesity among the population). Some of
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them may be modified behaviorally, for example, by practicing a healthy lifestyle and adoption of an
appropriate diet, thus prevention and treatment of diabetes mellitus can be effectively implemented.
Another therapeutic strategy is the inhibition of the metabolic enzymes involved in the regulation of
blood glucose levels, e.g., alpha-amylase and alpha-glucosidase (carbohydrate-cleaving binding—the
inhibition of the enzyme causes a delay in the absorption of carbohydrates in the gastrointestinal
tract) or dipeptidyl peptidase IV (DPP-IV) (hydrolyzing peptide bonds—the inhibition of the enzyme
increases the half-life of substances affecting insulin levels) [2,3].

Incretins (intestinal insulinotropic hormones) are primarily responsible for regulating the level
of glucose. Two peptide incretin hormones involved in the control of blood glucose have been
identified in humans, namely, glucose-dependent insulinotropic peptide (GIP) and glucagon-like
peptide-1 (GLP-1) [4,5]. They are released from the gut in response to food intake and exert a potent
insulinotropic effect helping to maintain control of postprandial glucose levels. However, the incretins
are rapidly inactivated by the enzyme DPP-IV (Figure 1). Dipeptidyl peptidase IV, also known as
adenosine deaminase binding protein or CD26 (EC 3.4.14.5), is a dimeric (2 × 110 kDa subunits) serine
aminopeptidase. It catalyzes the release of X-Pro or X-Ala (wherein X is any amino acid) fragments
from the N-terminus of peptides [6].
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glucagon-like peptide-1; GIP: glucose-dependent insulinotropic peptide.

The medical strategy in the fight against disorders causing diabetes is to block the function of
DPP-IV. Synthetic inhibitors of DPP-IV are used to increase the half-life of active GLP-1 and GIP, usually
in the pharmacological approach to treatment, leading to a significant increase in their concentration
in the blood. In turn, the GLP-1 and GIP contribute to lower glucose levels by stimulating insulin
secretion and inhibiting the release of glucagon, enabling effective efforts against hyperglycemia [2,7].

In addition to pharmacological treatment, natural sources of bioactive compounds with
anti-diabetic activity are sought [8]. One of the probable mechanisms of action of anti-diabetic
agents from food sources may result their ability to inhibit the DPP-IV enzyme. Lacroix and Li-Chan [9],
in their in silico study, demonstrated that raw materials of animal origin are better sources of DPP-IV
inhibitors as compared to plant sources. As an example, peptides released from cow’s milk, beef,
poultry, fish, eggs, and aged meat products have been proposed as a source of potential inhibitors of
DPP-4 [2,9,10].

The data available in the literature show that pork meat can be a source of bioactive peptides
which appear to have the potential to promote health benefits for consumers. When they are released
from parent sequences and absorbed into the blood from the gastrointestinal lumen, they can influence
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the functioning of the body, i.e., cardiovascular system, digestive, hormonal, immune, and nervous
systems [11]. They may also be effective in the prevention of the need for and/or assist in the treatment
of T2DM, and they may become an important therapeutic strategy [12]. The bioinformatic approach
to the discovery of bioactive peptides enables the characterization of peptides produced in terms
of their theoretical physico-chemical, bioactive properties [13,14] and sensory properties [15]. Thus,
information obtained from in silico analyses may help food technologists to take steps to remove or limit
the production of allergenic, toxic or bitter peptides while maintaining the desired bioactivity. As an
example, in silico and in vitro approaches were combined to determine the potency of antimicrobial
peptides derived from porcine proteins (Sus scrofa) and beef proteins (Bos taurus) isolated from dry-cured
meat products [16]. Also, the allergen potential of peptides isolated from beef fermented with acid
whey after 31 days of ripening was determined using in silico methods [17]. In other studies, the
in vitro and in silico approach were combined for determination of the potential of pork peptides
and proteins as antioxidants [13] and angiotensin-converting enzyme inhibitors [14] obtained from
dry-cured pork loins after in vitro digestion with gastrointestinal enzymes. Recently Sayd et al. [18]
used combined in vivo and in silico approaches for predicting the bioactive peptides from meat
digestion and confirmed the presence of biologically active sequences after the digestion of cooked
beef in the digestive tract of mini pigs fitted with gastric cannulas received. Gallego, Aristoy, and
Toldrá [10] also evaluated the potential of DPP-IV inhibitory peptides which may be present in the
water-soluble extract of dry-cured Spanish ham. The bioactivity of the identified peptides by the
mentioned authors has been confirmed by chemical synthesis and in vitro assays showing that KA and
AAATP peptides have the strongest DPP-IV inhibitory activity (IC50 values of 6.27 mM and 6.47 mM,
respectively). The AA, GP, PL, and carnosine dipeptides as well as AAAAG, ALGGA, and LVSGM
peptides were also DPP-IV inhibitors, although to a lesser extent. These findings confirm the potential
of meat products as a natural precursor of DPP-IV inhibitory peptides.

It is thought that the amino acids and short peptides supplied with the diet may have anti-diabetic
activity in many ways. In addition to the inhibiting properties of the peptides, these activities were
distinguished by direct stimulation of pancreatic cells leading to increased insulin secretion and the
effect on the secretion of hormones from the incretin group [19,20]. The biological activity of the
peptides may also result from their physico-chemical characteristics deriving from the amino acid
composition and their arrangement in the peptide chain. Most of the studies conducted to date focused
on the production and identification of DPP-IV inhibitory peptides from protein hydrolysates from the
food system. To realize the potential of proteins from pork meat, more information is needed regarding
the nature of the physical and chemical properties of the peptide sequences that can modulate blood
glucose levels in the body. This knowledge can be used in the design of an appropriate diet therapy in
order to reduce NCDs.

Significant progress has been made in the design of structure-based drugs at various stages of drug
discovery. In silico methods based on molecular and quantum mechanics, such as docking, molecular
dynamics, as well as ab initio and density functional theory (DFT) chemical reactivity calculations, bring
us closer to understanding the metabolism of drugs and predicting the interaction among drugs [21].
Pharmacophore modeling is a widely utilized method in the computer-aided drug design process.
Also, the application of computational methods in the determination of the relationship between the
structure and biological activity of the molecule is widely used. The quantitative structure–activity
relationship (QSAR), providing the quantitative relationship between the structure of a compound
and its action, is based on the assumption that biological properties of molecules are mathematical
functions of their physico-chemical parameters (descriptors). In turn, quantitative structure–property
relationship methods (QSPR) allow to determine the qualitative relationship between the structure
of a compound and its physical properties. In order to determine the structure–activity relationship,
several groups of descriptors, such as structural and topological, electronic (including the highest
occupied and lowest unoccupied molecular orbitals—HOMO and LUMO, respectively), geometric,
and thermodynamic, are selected [22]. In the QSAR model, the DFT is useful in the prediction of
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biological activity or toxicity of molecules. Density functional theory is a quantum chemical method
useful for predicting the properties of molecules with rather low computational effort on the basis
of their electron density. The DFT results were used in the QSAR analysis, among others, for the
evaluation of antibacterial activities against Gram-positive (Staphylococcus aureus) and Gram-negative
bacteria (Klebsiella pneumonia, Proteus bacilli, and Shigella flexneri) of quinazolinone compounds [23].
In turn, Kuruvilla et al. [24] calculated, inter alia, the HOMO and LUMO energies using the DFT
method, and the obtained results were used in the QSAR analysis to understand the stability, reactivity,
and bioactivity of the test compound (4-[2-(Dipropylamino) ethyl]-1,3-dihydro-2H-indol-2-one).

The aim of this study was to determine the in silico potential of sixteen selected pork muscle
proteins (Sus scrofa) to generate bioactive peptides with anti-diabetic properties. At first, evaluation of
the potency of the intact porcine proteins as sources of bioactive peptides was carried out, and, next,
the prediction of the bioactive potential of peptide sequences released after the simulated digestion was
made. Finally, the five peptides with the highest bioactivity potential were selected and their electronic
properties (orbital energy values: HOMO and LUMO) were calculated by density functional theory.

2. Materials and Methods

Sixteen protein sequences from porcine (Sus scrofa) skeletal muscle were analyzed (Table 1).
All sequences were derived from UniProtKB database [25]. The profiles of the potential biological
activity of proteins for generating bioactive peptides by using “Profiles of potential biological activity”
tools available in the BIOPEP-UWM database were determined [26]. The value of selected proteins
as precursors of anti-diabetic bioactive peptides, based on the frequency of bioactive fragments of
the tested activity in the protein chain (parameter A) and peptide affinity for the specific receptor
characterizing the potential activity (parameter B) (mM−1) was evaluated [27].

Table 1. The porcine proteins subjected to in silico analysis.

Protein Name Abbreviation Entry Name (ID) Protein Name Abbreviation Entry Name (ID)

Myofibrillar Proteins Sarcoplasmic Proteins

Actin, alpha skeletal muscle ACTS P68137 Myoglobin MB P02189

Myosin-2 MYH2 Q9TV63 Creatine kinase U-type, CKMT1 Q29577

Tropomyosin alpha-3 chain TPM3 A1XQV4 Creatine kinase M-type CKM Q5XLD3

Troponin C, skeletal muscle TNNC2 P02587 Glyceraldehyde-3-phosphat
dehydrogenase GAPDH P00355

Troponin T, fast
skeletal muscle TNNT3 Q75NG9 L-lactate dehydrogenase A-chain LDHA P00339

Troponin T, slow
skeletal muscle TNNT1 Q75ZZ6 Phosphoglycerate kinase 1 PGK1 Q7SIB7

Titin (fragment) TTN Q29117 Alpha-1,4 glucan phosphorylase PYGM F1RQQ8

Nebulin NEB Q3Y5G4 Fructose-bisphosphate aldolase ALDOA Q6UV40

The calculations were made using the “Calculation” tools available in the BIOPEP-UWM database.
The analyzed proteins were also subjected to in silico proteolytic digestion by the digestive enzymes
pepsin (EC 3.4.23.1); trypsin (EC 3.4.21.4); and chymotrypsin (EC 3.4.21.1) (“Enzymes action” tools
available in the BIOPEP-UWM database). The frequency of the release of fragments with a given activity
by selected enzymes (parameter AE) and the relative frequency of release of fragments with given
activity by selected enzymes (parameter W) was determined [11,27,28]. The peptide fragments obtained
from the in silico digestion were analyzed for their physico-chemical properties using bioinformatics
tools. The molecular weight, isoelectric point, charge, and solubility of potential anti-diabetic peptides
was estimated using the PepStat tools [29]. The potential general bioactivity of the peptides obtained
in this study were confirmed by PeptideRanker [30].

The quantum chemical calculations were carried out in the following way. Equilibrium geometries
and harmonic vibrational frequencies of the selected peptides GF, MW, MF, PF, and PW were determined
at the B3LYP [31] level with the 6-311++G** basis set [32,33]. All optimized structures were confirmed



Nutrients 2019, 11, 2537 5 of 16

to be local minima (all harmonic frequencies turned out to be real). Calculations were performed
using the PQS quantum chemistry package [34,35]. It was decided to do all calculations with tightened
integral prescreening thresholds (by two orders of magnitude), and a high-quality integration grid was
used in the self-consistent field (SCF) procedure.

The Pearson correlation coefficient was computed by means statistics program (Excel; Microsoft)
for determining the relationship between the physico-chemical parameters and general bioactivity score.

3. Results and Discussion

The analysis of the potential biological activity profile showed that the proteins of Sus scrofa
contained in their sequence’s numerous bioactive peptides effective against diabetes mellitus. All
the selected proteins—eight myofibrillar and eight sarcoplasmic, presented in Table 1—proved to
be a potential source of DPP-IV inhibitors which represented more than half of all of bioactive
fragments. Research conducted by Kęska and Stadnik [36] indicated that myofibrillar proteins are a
more abundant source of biologically active fragments (6330 sequences) compared to the sarcoplasmic
proteins (3534 sequences). As shown in this study, the percentage of DPP-IV inhibitors in the total
volume of biologically active fragments was similar among groups of proteins selected for analysis, i.e.,
50.51% for the sarcoplasmic proteins and 52.91% for the myofibrillar proteins. Also, the assessment
of pork meat proteins as precursors of peptides with angiotensin I-converting enzyme inhibitory
properties showed that the percentage of the bioactive peptides in general does not depend on the
protein fractions and reaches about 31.64% in each of them [36]. As observed in this study, porcine
muscle proteins are also a source of regulating glucose level peptides (glucose uptake stimulating
peptide, GUSP), which showed a different tendency. Almost two-fold more of these peptides were
obtained from sarcoplasmic proteins (2.94%) than from myofibrillar proteins (1.89%).

The parameter A (Table 2) was used as the quantitative measure of porcine meat proteins as precursors
of biologically active peptides having an activity of DPP-IV and GUSP. Guided by the principle, the higher
the index value, the richer the source of a sequence with a given activity, TTN (out of myofibrillar proteins;
0.6713) and GAPDH (of the sarcoplasmic proteins; 0.6697) were distinguished as the best precursors of
peptides inhibiting DPP-IV. The latter of the abovementioned proteins are also characterized by a high
(but not the highest) value of the parameter B, determining the affinity of the peptide to a specific receptor
characterizing its potential biological activity. Moreover, TNNT1, TNNT3, and MB proved to be good
sources of GUSP (parameter A was 0.1489, 0.1218, and 0.0714, respectively, Table 2).

The in silico hydrolysis of the selected protein sequences by enzymes of the gastrointestinal tract
(pepsin, trypsin, and chymotrypsin) was performed, and the results of the in silico proteolysis are
shown in Table 3. The resulting peptide fragments showed resistance to digestion in the gastrointestinal
tract, confirming the high potential of pork meat proteins to generate the bioactive peptides after intake
of a meal. The digestive enzymes were most effective in the release of DPP-IV inhibitory sequence
from MYH2 and PYGME, reflected by the high value of AE and W. On the other hand, TNNT1 and
ALDOA were the most effective in the release of GUSP under the action of digestive enzymes (Table 3).

Fifty-four different peptide sequences released by in silico hydrolysis were listed and analyzed
by bioinformatics tools (Table 4). Undertaken analyses showed the multifunctionality of individual
peptides—the sequences having glucose uptake (GUSP) properties were also inhibitors of DPP-IV.
The obtained sequences were mostly dipeptides (98%) with an average weight of 270.07 g mol−1

(±36.71 g mol−1). The literature data suggest a role of short sequences derived from food proteins in
prevention of diabetes mellitus, which indicated a greater role of dipeptides compared to the three
amino acid sequences or of free amino acids in the inhibition of DPP-IV [37,38]. Short peptide fragments
are also able to be absorbed easier from the gastrointestinal tract into the blood [39] and then may
cause a physiological effect on the human body. As a result of in silico digestion, only one triple amino
acid sequence, VPL, was released by digestive enzymes from NEB (Table 4). This tripeptide is used as
a synthetic DPP-IV inhibitor effective in inhibiting the degradation of GLP-1, known under the name
Diprotin B [4,40]. Food-derived proteins are also the source of other peptide fractions, which were
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used in pharmacology as a synthetic equivalent. Another tripeptide, IPI (also known as Diprotin A),
which is encrypted in the κ-casein sequence, is the most potent (IC50 = ~4 µM) of the presently known
peptides inhibiting DPP-IV [41].

Over half of the analyzed sequences had an isoelectric point (pI) of approximately 3.5. The pI is
defined as the pH at which the protein load is 0. This is a property that influences the maintenance of the
biological activity of the peptides in specific pH conditions. Sequences with pI = 3.5 simultaneously have
a net charge value equal to 0 and exhibit poor solubility in water. Eight sequences were characterized
by different properties (pI of about 10.45; net charge equal to 1, good solubility in water) (Table 5).

Table 2. Results of the potency evaluation of the intact porcine proteins as sources of bioactive peptides.

Protein
DPP-IV Inhibitory Stimulating a

Parameter A Parameter B Parameter A Parameter B

ACTS 0.6499 0.000258 0.0451 -
MYH2 0.5910 0.000255 0.0552 -
TPM3 0.5035 0.000141 0.0810 -

TNNC2 0.5031 0.000247 0.0181 -
TNNT3 0.5941 0.000237 0.1218 -
TNNT1 0.5196 0.000323 0.1489 -

TTN 0.6713 0.000307 0.0385 -
NEB 0.6475 0.000361 0.0296 -
MB 0.6494 0.000534 0.0714 -

CKMT1 0.6394 0.000200 0.0457 -
CKM 0.6352 0.000434 0.0472 -

GAPDH 0.6697 0.000401 0.0300 -
LDHA 0.6175 0.000341 0.0542 -
PGK1 0.6451 0.000395 0.0432 -
PYGM 0.6449 0.000413 0.0356 -

ALDOA 0.6147 0.000659 0.0642 -
a Glucose uptake stimulating peptide. Parameter A—the frequency of bioactive fragments occurring in a protein
sequence. Parameter B—the potential biological activity of a protein.

Table 3. Frequency of the release of fragments with a given activity by selected enzymes (parameter AE)
and the relative frequency of release of fragments with given activity by selected enzymes (parameter
W) from porcine proteins after in silico digestion.

Protein
DPP-IV Inhibitory Stimulating a

Parameter AE Parameter W Parameter AE Parameter W

ACTS 0.0307 0.0496 0.0026 0.0598
MYH2 0.0414 0.0737 0.0030 0.0567
TPM3 0.0272 0.5670 0.0034 0.0455

TNNC2 0.0182 0.0380 - -
TNNT3 0.0249 0.0440 0.0036 0.0307
TNNT1 0.0257 0.0492 0.0074 0.0516

TTN 0.0270 0.0423 0.0017 0.0457
NEB 0.0371 0.0604 0.0017 0.0607
MB 0.0437 0.0706 0.0063 0.0916

CKMT1 0.0465 0.0766 0.0070 0.1584
CKM 0.0456 0.0760 0.0051 0.1118

GAPDH 0.0232 0.0584 - -
LDHA 0.0320 0.0548 0.0029 0.0587
PGK1 0.0348 0.0568 0.0046 0.1100
PYGM 0.0505 0.0828 0.0023 0.0669

ALDOA 0.0177 0.0299 0.0088 0.0237
a Glucose uptake stimulating peptide (GUSP).
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Table 4. DPP-IV inhibitory and stimulating the absorption of glucose bioactive peptide sequences
released from the pork meat protein sequences after in silico digestion by pepsin, trypsin, and
chymotrypsin. a

Protein
Activity of Peptides

DPP-IV Inhibitory Stimulating c

ACTS EK (3) b [121-122][222-223][245-246]; AL [176-177]; SL [147-148]; GY [205-206]; IL
[200-201]; IW [89-90]; MK [198-199]; SF [207-208]; TL [70-71]; VK [19-20]

IL [200-201]

MYH2

EK (10) [280-281][450-451][915-916][1003-1004][1031-1032]
[1262-1263][1264-1265][1290-1291][1465-1466][1581-1582]; AL (4)

[413-414][1034-1035][1408-1409][1868-1869]; SL (2)[599-600][1528-1529]; GL (2)

[799-800][1903-1904]; VR (2) [696-697] [1883-1884]; PL [870-871]; AF (2)

[641-642][850-851]; GF (3) [353-354][734-735][824-825]; HW [856-857]; IL (3)

[739-740][1504-1505][1614-1615]; IR [259-260]; MF [452-453]; MK (3)

[860-861][1536-1537][1844-1845]; ML (2) [170-171][1479-1480]; MR [1216-1217];
NF [1500-1501]; NL (3) [107-108][1013-1014][1558-1559]; NY [1700-1701]; PF (2)

[31-32][324-325]; PK (2) [562-563][587-588]; PW [858-859]; QF [168-169]; QL (4)

[287-288][920-921][1336-1337][1366-1367]; QY [471-472]; SK (3)

[1307-1308][1410-1411][1960-1961]; SY (2) [293-294][1943-1944]; TF [528-529]; TK
(7) [891-892][945-946][1029-1030][1059-1060][1063-1064][1421-1422][1467-1468];
TL (3) [639-640] [996-997] [1295-1296]; TY (2) [119-120][1915-1916]; VF [791-792];
VK (7) [48-49][419-420][1011-1012][1257-1258][1911-1912][1941-1942][1990-1991];

VL (3) [514-515][715-716][752-753]

IL (4) [739-740] [1504-1505] [1614-1615]
[1927-1928]; VL (3) [514-515]

[715-716][752-753]

TPM3 EK [258-259]; AL [138-139]; DR (2) [20-21] [102-103]; IL [233-234]; NR [91-92]; QL
[38-39]; SK [36-37]

IL [233-234]

TNNC2 DR [105-106]; ML [45-46]; SY [9-10] -

TNNT3 AL [163-164]; PL [204-205]; EY [235-236]; IR [126-127]; PK [54-55]; QL [228-229];
VL [197-198] VL [197-198]

TNNT1 EK [211-212]; PL [198-199]; IL [191-192]; MR [137-138]; PK [40-41]; VK [170-171];
VL [157-158] VL [157-158]; IL [191-192]

TTN
SL (2) [412-413][445-446]; PL [500-501]; NF [129-130]; NY [290-291]; PK [486-487];
SW (3) [74-75][377-378][576-577]; SY [302-303]; TK (2) [379-380][493-494]; TL (2)

[233-234][235-236]; VK [410-411]; VL [220-221]
VL [220-221]

NEB

VPL [485-487]; HL (3) [610-611][1112-1113][1520-1521]; EK (4) [532-533]
[569-570][603-604][1067-1068]; AL (2) [1435-1436][1744-1745]; SL (2)

[155-156][1078-1079]; GL (4)[659-660][910-911][1654-1655][1706-1707]; VR [78-79];
PL (2) [1140-1141][1746-1747]; AW [671-672]; AF [793-794]; AY (2)

[657-658][908-909]; DR [1571-1572]; EY [848-849]; GF (3) [601-602]
[784-785][852-853]; HF [1589-1590]; HR [1500-1501]; HW [102-103]; IR

[1261-1262]; MK (6) [294-295][350-351][673-674][924-925][1069-1070][1587-1588];
MR [1175-1176]; NL (4) [75-76][687-688][1281-1282] [1677-1678]; NY (3)

[469-470][537-538][702-703]; PF [1295-1296]; PY [52-53]; QY (2)

[665-666][1350-1351]; SK (3) [107-108][605-606][1029-1030]; TF [1173-1174]; TL (4)

[442-443][539-540][651-652][1503-1504]; TR (2) [1390-1391][1679-1680]; VK (2)

[548-549][1318-1319]; VL (2) [366-367][575-576]; VY [1525-1526]

VL (2) [366-367] [575-576]

MB HL [49-50]; EK [42-43]; AL [139-140]; GF [155-156]; IR [31-32]; QL [9-10]; VL
[11-12] VL [11-12]

CKMT1

AL [19-20]; SL [178-179]; GL (2) [176-177][297-298]; VR [168-169]; PL [343-344];
MW[315-316]; DR [385-386]; GY [321-322]; IL (2) [323-324][354-355]; IR [153-154];
IW [268-269]; PK [352-353]; QY [46-47]; SF [265-266]; SK [346-347]; TL [87-88];

VF [290-291]; VL [163-164]

VL [163-164]; IL (2)[323-324] [354-355]

CKM
AL [33-34]; EK [380-381]; VR [135-136]; PL [179-180]; MW [280-281]; GY (2)

[143-144][286-287]; NF [13-14]; SF [230-231]; SK (2) [24-25][313-314]; TL (3)

[35-36][52-53][145-146]; TR [323-324]; VL (2) [130-131][288-289], VW [233-234]
VL (2) [130-131] [288-289]

GAPDH EK [256-257]; GY (2) [281-282][327-328]; HY [39-40]; MF [44-45]; QY [46-47]; VK
[316-317]

-

LDHA GL [287-288]; GY [254-255]; IL [195-196]; MK [41-42]; NL (3) [110-111]
[219-220][274-275]; NR [160-161]; PK [158-159]; QF [341-342]; TY [148-149]

IL [195-196]

PGK1
AL (2) [206-207][364-365]; SL (2) [79-80][89-90]; EW [354-355]; MK [196-197]; NY
[201-202]; PF [213-214]; PK [188-189]; SK [159-160]; TF [251-252]; TL [8-9]; VK

[144-145]; VL (2) [255-256][419-420]
VL (2) [255-256] [419-420]

PYGM

HL (2) [35-36][412-413]; EK (3) [79-80][197-198][375-376]; AL (2) [55-56][106-107];
SL [89-90]; GL (3) [18-19][119-120] [156-157]; PL [4-5]; AW [377-378]; AY [57-58];

DG (3) [43-44][277-278][758-759]; EW [823-824]; EY [571-572]; GY (2)

[161-162][750-751]; HF [37-38]; IL [363-364]; IR (2) [71-72] [548-549]; ML [705-706];
MR [361-362]; NF [31-32]; NL (2) [262-263][279-280]; NR (3)

[33-34][425-426][607-608]; QL (2) [117-118][595-596]; SY [540-541]; TL (3)

[39-40][97-98][204-205]; TR [825-826]; VF [798-799]; VK (2) [41-42][554-555]; VL
[287-288]

VL [287-288]; IL [363-364]

ALDOA AL [100-101]; VL [93-94] VL [93-94]
a Peptide sequences are listed using the single letter code for amino acids, b numbers in brackets refer to the total
amount of specified active fragments, c GUSP.
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Table 5. The results of the analysis of the physico-chemical properties of selected antidiabetic peptides.

Peptide Molecular Weight
(gmol−1)

Isoelectric Point Net charge Solubility a Bioactivity
Score b Peptide Molecular Weight

(gmol−1)
Isoelectric Point Net Charge Solubility a Bioactivity

Score b

AF 236.27 3.77 0 - 0.97 NR 288.30 10.42 1 + 0.26
AL 202.25 3.70 0 - 0.44 NY 295.29 3.24 0 - 0.22
AW 275.30 3.66 0 - 0.97 PL 228.29 4.08 0 - 0.81
AY 252.27 3.66 0 - 0.35 PF 262.30 4.15 0 - 0.99
DG 190.15 0.68 −1 + 0.39 PK 243.30 10.57 1 + 0.33
DR 289.29 6.68 0 + 0.29 PW 301.34 4.04 0 - 0.99
EK 275.30 6.85 0 + 0.02 PY 278.30 3.85 0 - 0.74
EW 333.34 0.88 −1 + 0.59 SF 252.27 3.43 0 - 0.95
EY 310.30 0.95 −1 + 0.07 SK 233.27 9.86 1 + 0.07
GF 222.24 3.70 0 - 0.99 SL 218.25 3.37 0 - 0.33
GL 188.22 3.63 0 - 0.81 SY 268.27 3.39 0 - 0.26
GY 238.24 3.61 0 - 0.74 SW 219.30 3.34 0 - 0.93
HF 302.33 7.56 0 - 0.95 TF 266.29 3.36 0 - 0.83
HL 268.31 7.56 0.1 - 0.37 TK 247.29 9.28 1 + 0.03
HR 311.34 10.59 1.1 + 0.33 TL 232.28 3.32 0 - 0.14
HW 341.36 7.56 0.1 - 0.95 TR 275.31 10.53 1 + 0.13
HY 318.33 7.54 0.1 - 0.30 TY 282.29 3.35 0 - 0.11
IL 244.33 3.64 0 - 0.39 QF 293.32 3.41 0 - 0.95
IR 287.36 10.85 1 + 0.33 QL 259.30 3.34 0 - 0.29
IW 317.38 3.61 0 - 0.94 QY 309.32 3.36 0 - 0.23
MF 296.39 3.45 0 - 1.00 VF 264.32 3.67 0 - 0.82
MK 277.39 9.88 1 + 0.45 VK 245.32 10.10 1 + 0.03
ML 262.37 3.38 0 - 0.89 VL 230.30 3.60 0 - 0.13
MR 305.40 10.59 1 + 0.85 VR 273.33 10.10 1 + 0.11
MW 335.42 3.35 0 - 1.00 VW 303.36 3.57 0 - 0.80
NF 279.29 3.28 0 - 0.94 VY 280.32 3.59 0 - 0.10
NL 245.28 3.21 0 - 0.29 VPL 327.42 3.60 0 - 0.37

a Estimated solubility in water where “+” means good solubility and “-” means poor solubility; b bioactivity score obtained with PeptideRanker tools.
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Nongonierma et al. [42] analyzed the relationship between physico-chemical properties of peptides
(including length, isoelectric point, hydrophobicity, and net charge value) with the biological activity
of peptides. This approach was also presented in this study. An analysis of the Pearson’s correlations
among the selected physico-chemical properties of peptides and their bioactivity was performed based
on the data presented in Table 5. The majority of parameters obtained a weak or moderate correlation
coefficient (r = in the range from 0.010 to 0.573), except for the isoelectric point and net charge for
which a strongly positive correlation was observed (r = 0.907).

There are many examples of biologically active food proteins, exhibiting the physiological role in
addition to the dietary requirements. Underlying these activities, apart from the physico-chemical
properties, is the relationship between structures and their function. In the case of peptides derived from
food proteins involved in the regulation of blood glucose levels, there is not enough yet understood.
Considering the above, the analyzed sequences were subjected to further parametric evaluation
assessing the overall bioactive potential of received sequences using PeptideRanker software. Of the
54 peptide fragments, 13 were characterized by high bioactivity (a value above 0.93); they were: AF;
AW; GF; HF; IW; MF; MW; NF; PF; PW; SF; SW; and QF (Table 5). Glucose regulation by specific
amino acids could prove to be an important non-insulin dependent mechanism for glucose control in
insulin-resistant individuals, such as those with T2DM. In the present study, it was observed that two
hydrophobic aromatic amino acids (i.e., Phe or Trp) exist in each of the specified sequences. The results
suggest the contribution of hydrophobic amino acids to the specific properties of bioactive sequences
involved in the management of anti-diabetic proteins, which corresponds to other research [9,20,38,43].
Research carried out by Nongonierma and Fitzgerald [20] showed that the hydrophobic amino acids
located at the N-terminus of the peptides have a tendency to decrease the IC50 value of DPP-IV inhibitor
(the lower IC50 value means the higher activity of the peptide). Analysis of peptides conducted by
Lan et al. [38] and Tulipano et al. [43] revealed the influence of the presence of Trp at the N-terminus of
the peptide on their DPP-IV inhibitory properties. Therefore, the specific properties of the peptide
may be a consequence of their amino acid composition. For this reason, an analysis of the percentage
of individual amino acids forming peptides (54 sequences) was made, and the results are shown in
Figure 2.
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Figure 2. Percentage share of amino acids present in the sequences of bioactive peptides inhibiting the
activity of the DPP-IV enzyme.

The analyzed sequences consisted of 19 amino acids, of which Leu (11.93%), Phe (9.17%), Tyr
(9.17%), and Trp (7.34%) accounted for the largest share. According to other authors [38,44,45], some
peptides (i.e., Trp-Val, Phe-Leu, His-Leu; Leu-Leu, Val-Val, and Trp-Arg) are potent inhibitors of DPP-IV.
Recent evidence suggests that the amino acid Leu may also influence glucose sensing pathways in the
hypothalamus thereby regulating whole-body glucose and energy metabolism in ways that are not
currently well understood [46]. Amino acid composition may also affect the mode of action of the
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biologically active peptide to specific receptors on target cells. Other studies reported that the peptide
inhibitors of DPP-IV containing Pro have a high activity [47]. The inhibitory effects of the peptides
may result from different modes of action and inhibition of the enzyme. Peptides derived from food
sources containing Pro at the P1 position can act as a substrate for the enzyme (competitive mode
of action). On the other hand, most of the peptides containing Trp at the N-terminus of the peptide
display uncompetitive or non-competitive inhibition against DPP-IV [41]. Peptides can stimulate
glucose uptake in skeletal muscles through other molecular pathways independently of insulin or
by increasing insulin sensitivity in target cells, resulting in increased glycogen contents in skeletal
muscle. Dipeptides containing branched-chain amino acids, such as Ile-Leu and Val-Leu, have been
reported to stimulate glucose uptake in skeletal muscles possibly via kinase signaling pathways, which
are different from the mechanism of the insulin-stimulated glucose transporters [48]. Furthermore,
dipeptides Ile-Leu and Val-Leu could exert positive effects on glucose regulation by both DPP IV
inhibition and stimulating glucose uptake activity (Table 4).

In further analysis, the five peptides with the highest bioactivity index, from 0.99 to 1.00 (GF,
MW, MF, PF, PW, Table 5) were selected and their selected electron properties using the DFT method
were described. This approach may be helpful in developing drugs based on peptides, and the values
determined in this study may serve as descriptors to determine the relationship between structure and
activity of a biological compound/drug. The DFT method is applied to study the structural, electronic,
and dynamic properties of a molecule and plays a vital role in the drug discovery process.

Density functional theory was used to find the values of orbital energy from which we can predict
how well a group can pass or accept electrons. This study is possible by calculating the HOMO and
LUMO energies. This approach was used, inter alia, for identification of important chemical features
of 11β-Hydroxysteroid dehydrogenase type1 inhibitors which are involved in the metabolism of
glucose [49]. An important parameter of the molecular electron structure is the frontier orbital, HOMO.
A higher HOMO value implies that the molecule has good electron donating ability. The structure and
calculated HOMO and LUMO values are summarized in Table 6.

The biological activity of a compound is closely related to its electronic structure. The importance
of HOMO and LUMO with regard to that issue has been emphasized many times by several
authors [24,49,50]. In particular, the HOMO orbital energy, EHOMO, can be correlated with the
electron-donating character, in that the higher (less negative) the energy, the more electron donating
ability of the molecule. Similarly, the lowering of the HOMO–LUMO energy gap, ∆EHL, indicates
the increasing role of the charge transfer interactions within the molecule [51]. Therefore, we carried
out the DFT calculations to visualize more clearly the correlation between the biological activity and
the electronic structure of the five considered dipeptides: GF, MW, MF, PF, and PW. The contours of
the HOMO and LUMO orbitals are reported in Table 6. In addition, their orbital energies and ∆EHL

energy gaps are also given. A clear trend of a decreasing ∆EHL value along with an EHOMO increase
was observed, see Figure 3. Obviously, dipeptides located at the bottom-right corner of the figure are
predicted to exhibit the highest biological activity. Indeed, the bioactivity score of MW and MF, being
equal to 1, turned out to be the highest among all investigated dipeptides. On the other hand, PF and
GF, exhibiting lower HOMO orbital energy, showed slightly worse bioactivity.
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Table 6. Highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), their orbital energies, as well as the HOMO–LUMO energy gap for selected
peptides from Sus scrofa.

Dipeptide HOMO, E (eV) LUMO, E (eV) ∆EHL (eV)

GF
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Table 6. Cont.

Dipeptide HOMO, E (eV) LUMO, E (eV) ∆EHL (eV)
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peptides from Sus scrofa.

Establishing the health effects of bioactive peptides from meat is an active area of clinical research.
Recently Montoro-García et al. [52] showed that the consumption of 80 g/day dry-cured ham did not
affect sodium excretion nor blood pressure. Consuming dry-cured ham with bioactive peptides, among
other bioactive compounds, has been proven to improve lipid and glucose metabolism in humans.
However, additional studies are needed to confirm the effects of meat bioactive peptides on diverse
risk factors in pathological conditions, which is also the case with the results of the present study.

4. Conclusions

Bioactive peptides derived from food proteins may cause certain physiological reactions in
the body, which has a beneficial effect on health. These peptides are attractive to researchers and
consumers because of their potential for use in functional foods and other interventions or control
of lifestyle-related diseases. However, the cost-effectiveness of the peptides used in the design of
health-promoting agents is substantially limited, inter alia, by balancing the high efficiency of obtention
while retaining the biological activity of the active ingredients of the food. To address these challenges,
we proposed the use of an in silico approach as useful tool. Complementary empirical methods are
useful to assess the potential of proteins as precursors of bioactive peptides. Therefore, the objective
of this study was to consolidate all findings to date on the peptide sequences, which are presented
as biologically active using an in silico approach. The study showed that pork meat proteins are a
potential source of bioactive peptides. Digested in silico by gastrointestinal enzymes, they have a
high potential for the management of blood glucose levels in patients with T2DM. The inhibitory
activity of the peptides against DPP-V accounted for about 50% of the total active peptides recorded
in the protein sequences. The database of proteins and bioactive peptides—BIOPEP-UWM—is a
useful tool for the analysis of anti-diabetic peptides derived from the precursor proteins in the in silico
model studies. It enables quick and easy assessment of the potential of pork meat proteins as major
functional components of meat products important in the prevention and assistance of treatment for
T2DM. In the future, the accumulated knowledge will also the analysis of large datasets on proteins
and peptides and the understanding of interactions with biological targets (specific receptors) and
structure–activity relationships.
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