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Abstract

We report the development and testing of software called QuantiFly: an automated tool to
quantify Drosophila egg laying. Many laboratories count Drosophila eggs as a marker of fit-
ness. The existing method requires laboratory researchers to count eggs manually while
looking down a microscope. This technique is both time-consuming and tedious, especially
when experiments require daily counts of hundreds of vials. The basis of the QuantiFly soft-
ware is an algorithm which applies and improves upon an existing advanced pattern recog-
nition and machine-learning routine. The accuracy of the baseline algorithm is additionally
increased in this study through correction of bias observed in the algorithm output. The
QuantiFly software, which includes the refined algorithm, has been designed to be immedi-
ately accessible to scientists through an intuitive and responsive user-friendly graphical in-
terface. The software is also open-source, self-contained, has no dependencies and is
easily installed (https://github.com/dwaithe/quantifly). Compared to manual egg counts
made from digital images, QuantiFly achieved average accuracies of 94% and 85% for
eggs laid on transparent (defined) and opaque (yeast-based) fly media. Thus, the software
is capable of detecting experimental differences in most experimental situations. Signifi-
cantly, the advanced feature recognition capabilities of the software proved to be robust to
food surface artefacts like bubbles and crevices. The user experience involves image acqui-
sition, algorithm training by labelling a subset of eggs in images of some of the vials, fol-
lowed by a batch analysis mode in which new images are automatically assessed for egg
numbers. Initial training typically requires approximately 10 minutes, while subsequent
image evaluation by the software is performed in just a few seconds. Given the average
time per vial for manual counting is approximately 40 seconds, our software introduces a
timesaving advantage for experiments starting with as few as 20 vials. We also describe an
optional acrylic box to be used as a digital camera mount and to provide controlled lighting
during image acquisition which will guarantee the conditions used in this study.
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Introduction

The fruitfly Drosophila melanogaster is a widely used model organism for research. One of the
most commonly measured metrics of adult physiology is female egg laying. Quantifying egg
laying is a laborious and onerous task that requires the experimenter to score eggs using a dis-
secting microscope and a hand-held tally counter. Given the advances in computer vision and
machine learning, we have developed an automated solution for this task.

In the imaging sciences, microscopy based experiments are often automated using software
and custom macros which optimise acquisition and/or analysis of raw data [1-4]. So far, there
is no analysis solution that can do this robustly and accurately for Drosophila eggs. Identifying
and counting eggs automatically from digital images is a challenging problem due to a number
of factors. For example, Drosophila may or may not lay their eggs uniformly across the surface
of the food, resulting in clumping and eggs varying in orientation. Another significant chal-
lenge is that the food surface can often be cracked or rough, partially obscuring eggs because
flies take advantage of these features when laying. Furthermore, different media formulations
can optically change the appearance of the eggs. More intelligent and powerful computer vision
(CV) algorithms, some of which mimic the human visual system, are now becoming available
which can intepret even highly complex imagery [5]. These CV techniques often have a large
number of parameters which require tuning for a given task (e.g. egg counting). Machine learn-
ing (ML) algorithms are often employed alongside CV algorithms because the ML component
automates the parameter optimisation freeing the user from the task. The role of the user in
this paradigm is to provide training material to the algorithm which allows the machine learn-
ing algorithm to refine the parameters accordingly. These algorithms are finding new applica-
tion in the biosciences with many successful applications [6-8]. There is however still a lot of
work to do to bring these techniques into the life sciences as these approaches require substan-
tial validation in the biological domain as well as further attention applied to how user-friendly
they are, and how they are distributed.

The goal of this study was to automate and optimize the task of counting eggs laid by female
fruitflies. The standard manual technique is labor intensive and time consuming, meaning it is
costly in terms of human resources, subject to user bias and fatigue errors. Manual counting
takes between 30 s to 2 minutes per vial and a typical experiment will contain between 50-100
vials meaning that longitudinal studies of egg laying (e.g. [9]) require hundreds of hours com-
mitted to egg counting. Automation should enable experiments to be performed with greater
ease and efficiency improving speed and reproducibility without accuracy tradeoffs. Here, we
report the design and validation of a versatile and highly accurate piece of software that we call
QuantiFly, that automates egg counting after a brief training period. This solution has the fol-
lowing features: 1) it is sufficiently quick and robust to compete with the existing manual meth-
od for accuracy and ease of use; 2) it is compatible with readily available digital capture
equipment so that any laboratory can employ it without difficultly, and; 3) it is simple to deploy
and interpret so that it is accessible to research scientists without computer science expertise.
We additionally report the blueprints for a simple and easily fabricated physical apparatus for
image acquisition to enhance speed, reproducibility and robustness and which can be used to
replicate the results of this study.

Materials and Methods
Algorithm Implementation

The QuantiFly software utilises the density estimation approach first proposed in Lempitsky
etal. (2010) [10] and later refined by Fiaschi et al (2012) [11]. We chose this approach because
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it is robust to changes in the appearance of eggs including those caused by clustering or altered
orientation as well as overlooking irregularities in the egg laying surfaces. In this paradigm ob-
jects are represented as 2d gaussian probablility distributions with a distribution centred on
each object in the scene. During the training phase the user is asked to click on the location of
objects to be counted (in this case eggs), creating a sparse representation of instance locations
within the image. The density value for pixels within the object are then generated through
convolution of the grid with a gaussian of specific width (sigma). The sigma of the kernel
should be chosen so that the output kernel is less than the size of the object, in this case

(sigma = 1.0). Pixels close to an object will contain a density value which represents the proba-
bility of that pixel being the center of an egg. Summation of these pixel values for the whole
image results in an overall count of eggs within the scene. Features for each pixel in the input
image are then generated using basic image filters to decompose the scene into its visual com-
ponents in a method which purportly mimics the mammalian visual system [12] by describing
the structures within digital images at several scales of detail [13-15]. Subsequent to feature
processing, each pixel in an input image is described by a feature vector, with each element of
the vector corresponding to a different filter output. The features calculated within the Quanti-
Fly software include Gaussian magnitude and derivative of Gaussian filters across multiple
scales and also the minimum and maximum eigenvalues of a structural tensor calculated at
each pixel location very similar to Fiaschi et al. [11]. In this paper we use as a feature desciptor
with 5 different scales (sigma = 0.8, 1.6, 3.2, 6.4, 12.8) and apply it to the the red, green and
blue channel of the input image, this technique is described throughout this paper as the
‘baseline’ approach.

The machine learning challenge for the density estimation approach is to organise and
group pixel feature vectors and their output labels so that density interpretations can be pre-
dicted quickly and accurately for unlabelled input images. In this study, an ensemble of deci-
sion trees was used for solving this learning objective [16], in particular the Extremely
Randomized Trees (ERT) framework [17]. The ERT framework takes the input image feature
vectors and learns to associate them with output densities, which are supplied by the user dur-
ing training. The ERT framework is highly accurate, but requires little or no optimisation when
compared to other decision tree frameworks and so is less computationally demanding and
faster to train [18]. Decision tree models utilise structures known as trees which are generated
from the training data and represent a hierarchy of node splits. At each node of the tree, a ran-
dom subset of features is chosen, along with a random threshold value for which to assess this
feature between the minimum and maximum possible values. The population of input pixels at
this node (which in the case of the top node, is all the training input pixels) is then used to as-
sess which feature is most appropriate to parse the associated pixel output labels (in this case
density values) for the population of input pixels. The goal of the algorithm is to pick the fea-
ture and associated threshold which reduces the entropy (variance in density labels) associated
with the two output groups resulting from each node split. This process is repeated recursively
until either the density values in a node are consistent or there are only a small number of val-
ues remaining at each node. The resulting structure is called a tree, at each level of the tree the
input pixels are split into smaller and smaller groups. Tree generation is repeated multiple
times (in this case 30 x) to produce an ensemble of decision trees. For an input image, the out-
put class for each pixel is calculated from each tree in the ensemble, the average response from
each tree for each pixel is then calculated and a density image generated. With this framework
in place, new images can be processed, features calculated and output densities predicted for
each pixel. To find the output egg count for a given image, all the output pixels are summed
from the density image created from the ERT framework.
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The QuantiFly software includes a novel training interface which allows the user to interac-
tively train the system. In the results section it is shown how many labelled images are required
to obtain a certain degree of accuracy, but from the outset it is informative and useful for the
user who is training the system to see feedback in an iterative fashion to the training data, as
they generate it. The user does this by selecting Regions of Interest (ROI) within the training
image dataset and then provides labels for the location of each object (in this case the Drosophi-
la eggs) by clicking on its position within this region. Once the system is trained the user can
evaluate test images and obtain a prediction for the number of eggs present in this image. It is
essential that the user mark the location of all the eggs within the training material, but with
the ROI system it is possible to label just one region from an image and then evaluate the whole
image and any other images using the available training data. This system allows users to gain
a quick sense of how the software operates, before committing to larger scale training.

We found during this study that the accuracy of the original algorithm could be improved
by applying a corrective transformation to the data. The parameters of the linear transform are
established from minimsing the error resulting from comparing the number of labels for re-
gions in the training set with their estimated number upon model evaluation:

B,e= argﬁrilinz Z(ﬁqu +¢— AC))

i j

Where PC;; represents the predicted count estimated for each region (j) of each image (i)
and ACijj is the actual ground-truth count provided by the user for corresponding region and
image. The gradient § and the offset ¢ are calculated using the python NumPy polyfit function
which performs the least-squares minimisation. Subsequently, the predicted counts of test im-
ages are corrected according to:

CCi = BPC, + ¢

Where CC; represents the corrected count for the image i.

Software and Distribution

The QuantiFly software source code and binary distributions for linux, Mac and Windows are
available to download (https://github.com/dwaithe/quantifly). The software was developed
using python 2.7.8 [19]. The ERT learning framework was implemented using the scikit-learn
python library (v 0.13.1) [20]. The training interface technology was developed using the py-
thon PyQT4 (v4.10.3) python library. The image features (gaussian gradient magnitude, lapla-
cian of guassian, structure tensor eigenvalues) were calculated using the python bindings of the
VIGRA image processing library [21]. Other essential python libraries used in the QuantiFly
software include: SciPy (v0.14.0), NumPy (v1.8.2) and PyInstaller (v.2.1).

Flies, media and egg laying

For all work, we used our laboratory strain of Drosophila melanogaster Dahomey. In general, 5
to 10 female flies were allowed to lay eggs on media in glass vials for up to 20 hours, at which
point flies were transferred to new media. The vials were then counted immediately or frozen
at -20 C for counting at a later time. The eggs in each vial were counted using a dissecting mi-
croscope and hand-held tally counter. The time taken to process a batch of vials was recorded.
A photo of each of the vials was then captured using a Logitech c920 webcam mounted on an
adjustable stand or in the camera-housing enclosure described below. For acquisition we used
the linux GTK+ UVC viewer software, although the default software for any webcam would be
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suitable. All media designated as opaque is sugar/yeast (SY) food, which was prepared at 1x
concentration (SYBrewers in Bass et al [22]) and the translucent media correspond to the holi-
dic, or defined, medium (DM) described in Piper et al [23].

Digital ground-truths and accuracy calculation

To assess the performance of different algorithms used in this study and to train the system in
a reproducible way, digital ground-truth data was required in addition to the conventional
manual assessment of egg counts in each image. Vial images were imported into Fiji one at a
time and then annotated using the point tool [2]. Annotated images were then exported as bi-
nary images and then imported with an evaluation script to train the algorithm and to evaluate
its performance. Throughout this study the accuracy of the algorithms are evaluated as percent
accuracy, which represents the absolute difference of the ground-truth and the predicted count
over the ground-truth count:

Accuracy(%) = %Z(\Pq — GT,|/GT,).100

i

where n is the total number of images in the dataset and GT represents the ground truth count
for each image. The package GraphPad Prism (v6,0d) was used for performing the statistics in
this study. The vial images and ground-truth annotations used in this study are available
through the software website (https://github.com/dwaithe/quantifly).

Camera Housing

In order to assist the long-term use of QuantiFly by a variety of users, we have also constructed
a camera-housing box consisting of a mounted web-cam, physical guides to control the vial po-
sition in the centre of the image and an array of LEDs to provide consistent and repeatable illu-
mination of the food surface from above for opaque media and underneath for transparent
media. Both image acquisition and control over illumination is achieved by an in-built arduino
chip connected to a computer. Please enquire for the blueprints. The camera-housing box was
developed in collaboration with, and manufactured by Luis Garcia of Polygonal Tree (http://
polygonaltree.github.io/egg_counter).

Results and Discussion
Core Algorithm

Due to the non-trivial nature of the imaging and counting problems associated with automat-
ing fly egg counting, we used an advanced computer vision and machine learning strategy
using a density estimation model [10, 11]. As an initial check of the appropriateness of this
technique, we trained the baseline algorithm by exhaustively labelling eggs in an image of eggs
laid on transparent fly food and then used the trained algorithm to evaluate the same image,
the procedure was then repeated for eggs laid on opaque fly food. Visually comparing the algo-
rithms density output (Fig 1B and 1D) with the original image (Fig 1A and 1C) showed the
eggs were well represented as areas of higher density, even when they varied in orientation, in-
tensity and some were found in clusters. Furthermore, the density estimation approach is toler-
ant to a number of visual artefacts that appear in vial images, such as marks on the container
that appear in the periphery of the images, reflected images of eggs, and bubbles in the medium
surface (Fig 1).

An inherent feature of using an extremely random decision tree framework for learning is
that training involves a degree of randomness such that for repeated rounds of algorithm
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pixel density

pixel density

0.0

Fig 1. Typical vial images illustrating varying lighting conditions and irregularities in media surface.
Original vial image (A) and egg density representation from QuantiFly (B) for transparent defined medium
(DM). Original vial image (C) and egg density representation (D) for opaque sugar/yeast (SY) medium. Red
arrows highlight artefacts present in images: (1) clumped eggs; (2) marks on vial base; (3) bubble artefacts in
media; (4) specular reflection from vial surface, and; (5) clumped eggs on food surface. Colour bar represents
pixel density estimate of an egg.

doi:10.1371/journal.pone.0127659.g001

training on a labelled image, a slightly different learned model is created. Subsequently, when
these models are directed to assess the number of eggs in a new image, each will yield a slightly
different count. Once trained however, a single ensemble model becomes fixed and it will al-
ways evaluate an image in the same way. To assess the effect of this variation on our final count
data, we took a single image of eggs on translucent fly medium, exhaustively labeled the eggs
and trained 100 x naive models on the labeled image. The distribution of derived counts was
broadly Gaussian, generating an average prediction of 214.8 £ 15.4 (s.d.), which was an accu-
rate representation of the ground truth count of 213. Thus the variation introduced into count-
ing by the variation in model training is less than 10% of the actual ground truth number for a
single training image. This is a small amount given the expected biological variation and with
additional training images the variation drops further (e.g with 5 images s.d. is 3%).

Addressing Bias in Algorithm Predictions

We next asked how sensitive is the algorithm to the range of egg densities experienced during
training. To do this, we selected images of 8 vials with translucent media and egg numbers
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ranging in density from ~ 15to ~410 eggs per vial. After training the algorithm on each of
these images, we assessed its ability to retrieve the number of eggs in the same 8 vials (Fig 2;
also see S1 Fig for all raw images used to generate all data in this manuscript). We noticed that
for a given vial, the predictive accuracy of the baseline algorithm worsened as the correspond-
ing ground truth for that vial deviated more from the mean of the eight vials used for training
(Fig 2A) such that those with ground-truths less than the mean tended to be over-estimated
and those with ground-truths above the mean tended to be under-estimated. This effect was
also apparent when we repeated the analysis on eight vials containing opaque medium (Fig
2B). For both media types, there was a strong positive linear correlation between the prediction
error and the vial ground-truth count (p < 0.001, linear regression t-test) intersecting the x-
axis at the mean of the ground-truth counts for the 8 vials. The bias-variance dilemma is a
well-known phenomenon in machine learning and is known to exist in the extremely random
decision tree framework [17, 24]. Bias results from using a model and/or features which are not
perfectly suited to the data being fit. In this case we believe that the bias stems from slight insuf-
ficiences in the feature detector, in its ability to discriminate image features that are from eggs
partially occluded in clusters. The feature vector although still correlated with density becomes
diluted, and so pixels from high density areas will become reduced and pixels from low density
areas will become eleviated. Fortunately, the predictable nature of this bias means that knowl-
edge from the training data can be used to apply corrections to the output counts to enhance
their accuracy.

We assessed the performance of this simple adjustment by using 7 of the 8 images for train-
ing and bias calculation and then evaluating the performance on the remaining 8th image, this
was repeated for each image in the dataset. This approach was applied to 8 different datasets
(a-d, f-j) comprising of independent vial images and datasets (e and j) which represent the data
in Fig 2A-2B respectively. The bias correction improved the algorithm performance for esti-
mating the true egg counts (Fig 2C) as well as improving the accuracy of the group average (for
all the transparent and opaque media datasets) from 89.6% to 93.5% and 76.9% to 85.0% for
the transparent and opaque media respectively (Fig 2D; p<0.01, Wilcoxon 1-tailed pair-wise
test) (Table 1).

Introducing QuantiFly Software

To implement the described technique in a user-friendly form, we developed a software pack-
age called QuantiFly. This consists of the baseline algorithm with the bias correction, along
with a novel ROI labelling interface. Although the software can in principle be tuned to any
counting task, such as cells in microscopy images or microbial colonies on plates, the parame-
ters and user interface of our software have been developed for the task of Drosophila egg
counting. A full user manual is available in S1 Text.

The workflow for QuantiFly training involves two stages: first the user is required to train
the algorithm by identifying eggs within a few ROIs on several exemplar images, and; second,
the software uses the model trained from step 1 to identify eggs in a batch of images. To initiate
training, the user loads an image via a conventional file-menu interface, selects a rectangular
ROI within the image to annotate and then identifies and labels instances of eggs within that
region (Fig 3). Once a sufficient number of regions have been selected and labelled (see Fig 4),
the algorithm is trained and the input image evaluated. The evaluated image is presented to the
user as a density interpretation of the original image. After inspection of this image the user
can alter the corresponding training labels, either to be more inclusive by selecting areas that
are poorly represented, or more conservative by excluding points that the user does not want
counted (e.g. artefacts or miss-clicks). Once three or more ROI have been labelled it is then
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Fig 2. Bias in baseline algorithm predictions can be corrected using linear transformation. The
baseline algorithm tends to over-estimate low egg counts and under-estimate high egg counts with the error
polarity and magnitude related to the mean of the training set. (A-B) error associated with egg counts (y-axis)
from a set of vials containing transparent (A) or opaque (B) media selected to span a broad range of ground-
truth values (x-axis). There is a significant linear correlation with an x-axis intercept close to the mean of the
distribution in these two datasets, confidence interval (95%) is indicated as dashed coloured lines. (C)
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Through calculating bias correction during training it is possible to correct the baseline predictive estimate for
vial counts. The accuracy was improved for 10 different datasets when bias correction was applied, depicted
in panel (transparent media; a-e) and (opaque media; f-j). (D) Summary comparison of transparent media
datasets without correction (light-blue) and with bias correction (dark-blue) and of opaque media without
correction (yellow-orange) and with correction (dark-orange). Bias correction increased accuracy in both
media types. Each dataset was captured independently and contains 8 vial images with the exception of e
and j which represent the vials depicted in A and B repectively. A Leave-one-out cross-validation strategy
was performed for each vial (7 in and 1 out). Accuracy represents average of five statistical replicates, error
bars represent SE (n = 5, statistical replicates); * represents P<0.05, Mann-Whitney one-tailed test.

doi:10.1371/journal.pone.0127659.g002

possible to correct for bias in the image. The corrected output count is displayed along with
confidence intervals (95%) which provide some feed-back as to the effectiveness of the correc-
tion. The more narrow the confidence interval is around the predicted count the more certain
the user can be that the correction is having a positive impact on the given image. Once this
tuning phase is complete, the refined algorithm can be used to evaluate a batch of images and
the data is returned to the user as counts in a spreadsheet.

Training Requirements of QuantiFly Software

The flexible QuantiFly training interface allows whole images or sub-regions of images to be la-
beled and submitted for training. For a given image or media type however, it is desirable to
know how much training is required to achieve top predictive performance. To assess this, we
took 8 images with corresponding ground-truths and used a cross validation strategy to charac-
terise the accuracy. For this, one of the 8 images in a group was omitted from training and an
increasing number of the remaining 7 images was used to train a different naive model. With
each of these 7 trained models, the system was used to evaluate the unseen 8th image and the
accuracy of the prediction calculated by comparing it to the ground-truth count for that vial.
This whole process was then repeated seven more times with the unseen test image being rotat-
ed for each iteration. Finally, the entire sequence was repeated for each of 10 different sets of 8

Table 1. Performance of algorithm on defined media and SY-media datasets.

Media: Defined Media (transparent)

Dataset: a b © d e

Number of vials: 8 8 8 8 8

Number of eggs: 848 1847 1534 505 1407
Baseline Accuracy: 93.5 £ 0.5% 86.5 £ 0.6% 93.7 £ 0.8% 91.0 £ 0.4% 83.5+0.6%
QuantiFly Accuracy: 94.8 £ 0.3% 93.5 £ 0.2% 96.6 £ 0.1% 92.9 £ 0.3% 89.8 £ 0.5%
Media: SY Media (opaque)

Dataset: f g h i ]

Number of vials: 8 8 8 8 8

Number of eggs: 1119 671 720 1533 1432
Baseline Accuracy: 85.1+0.7% 75.4 £1.2% 81.7+0.7% 76.3+0.7% 65.9+0.7%
QuantiFly Accuracy: 86.9 + 0.2% 89.1 + 0.3% 82.2+0.3% 85.7 + 0.3% 83.0 + 0.6%

Datasets contain 8 vial images. A Leave-one-out cross-validation strategy was performed for each vial (7 in and 1 out). Standard error was generated
from n = 5 trials (statistical replicates). QuantiFly Accuracy represents the baseline algorithm with the bias correction.

doi:10.1371/journal.pone.0127659.t001
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Fig 3. Schematic illustration of training and evaluation modes of QuantiFly software. (Left) Training mode: steps required to train a QuantiFly model to
recognise eggs in an image scene. (Right) Evaluation mode: steps involved with evaluating a bulk number of images with a pre-trained model. Blue circles
depict points at which a user must provide information to the system, either specifying input/output locations of files or through labelling eggs in images.

doi:10.1371/journal.pone.0127659.g003

vials: 5 sets with transparent media (Fig 4a; groups a-e), and; 5 sets with opaque media (Fig 4A;
groups f-j).

The quality of the QuantiFly software prediction varied depending on the number of images
used in the training. In most cases the performance of the algorithm increased dramatically
when the training was increased from one image to two images while a few of the datasets re-
quired only one dataset for high quality predictions (Fig 4A groups a, b, e). Training on more
than two images produced significant improvements in two of the 10 groups of vials tested (Fig
4C, groups h and j)(p<0.05, Students t-test). To assure high accuracy for all types of media, we
recommend 5 or more images to be used for training, which for the vials in this example, corre-
sponded to approximately 600 labelled eggs (Fig 4B and 4D). Although QuantiFly can provide
highly accurate output predictions from a modest amount of training data it is important to
highlight that experiments should be designed with biological variation in mind. To this end, it
is important, for a given condition, that at least 10 vials be used and potentially more depend-
ing on the magnitude of the differences expected between the conditions being studied. This
level of replication should account for outliers and variation originating from biological noise
and vial preparation differences.

Performance Compared to Human Counters

The current standard for quantifying egg laying involves a laboratory researcher inspecting in-
dividual vials under a dissecting microscope and scoring eggs with a hand-held tally counter.

To compare the performance of QuantiFly to that of a human, we recreated an experiment we
would normally perform in our laboratory. For each of four nutritionally different translucent
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Fig 4. Characterisation of the quantity of training material required to achieve high prediction
accuracy with QuantiFly software. The QuantiFly software accuracy was compared on transparent and
opaque media datasets after training with 1-7 training images. (A) Average accuracy of algorithm when
compared to digital ground-truth for transparent media datasets (a-e). (B) Average number of eggs labelled
for each level of training for transparent media dataset. (C) Average accuracy of algorithm when compared to
digital ground-truth for opaque media datasets (f-j) (D) Average number of eggs labelled for each level of
training for opaque media dataset. Each level of training was performed on every image in the dataset and
repeated 5 x. for each dataset and the accuracy averaged across all data. Error bars are SE. Students t-test
paired two-way analysis was performed on data (p<0.05)

doi:10.1371/journal.pone.0127659.9004
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Fig 5. Comparison of QuantiFly performance when compared to human counter. Digital images were
captured for four nutritionally different transparent media (A; C1-C4) and 4 different opaque media (B; D1-4).
Estimates of the eggs in each vial were compared for the following methods: automated counts from
QuantiFly algorithm; manual counts from a human and a digital on-screen ground-truth count (grey). (C)
Image of opaque media vial with densely clustered eggs, red arrow 2 shows region with high-level of
clustering. Error bars represent standard error of differences in vial densities in each condition (C1-4,n=8;
D1-4, n = 5 vials per condition).

doi:10.1371/journal.pone.0127659.g005

media, we prepared 10 vials (40 vials, Fig 5A) and for 4 different opaque media we prepared 5
vials (20 vials, Fig 5B). In each of these vials, 5 mated females were maintained for ~ 18 hours,
at which point the flies were removed and the eggs scored manually. The vials were then photo-
graphed under controlled lighting conditions and two randomly chosen images from each con-
dition (8 in total) were used to train the system. In each case, a skilled human operator
annotated the eggs on screen in the eight training images and used these annotations to train
the system. When comparing the performance of QuantiFly versus the human manual count
to assess the number of eggs per vial for all vials, we found that the data were highly similar,
such that for the translucent media, all four conditions were distributed in the same way for
both counting methods. Moreover, the absolute values between conditions were highly similar
(Table 2). Similarly, for the opaque media, we found good concordance between QuantiFly and
manual counts although at very high egg densities (200-400 eggs per vial) QuantiFly scored
fewer eggs than the manual counter. (Table 2). To investigate the source of these differences,
we generated a comprehensive digital on-screen count for each vial and compared these data
with the manual count and QuantiFly estimates (Fig 5a and 5b). This revealed that the Quanti-
Fly output more closely resembled the digital human counts than the manual counts (Table 2).
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Table 2. Performance of QuantiFly on transparent and opaque media compared to human manual counts and digital ground-truth counts for each
dataset.

Media: Defined Media (transparent)
Condition: C1 Pairwise Fold Difference correlation
(count+SE; 10 vials) Q M D Q M D Q M D
Q 78195 ns ns 1.00 0.96 0.92 0.05 0.78
M 75.2+5.0 ns ns 1.04 1.00 0.96 0.05 0.42
D 721 5.1 ns ns 1.08 1.04 1.00 0.78 0.42
Condition: C2 Pairwise Fold Difference correlation
(count+SE; 10 vials) Q M D Q M D Q M D
Q 111.3+ 104 ns ns 1.00 0.87 0.80 0.89 0.88
M 96.6 + 8.4 ns ns 1.15 1.00 0.92 0.89 0.83
D 88.8+6.7 ns ns 1.25 1.09 1.00 0.88 0.83
Condition: C3 Pairwise Fold Difference correlation
(count+SE; 10 vials) Q M D Q M D Q M D
Q 185.5+5.8 0.05 ns 1.00 117 1.01 0.57 0.65
M 216.6+11.9 0.05 ns 0.86 1.00 0.87 0.57 0.90
D 187.7 £ 6.8 ns ns 0.99 1.15 1.00 0.65 0.90
Condition: C4 Pairwise Fold Difference correlation
(count+SE; 10 vials) Q M D Q M D Q M D
Q 226+6.2 ns ns 1.00 1.69 1.51 0.95 0.96
M 38.1+5.6 ns ns 0.59 1.00 0.90 0.95 0.97
D 342+52 ns ns 0.66 1.11 1.00 0.96 0.97
Media: SY Media (opaque)
Condition: D1 Pairwise Fold Difference correlation
(count+SE; 5 vials) Q M D Q M D Q M D
Q 80.6 £ 13.5 ns ns 1.00 0.78 0.76 0.98 1.00
M 62.8+7.6 ns ns 1.28 1.00 0.98 0.98 0.98
D 61.6+6.6 ns ns 1.31 1.02 1.00 1.00 0.98
Condition: D2 Pairwise Fold Difference correlation
(count+SE; 5 vials) Q M D Q M D Q M D
Q 721 +25.7 ns ns 1.00 0.96 0.82 0.97 0.97
M 69.0+114 ns ns 1.04 1.00 0.86 0.97 0.96
D 59.4 +10.4 ns ns 1.21 1.16 1.00 0.96 0.96
Condition: D3 Pairwise Fold Difference correlation
(count+SE; 5 vials) Q M D Q M D Q M D
Q 233.4+17.6 ns ns 1.00 1.41 1.18 0.91 0.75
M 329.2+29.2 ns ns 0.71 1.00 0.83 0.91 0.94
D 2746+ 36.9 ns ns 0.85 1.20 1.00 0.75 0.94
Condition: D4 Pairwise Fold Difference correlation
(count+SE; 5 vials) Q M D Q M D Q M D
Q 282.8 +47.2 ns ns 1.00 1.51 1.13 0.67 0.56
M 428.2 +18.4 ns ns 0.66 1.00 0.75 0.67 0.77
D 320.2 + 44.1 ns ns 0.88 1.34 1.00 0.56 0.77

Q:QuantiFly prediction, M: Manual human counts, D: Digital ground-truth counts. Pairwise: Tukeys pairwise comparison; Fold Difference; the fold
difference between counts; Correlation, Pearsons correlation coefficient for each comparison.

doi:10.1371/journal.pone.0127659.1002
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Fig 6. Sample size calculation. (A) The number of replicates required to achieve a confidence interval of below 0.05 was calculated for the manual human
count compared to the QuantiFly software using population standard deviation calculated from Fig 5A and 5C. Plot represents the number of replicates
required to separate conditions which differ by 1.1 fold. (B) Projected time requirements for counting vials for a single condition using the existing manual
approach or the QuantiFly software.

doi:10.1371/journal.pone.0127659.9g006

These differences could arise due to the process of image capture obscuring some eggs that can
only be counted manually, and / or, the accuracy of manual counting decreasing at very high
egg densities due to egg clustering (e.g. Fig 5¢) and counter fatigue.

Sample Size Calculation and Time Analysis

A major advantage to an automated system for egg counting is its ability to save time. For the
transparent media shown in Fig 5A, the human manual counts took on average 48.9 + 3.9 s for
each vial, taking 33 min in total for all 40 vials. In contrast, for the QuantiFly software, 10 min
was required to annotate images and to train the software and only a few seconds was then re-
quired for the software to evaluate each image in the dataset. Thus, we achieved a significant
time saving with only a relatively small experiment and since the time investment into training
is only made once, the user would save an additional ~ 45 seconds for each additional vial
added to the experiment.

To illustrate this saving, we found the relationship between the average vial count and the
standard deviation for each condition in Fig 5 and calculated the number of replicates required
to achieve significance for a 1.1 fold egg count difference (Fig 6A). For a researcher to distin-
guish conditions, which for example are 50 and 45, would take 70 replicates for manual counts
and 80 replicates for QuantiFly. This would take a human counter approximately one hour of
consistent counting whereas this experiment would take approximately 13 minutes using
QuantiFly (Fig 6B). In fact, we predict QuantiFly should save time for any single food type ex-
periment in which more than 13 vials need to be counted (Fig 6B). Furthermore, given that the
main overhead with the QuantiFly software is the training phase, we have made it possible to
evaluate the performance of more than one pre-saved model on the given data without signifi-
cant investment of time. If a batch of models had been saved from previous training data then
it is straight-forward with the software to evaluate more than one model and to compare the re-
sults. If acquisition settings are particularly consistent over-time then it may be possible to
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reuse models from previous experiments without the need to retrain each time, thus saving
additional time.

Conclusions

We report the testing, optimisation and implementation of a machine-learning technique for
the task of automating Drosophila egg counting. In doing so, we transformed a conceptual al-
gorithm accessible only to computer scientists, into a user-friendly piece of software called
QuantiFly. During this process we identified a limitation in the baseline algorithm and cor-
rected for it with a simple transformation improving the accuracy of the algorithm. The soft-
ware is available and compiled for the three major operating systems and the only additional
equipment required is to provide a means to capture digital images of the eggs. For this pur-
pose, we have also designed a box that serves as a camera mount and offers controlled lighting
conditions. For plans and pictures of this hardware, as well as the possibility of ordering it,
please visit:http://polygonaltree.github.io/egg_counter/. QuantiFly is both accurate and offers
enormous timesaving potential to any individual facing the unenviable task of counting

fly eggs.

Supporting Information

S1 Fig. Vial Images used in study. Images of vials used in datasets a-j and in conditions
C1-C4 and D1-D4 for human manual count versus QuantiFly predictions.
(PDF)

S1 Text. User manual for using QuantiFly software. Step-by-step instructions for the training
of QuantiFly software and also how to perform bulk evaluation of images.
(PDF)
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