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Anomalous diffusion of nanoparticles
in the spatially heterogeneous biofilm environment

Bart Coppens,1,4 Tom E.R. Belpaire,1,4 Ji�rı́ Pe�sek,2 Hans P. Steenackers,3 Herman Ramon,1 and Bart Smeets1,5,*

SUMMARY

Biofilms contain extracellular polymeric substances (EPS) that provide structural
support and restrict penetration of antimicrobial treatment. To overcome limited
penetration, functionalized nanoparticles (NPs) have been suggested as carriers
for antimicrobial delivery. Using microscopy, we evaluate the diffusion of nano-
particles in function of the structure of Salmonella biofilms. We observe anoma-
lous diffusion and heterogeneous mobility of NPs resulting in distinct NPs distri-
bution that depended on biofilm structure. Through Brownian dynamics
modeling with spatially varying viscosity around bacteria, we demonstrated
that spatial gradients in diffusivity generate viscous sinks that trap NPs near bac-
teria. This model replicates the characteristic diffusion signature and vertical dis-
tribution of NPs in the biofilm. From a treatment perspective, our work indicates
that both biofilm structure and the level of EPS can impact NP drug delivery,
where low levels of EPSmight benefit delivery by immobilizing NPs closer to bac-
teria and higher levels hamper delivery due to shielding effects.

INTRODUCTION

Biofilms are communities of bacteria, typically encapsulated in a self-produced matrix of extracellular poly-

meric substances (EPS) and considered to be the predominant bacterial lifestyle.1,2 The EPS establish a het-

erogeneous biophysical environment and form a barrier that slows down diffusion,1,3,4 and may thereby

hamper treatment of biofilms with conventional antibiotics. To this end, nanoparticles (NPs) have been pro-

posed as a delivery system for biofilm treatment, acting as protective carriers and possibly improving pene-

tration via surface modifications.5,6 However, NPs experience a variety of interactions in the biofilm, such as

size-dependent filtering due to limited pore size,7–10 electrostatic interaction from charged components in

the biofilm matrix,7–11 and chemical interactions.12–14 The complexity and variability of these interactions

has impeded the mechanistic characterization of NP diffusion in the biofilm.15,16 Furthermore, the manner

in which these interactions influence NP penetration depends on the spatial organization of bacteria in the

biofilm and on the spatial distribution of the EPS matrix.17

In experiments, biofilm architecture can be partially controlled,6,18,19 but it is impracticable to fully separate

structural effects from other biofilm properties such as matrix composition, since these factors are strongly

linked.20 Here, computational models can provide complementary understanding of diffusion in complex

environments.15,16 For crowded environments such as biofilms, particle-based Brownian dynamics (BD)

models are an attractive alternative to continuum approaches such as reaction-diffusion models21 or plum-

pudding models.22 They can innately reproduce various aspects of anomalous diffusion, where the

mean squared displacement does not increase linearly with time, or, equivalently, the displacement distri-

bution does not follow a Gaussian profile.23 Moreover, they are able to provide single-particle information

that can be directly compared to experimental data from single-particle tracking (SPT) and micro-

scopy.24–29 Yet, amechanistic representation of all microscopic interactions, such as van derWaals forces,13

and adhesive and electrostatic forces,25,26,30 requires a large number of specific properties, most of which

are difficult to obtain from biofilm experiments. Alternatively, BD simulations can coarse-grain these inter-

actions, such that the slowdown of diffusion due to capture-release processes is represented through a

locally decreased effective diffusivity.31 Such approach has, to the best of our knowledge, not yet been

applied to the complex system of biofilms. The spatial distribution of decreased diffusivity — or corre-

spondingly, increased viscosity — then models the spatial heterogeneity of the complex environment.

Such a localized increase in viscosity has also been noted in recent microrheology experiments where,

due to the presence of EPS, microscale viscosity gradients — termed ‘‘viscospheres’’ — were observed
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in the vicinity of planktonic cells and within cell aggregates, an effect that was attributed to the presence of

EPS.32 Interestingly, these inhomogeneities in viscosity are expected to act as ‘‘viscous sinks’’, as particles

will accumulate in regions of high viscosity around cells and deplete in regions of low viscosity, a phenom-

enon that has been termed diffusive lensing.33

In this work, we investigate how the penetration of NPs in Salmonella enterica Typhimurium biofilms is

affected by (i) the spatial distribution of bacterial clusters, and (ii) the EPS volume surrounding bacteria

within the clusters. By changing nutrient availability, we control the degree of compaction/dispersedness

of in vitro biofilms. Using confocal laser scanningmicroscopy (CLSM), we localize and track individual NPs in

these biofilms, finding an anomalous diffusion signature, strong co-localization of NPs with bacteria, and a

marked difference in penetration between biofilms that differ in degree of compaction. Inspired by the

theoretical model from Spakowitz,31 we introduce a novel BD model of NP diffusion in biofilms, which rep-

resents NP-EPS interactions using a spatial kernel of elevated viscosity around individual bacteria, as

observed empirically by Guadayol et al.32 and suggested to be governed by subsequent exudation, diffu-

sion, and clustering of EPS components from the bacteria. We perform BD simulations of NP diffusion in

biofilm structures directly obtained from microscopy images. We demonstrate that this model is able to

reproduce the experimentally observed diffusion signature and explain the difference between NP pene-

tration in compact and dispersed biofilm architecture. Hence, we show that the diffusion behavior of NPs in

the biofilm is consistent with the EPS forming viscous sinks for NPs. Finally, we perform BD simulations in

virtual parametric biofilms of varying compactness generated from the Cahn-Hilliard equations for phase

separation.34–37 These simulations reveal that more dispersed biofilm structures can impede penetration of

NPs due to a shielding effect that originates from an increased surface area of the viscous EPS sinks that

immobilize the NPs.

RESULTS

Spatial distribution of bacteria creates a heterogeneous diffusion environment

As an experimental model system, we grew S. Typhimurium biofilms, which were incubated in nutrient-rich

and nutrient-poor conditions for 48 h to obtain different spatial structures. Visualization with CLSM shows

that the abundance of nutrients has a pronounced effect on biofilm structure (Figures 1A, 1B and S1).

Compared to nutrient-rich conditions, biofilms grown in nutrient-poor conditions had a lower mean thick-

ness (Figure 1C), but higher levels of compaction (Figures 1F, S2A and S2C) and a higher degree of nematic

and vertical alignment (Figures 1G and 1H and Figures S2B and S2D). However, the effect of nutrient avail-

ability on the overall volume density (Figure 1D) and biovolume (Figure 1E) was not significant.

Figure 1. Structural quantification of Salmonella biofilms grown in rich and poor nutrient conditions

(A–H)Maximum intensity orthogonal projections of fluorescent blue Salmonella enterica Typhimurium biofilm, incubated in nutrient-poor a or nutrient-rich b

conditions. Contrast was enhanced equally in both conditions for visualization purposes. Comparison between nutrient-poor and nutrient-rich grown

biofilms of cmean thickness (p = 0.01), dmean pairwise distance from each bacteria to its 20 nearest neighbors (p = 0.00036),e nematic order of each bacteria

relative to its 20 nearest neighbors (p = 8.3e-6), fmean angle of each bacteria relative to the substrate (p = 3.3e-5), g biofilm volume relative to substrate area

(p = 0.18), h volume density of bacteria with respect to 3D image volume (p = 0.42). Error bars indicate standard deviation over the mean of 3 biological

repeats. Measures for each of the three independent biofilm repeats are shown as points. All significance levels were obtained via pairwise t-tests, without

multiple test correction.
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Although these differences in biofilm structure are expected to impact NP penetration, the effect is not

necessarily straightforward. On the one hand, an increased degree of biofilm compaction will increase

the volume of void space between clusters andmight thereby enhance NP penetration through the biofilm.

On the other hand, more dense, compact clusters might inhibit NP from entering and thereby protect bac-

teria at the center of the cluster. In order to evaluate the effect of structure on NP penetration, we added

fluorescent NPs to these biofilms and localized the position of NPs after 1 h. We then quantified the vertical

distribution of NPs relative to the height of the biofilm (Figures 2A and 2B). In the case of nutrient-poor bio-

films, the vertical distribution of NP approximately reflects the vertical distribution of bacteria. In marked

contrast, the NPs appear to be predominantly concentrated in the upper layers of the biofilms grown in

nutrient-rich conditions, suggesting a strong shielding effect where bacteria at the bottom of the biofilm

are not in the proximity of any NP.

To elucidate the movement of NPs, we performed SPT to quantify the diffusion characteristics of fluorescent

NPs within the nutrient-poor 48 h old Salmonella biofilms. We found a range of different dynamic behaviors

of NPs depending on their proximity to biofilm bacteria and the structural elements to which the NPs are

exposed. Whereas NPs in the void spaces between clusters of bacteria move more freely, NPs near the clusters

appear more confined and move more slowly (Figure 2B). We observed a similar disparity based on the

ensemble displacement distribution, where there is an increased probability of small displacements, indicative

of confinedmovement (Figure 2C). The ensemble displacement distribution (DispD), with full data in Figure S3,

shows exponential tails, further deviating from a Gaussian distribution that would be characteristic of simple

diffusion. In case the diffusion coefficientD follows an exponential distribution, the ensemble distribution of dis-

placements is expected to exhibit such exponential tails. This effect can, however, even occur for a non-expo-

nential distribution of D at sufficiently short lag times.23,38 This appears to be the case in our results, as the

measured effective diffusion coefficient, calculated from the time-averaged MSD, follows a bimodal distribu-

tion, with a relatively small fraction of mobile particles and a large fraction of immobilized particles for which

Dz0 (Figure 2D). Finally, the diffusion exponent a, assuming x2ðDÞfDaD
a, indicates the presence of subdiffu-

sive anomalous diffusion where a< 1 and NPs are confined to a small area (Figure 2E). Overall, these experi-

ments show that the spatial distributionof bacteria in thebiofilmpresents a highly heterogeneous diffusion envi-

ronment in which NPs are slowed down or immobilized in the vicinity of bacteria.

Figure 2. Nanoparticle penetration in structurally different biofilms

(A and B) Mean height distribution (perpendicular to the glass surface) of NPs (green) and bacteria (blue), 1 h after NP

addition to nutrient-poor and nutrient-rich Salmonella enterica Typhimurium biofilms. Distribution of b NP displacement

tracks (colored relative to track length as a measure for mobility) over 1 min, 20 min after NP addition in a nutrient-poor

biofilm (bacteria shown in blue).

(C) Ensemble probability distribution of displacements with a lag time of Dt = 0.1 s. The dashed line shows the slope for a

Laplacian fit, estimated via non-linear least squares on the displacement curves on log scale.

(D) Distribution of the diffusion coefficients D, estimated via linear least squares on the time-averaged mean squared

displacement (TAMSD) as x2ðDÞfDD. A break was included in the y axis to show the distribution of larger D as well.

(E) Distribution of anomalous diffusion exponents a, estimated via non-linear least squares on the TAMSD.
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Brownian dynamics with heterogeneous EPS viscosity models NP diffusion in biofilms

Toexplain theeffectof spatial heterogeneity onNPpenetration,we simulate thediffusionofNPs in abiofilmwith

a novel BD model. Rather than mechanistically incorporating interactions such as van der Waals forces, sterical

interactions due to the polymer network, electrostatic interactions due to surface charges, and chemical interac-

tions,13,15,16,30 this model coarse-grains these interactions and accounts for them bymeans of a heterogeneous

viscosity landscape. This approach assumes that these interactions can be represented as viscosity increases of

varyingmagnitude, and allows us to simulateNPdiffusion in large biofilm systemswithout explicitlymodeling all

microscopic details. We represent interactions between EPS and NPs using a Gaussian-shaped viscosity kernel

hðxiÞ, with the highest viscosity DhM near the surface of bacteria, declining to bulk viscosity h0 as

hðxiÞ = h0 +DhM

XN
j = 1

e�kxi � xjk2=2s2M ; (Equation 1)

with xj the position of bacteria j (Figure 3A). Motivated by the observation that NPs are strongly immobilized

near dense clusters of bacteria, we considered the viscosity kernels to be additive in our model. The shape

of the kernel is inspired by the observation that the intensity of EPS staining decays according to a Gaussian

profile (Figures 3B–3D), and is in line with preceding theoretical work.10,31,39,40 Moreover, it is consistent with

Figure 3. Brownian dynamics modeling in experimentally observed biofilm structures

(A) Schematic of Brownian dynamics model, which shows a Gaussian decay in viscosity with increasing distance to the

surface of the bacteria. Viscosity is assumed to be additive, and hence further slowing down diffusion when in the vicinity

of multiple bacteria.

(B) CLSM images of fluorescently stained EPS, using EbbaBiolight 680, for nutrient-poor (left) and nutrient-rich (right) biofilms.

(C) Normalized EPS intensity in function of the distance from the surface of segmented bacteria fitted with non-linear least

squares as a Gaussian decay I = I0 exp ð� ðx=sMÞ2Þ.
(D) Fitted Gaussian decay length sM for nutrient-poor and nutrient-rich conditions. Error bars indicate standard deviation

over three biological repeats, and measures for each of the three independent biofilm repeats are shown as points. A

t-test resulted in a p value of 0.85.

(E) Simulated NPs (red) in nutrient-poor and nutrient-rich biofilms acquired through segmentation of the bacterial channel

of the experimental CLSM images. Bacteria are colored relative to their height in the biofilm.

(F) Ensemble displacement distributions for both nutrient-poor (top) and nutrient-rich biofilm (bottom) structures with a

lag time of Dt = 0:1 s. The filled area denotes the standard deviation over three biological repeats.

(G) Height distribution of the simulated NPs for varying EPS viscosity DhM . Height distributions were obtained by

simulated NP positions and empirical bacterial positions from three biological repeats.
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recent microrheology experiments, which found a sharp gradient of viscosity in the immediate vicinity of plank-

tonic microbes that was attributed to the presence of EPS.32 The sharp gradients in viscosity in Equation 1 are

expected to produce ‘‘viscous sinks’’ that will immobilize NPs in the vicinity of bacteria.33

We now examine whether this minimal two-parameter model is consistent with the observed diffusion

behavior ofNPs in thebiofilm. Basedon thedecay of the EPS fluorescence in function of distance tobacteria,

we estimated that the length-scale sM of the Gaussian decay is approximately 0:42 mm.Moreover, we found

that this length scale does not differ significantly between nutrient-poor and nutrient-rich growth conditions

(Figure 3D). Varying the EPS viscosity DhM and the length scale of the EPS sM allows us to tune the diffusion

characteristics of the EPS structure in simulations. To compare our model to the experimental results, we

simulated the diffusion of NPs in an in silico reproduction of the experimentally observed biofilm structures

of both nutrient-poor and nutrient-rich conditions (Figure 3E). After setting the EPS length-scale sM =

0:42 mm as estimated from the experiments, we varied the maximal viscosity DhM. The simulated displace-

ment distributions display the same characteristic shape with a sharp central peak and a slowly decaying

long tail (Figure 3F). The height of the peak, which corresponds to the fraction of slowly moving particles,

increases with EPS viscosity. We found that the width of the central peak, corresponding to the heteroge-

neity within the slowly moving fraction, is independent of the EPS viscosity. In contrast, altering the length

scale of the EPS sM at constant EPS viscosity does vary the width of the central peak, as this controls the

smoothness of spatial variation of the viscosity (Figure S4). In the nutrient-poor biofilm structure, simulations

predict that for low values of DhM, the height distribution reflects the height distribution of bacteria, as was

also the case in the experiment (Figures 3G and S5). This shows that the presence of weak interactions be-

tween EPS and NPs can improve the co-localization of NPs and bacteria, as the absence of interactions

would lead to a near-uniform penetration profile (Figure S6). Conversely, in nutrient-rich structures, simula-

tions predict that for the same value of sM, a vertical shielding effect occurs, which becomes more strongly

pronounced with increasing DhM, reflecting an increased capture of NPs in the top layers of the biofilm. In

addition, a qualitative comparison between these simulations and the experimental results, Figure 2A, sug-

gests that the EPS viscosity in nutrient-rich biofilms is increased relative to the nutrient-poor biofilms.

To further assess the impact of the amplitude and the length scale of the viscosity kernel on NP-based treat-

ment, we introduce ‘‘affinity’’ and ‘‘coverage length’’ (Figure S7). Affinity, which is defined as the percentage

of NPs closer than the characteristic length scale of the EPS (Figure S8), indicates the ability of NPs to effec-

tively reach bacteria in the biofilm (Figure 4A). The presence of heterogeneous viscosity greatly increases

affinity, even at small values of EPS viscosity DhM (Figure 4B). Increasing DhM further immobilizes the NPs

farther away from the bacteria, resulting in a decrease in affinity. Similarly, increasing the EPS length-scale

sM without altering the threshold for affinity causes an initial increase in affinity until sMz0:2 mm, after which

affinity sharply drops, as the trapped NPs are located further away from the bacteria, Figure 4C. Thus, the

presence of matrix interactions, even at low DhM or sM, increases the affinity drastically, indicating that

even weak NP-biofilm interactions raise particle retention in biofilms. Coverage length is defined as the me-

dian distance from each bacteria to its closest NP, (Figure 4D). Hence, a large coverage length signifies that

(some) bacteria are not reached by NPs and is thus indicative of a strong shielding effect. Consistent with the

observed NP height distributions (Figures 3A and 3B), the coverage length increases with the length scale

and viscosity of the EPS (Figures 4E and 4F), although an initial reduction in coverage length was observed at

small DhM and sM, mirroring the initial increase in affinity. Furthermore, coverage length sharply increases at

large sM, which can be attributed to a decrease in pore connectivity at large sM, and is markedly higher in

nutrient-rich conditions (Figures 4G and 4H). The latter can be partly explained by a difference in biofilm

height (z factor two compared to nutrient-poor conditions), but also by a reduced pore connectivity as

the fine-grained pore structure loses percolation more rapidly (Figures S9–S11), as well as by an increased

pore surface-to-volume ratio and the corresponding increased absorption of the viscous sinks (Figure 4I).

Viscous shielding in dispersed biofilms limits nanoparticle penetration

Although our results indicate that the spatial distribution of bacteria in the biofilm affects NP penetration,

the experimental structures differed in multiple, potentially confounding, structural aspects as well as in the

total number of bacteria (Figure S2A). To explicitly assess how the spatial organization of biofilm bacteria

affects the penetration success of NPs, we apply our model to virtually generated biofilms that differ in

spatial cell distribution but conserve the total number of bacteria. To this end, we solved the Cahn-

Hilliard equations (CH) for phase separation for a binary mixture (void space and biofilm). Phase separation

theory has been used to characterize experimental biofilm formation,34–37 and consequently applied to
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generate representative virtual biofilm structures.41 As the mixture coarsens over time t, the characteristic

length Lt of domains increases as Lt � t1=3. Using a zero concentration boundary condition at the top and

natural boundary conditions at the remaining sides, we obtained a collection of virtual biofilms with varying

degrees of compaction but with an equal number of bacteria (Figure 5A). These structures vary from a nearly

uniformdistributionof bacteria at low Lt to highly compactedbiofilm structures at high Lt . Thepore structure

for sM = 0:5 mmand sM = 1:0 mm is shown in Figure 5B. At high Lt , the pores between clusters are large, and

the pore structure remains percolated even at large sM. Yet, the viscosity within compact clusters at high Lt is

also greatly elevated due to the additive nature of the viscosity kernel (Figure S12). Simulations of NP diffu-

sion in these structures show that at small sM, affinity is reduced for increasing biofilm compaction, as more

NPs diffuse freely in the larger open pore space (Figure 5C). Moreover, we found that coverage length de-

creases with Lt (Figure 5D), an effect that is more pronounced at large sM (Figures S13–S15). In the context of

encapsulation and subsequent release of antibiotics inside theNPs,moredispersed structures could further

increase localized differences in antibiotic concentrations (Figure S16).

DISCUSSION

The existence of diffusion barriers is considered an important characteristic of the biofilm lifestyle, and is of

particular relevance for biofilm growth,42 treatment,13,15,16 and tolerance.10 However, the physical mechanisms

that underlie these barriersmay be varied. For example, the penetration ofmany small chemical species such as

antibiotics is not restricted per se, but is thought to be quenched through diffusion–reaction inhibition in the

outer layers of the biofilm.15,43,44 This work provides a complementary view to conceptualize diffusion in bio-

films: Rather than merely reducing diffusivity itself (Figure 6), the EPS, through its spatially heterogeneous dis-

tribution, present sharp microscale gradients of diffusivity. These gradients produce a diffusive lensing effect

that will establish concentration differences in the biofilm. Somewhat counter-intuitively due to the association

of viscosity with time-dependent phenomena, these differences are not transient but remain present in equilib-

rium, as exemplified in the prototypical experiment of a box with two compartments of different viscosity.45 The

immediate vicinity of bacteria, where viscosity is highest,32 behaves as a viscous sink in which particles accumu-

late. Consequently, at the biofilm scale, a ‘‘sieve’’ effect emerges, with strong concentration differences be-

tween the biofilm periphery and the shielded biofilm core.

Figure 4. The effect of EPS on NP penetration in experimentally observed biofilms

(A) Schematic of affinity, which is defined as the fraction of NP within the average experimentally fitted EPS length scale sM = 0:42 mm.

(B) Affinity in function of EPS viscosity DhM for nutrient-poor and nutrient-rich biofilms, where DhM indicates homogeneous bulk viscosity h0. EPS length scale

sM was kept constant at 0.42 mm.

(C) Affinity in function of EPS length scale sM for nutrient-poor and nutrient-rich biofilms. EPS viscosity DhM was kept constant at 0.01 Pa s.

(D) Schematic of coverage length, which is defined as the median distance to the closest NP over all bacteria.

(E) Coverage length in function of EPS viscosity DhM for nutrient-poor and nutrient-rich biofilms after 10 min simulation time. EPS length scale was kept

constant at 0.42 mm.

(F–H) Coverage length in function of EPS length scale sM for nutrient-poor and nutrient-rich biofilms after 10 min simulation time. EPS viscosity DhM was kept

constant at 0.01 Pa s. Pore volume, where the color intensity scales according to logð1 =hðxÞÞ, such that the green volume shows where NPs can diffuse freely,

in the empirical nutrient-poor g and nutrient-rich h biofilms in function of EPS length-scale sM with DhM = 0:01 Pa s.

(I) Pore surface area to volume ratio for nutrient-rich and nutrient-poor biofilms, for varying sM . Curves and filled area respectively indicate the mean and

standard deviation of three biological repeats.
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In S. Typhimurium biofilms grown in nutrient-rich versus nutrient-poor conditions and treated with fluores-

cent NPs, we observed pronounced differences in spatial organization of bacteria and, consequently, in the

spatial distribution of NPs. Nutrient-rich biofilms predominantly capture NPs in the upper biofilm layers,

whereas NPs were able to penetrate deeper in nutrient-poor biofilms and were colocalized with the bac-

terial biomass. In SPT experiments, we found that a large number of NPs got immobilized or confined near

clusters of bacteria, where the matrix is denser and less porous.10,40 Moreover, we observed anomalous

diffusion, characterized by exponential tails in the DispD, which might be attributed to an underlying dis-

tribution of diffusion coefficients of non-immobilized NPs.23,38 This non-Gaussianity in the DispD origi-

nated from both an increased frequency of small displacements and from exponential tails at small lag

times. We found diffusion coefficients ranging between 0 and 4 mm2=s for NPs with 60 nm radius, compat-

ible with other values reported in literature.7,24,46

We presented a minimal BD model that produces a heterogeneous diffusion environment through a

spatial kernel of elevated viscosity surrounding bacteria. With only two key parameters, a viscous length

scale and a characteristic viscosity, this model was able to qualitatively reproduce the main findings from

NP experiments. Simulations demonstrated that elevated viscosity near bacteria leads to an increase of

small displacements, without influencing the (near-)exponential tails, which originate from highly hetero-

geneous diffusion coefficients throughout the biofilm.38 Furthermore, simulations in virtual reconstructions

of experimental biofilms confirmed that the model of a heterogeneous diffusion environment is consistent

with the observed differences in NP penetration between nutrient-rich and nutrient-poor conditions. In

compact biofilms with fewer cells, the diffusive lensing effect immobilizes NPs near bacteria throughout

the biofilm, whereas in more sparsely distributed biofilms with more cells, a strong shielding effect is pro-

duced with NP sorption in the upper cell layers. Furthermore, simulations predict that NP affinity to bac-

teria first increases with increasing EPS thickness until it drops at very large thickness. From a treatment

perspective, this provides an interesting trade-off, as it shows that the presence of EPS matrix possibly

benefits drug delivery by immobilizing NPs closer to bacteria. On the flip side, increasing EPS thickness

mainly has an adverse effect on the coverage length, by shielding more bacteria from NPs. This effect is

particularly strong in high nutrient conditions, when the pore space reaches the percolation threshold at

higher cell density. Future research could evaluate whether NPs functionalized with antimicrobial or anti-

biofilm compounds can overcome this shielding effect by disrupting biofilm structure.

Figure 5. Virtual biofilm structure generation allows control of bacterial organization

(A) Bacterial organization in virtual biofilms for various characteristic lengths Lt .

(B) Side view of pore volumes (shown in green), where NPs can diffuse freely (h = h0), in virtual biofilms of characteristic length Lt = 13:6 mmand Lt = 34:0 mm.

Pore volume, where the color intensity scales according to logð1 =hðxÞÞ, such that the green volume shows where NPs can diffuse freely, is shown for EPS

length-scale sM = 0:5 mm and sM = 1:0 mm. For visualization purposes, we visualized only a slice of 20 mm, at the center of the biofilm.

(C) Affinity (threshold kept constant at 0.42 mm) in function of characteristic length Lt and EPS length-scale sM , at constant EPS viscosity DhM = 0:01 Pa s.

(D) Coverage length in function of characteristic length Lt and EPS length-scale sM , at constant EPS viscosity DhM = 0:01 Pa s.
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Finally, we studied the effects of both bacterial spatial organization and EPS characteristics in virtual

parameterized biofilms generated using the Cahn-Hilliard equations. These simulations show that bacteria

are better shielded from NPs in disperse biofilms compared to dense compacted biofilm structures, even

when taking into account a proportional decrease in diffusivity in clusters that are compacted. This sug-

gests that the appropriate conceptual model to understand NP penetration is the model of a particle

‘‘sieve’’ or a ‘‘filter’’. Via this heterogeneous diffusion environment, the EPS provide an absorbing surface

that effectively filters NPs, preventing them from penetrating further in the biofilm. From the evolutionary

perspective of bacteria, the colony is better protected against chemical stress by growing sparsely and

vertically, as long as the affinity between the chemical stressor and EPS is high. In these conditions, protec-

tion is provided through a large surface-to-volume ratio at the sacrificial upper layers rather than by a large

size of individual cell clusters.

Limitations of the study

This work has several limitations that warrant discussion. First, the central assumption in our BD model is

that, at long timescales, the net effect of a variety of complex steric, electrostatic or chemical interactions

can be coarse-grained as a localized decrease in the effective diffusivity. This assumption is valid when aver-

aging over a sufficiently large number of capture-release processes.13,32,47,48 However, our model is inca-

pable of modeling completely immobile particles, particles with extremely long retention times due to

strong chemical binding, or the presence of cages/traps from which particles cannot escape. In these

cases, models with immobilizing sinks49 are more appropriate, with the trade-off that frozen traps require

explicit waiting times, which are rarely found explicitly in biology.47 Second, while our model is able to repli-

cate the characteristic central peak in the displacement density, it does not reproduce the near-exponen-

tial tails of the distribution, as our model does not describe in detail the dynamic heterogeneities that

determine displacements of particles in the mobile phase.50 Third, our approach does not take into ac-

count (but also does not preclude) the presence of chemical reactions or degradation, an effect that is un-

likely to play a role for NPs, but has shown to be important in the context of antibiotics treatment.43 Fourth,

we consider the diffusion of NPs in the absence of convection by external fluid flows, which are expected to

be an important factor both in shaping biofilm architecture and influencing NP transport.51–54 Finally, NPs

are considered to be non-interacting in the simulations. Aggregation as a result of van der Waals or elec-

trostatic interactions could instigate additional size effects due to accumulation, further complicating NP

penetration in the biofilm, possibly increasing the effects we see from porosity.16,55

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

Figure 6. Conceptual representation of diffusion through the biofilm EPS
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Increased viscosity only provides a transient barrier to penetration of particles (green). At long timescale, specific

immobilization is required to maintain a concentration gradient.

(B) EPS is distributed in a strongly heterogeneous viscosity landscape that provides sharp, local diffusivity gradients.

These generate viscous sinks that establish equilibrium concentration gradients and explain both retention and shielding

of particles in the biofilm.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Bart Smeets (bart.smeets@kuleuven.be).

Materials availability

The generated pFPV25 plasmid containing the PLl and the fluorescent protein mTagBFP2 are available

from the authors upon request.

Data and code availability

d All analysed data has been deposited at GitLab and KU Leuven RDR and is publicly available as of the

date of the publication. URLs are listed in the key resources table.

d All original code has been deposited at GitLab and is publicly available as of the date of the publication.

DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Salmonella entirica, subsp. enterica serovar

Typhimurium

ATCC ATCC14028

Oligonucleotides

Primers for mtagBFP2 plasmid construction. This paper (See Table S1) N/A

Software and algorithms

ImageJ Schneider et al.59 https://imagej.net/ij/

Python version 3.7 Python Software Foundation https://www.python.org/

Mpacts This paper https://gitlab.kuleuven.be/mebios-particulate/

mpacts_biofilm_brownian_dynamics

TrackMate Tinevez et al.58 https://imagej.net/plugins/trackmate/

FEniCSx Logg et al.66 https://fenicsproject.org/fenics-2023/

Other

Ampicillin sodium salt Merck Cas# 69-52-3

Agar VWR Chemicals Cas# 9002-18-0

Tryptone VWR Chemicals Product No: J859

Yeast Extract VWR Chemicals Cas# 8013-01-2

Sodium Chloride ThermoFisher Cas# 7647-14-5

Tryptic soy broth VWR Chemicals VWR Catalog Number ICNA0215715291

m-Slide 8 Well chamber Ibidi Cat# 80806

EbbaBiolight 680 nm Ebba Biotech AB https://www.ebbabiotech.com/products/

ebbabiolight-680

Carboxylated polystyrene Nanoparticles Spherotech Catalog No. CFP-0252-2

Deposited data

Data for replication This paper KU Leuven RDR: https://doi.org/10.48804/BTMCFO
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strain and growth conditions

The constitutive promoter PLl and the fluorescent protein mtagBFP256 were cloned into the multiple clon-

ing site of the pFPV25 plasmid, kindly provided by Raphael H. Valdivia and Stanley Falkow,57 via restriction

digestion. All primers used for the construction of this plasmid are listed in Table S1. Restriction enzymes

were purchased from Roche and used according to the instructions of the manufacturer. Escherichia coli

DH5a and E.scherichia coli Top10F’ were used for cloning steps. The constructs were verified by

sequencing and subsequently electroporated into Salmonella entirica, subsp. enterica serovar Typhimu-

rium ATCC14028 using a Bio-Rad gene pulser.

Overnight cultures (ONC) were grown at 37 �C in Lysogeny broth (LB) in test tubes while shaking at 200

RPM. For cloning, colonies were grown on LB plates containing 1.5% agar (w/v). If the pFPV25 was present,

100 mg/ mL of ampicillin was added both ONC and plate cultures.

Biofilm assays

The optical density of ONC of ATCC14028 mtagBFP2 was measured at 595 nm and corrected toOD595 =

2:5. These normalized cultures were further 10,000-fold diluted, corresponding to an initial bacterial den-

sity of approximately 2e5 cells/ mL, in tryptic soy broth (TSB) diluted 5-fold for nutrient-rich conditions and

20-fold for nutrient-poor conditions. 396 mL of this suspension was added to m-Slide 8 Well chambers (Ibidi)

in addition to the appropriate concentration of ampiciline, and statically incubated for 48 h at 25 �C.

METHOD DETAILS

Nanoparticle addition

After 48h of biofilm incubation, green fluorescent carboxylated (radius = 60 nm) polystyrene nanoparticles

(Spherotech) were gently pipetted directly below the liquid-air interface to avoid structural disturbance of

the biofilms, to a total of 4 mL of nanoparticle stock solution and thus final concentration of 10� 5 w/v%.

Image acquisition

Prior to single particle tracking, the constitutively fluorescent biofilm bacteria were imaged using an in-

verted fluorescence microscope (Z1 observer, Zeiss) with a 63x oil immersion objective at 6 mm above

the well surface using an excitation wavelength of 450 nm. 20 min after addition of the nanoparticles, these

were tracked using frequency of 10 Hz during 50 s using an excitation wavelength of 495 nm.

For localization of nanoparticles with respect to bacteria, biofilms were imaged 1 hr after nanoparticle addi-

tion, which was performed identically to the single particle tracking experiments. Z-stacks of bacteria and

nanoparticles were acquired simultaneously by respective excitation at 405 nm and 488 nm using a 63x oil

immersion objective mounted on a confocal laser scanning microscope (LSM880, Zeiss). Z-stacks were

captured on an Airyscan detector (Zeiss) using Fast Airyscan mode. Pixels measure 0:07 mm width and

height, voxel depth measures 0:16 mm.

Image processing

For the single particle tracking, blob detection was performed on every frame of the nanoparticle channel

using the Trackmate plugin58 implemented in the ImageJ platform59 using a Difference of Gaussian filter

with an estimated blob size of 1:5 mm. Detected spots with a quality metric below 20 were omitted from

further analysis. The Linear Assignment Problem (LAP) tracker of Trackmate was used to link spots in sub-

sequent frames allowing a maximal linking distance of 3 mm without gap closing.

After acquisition, Z-stacks were post-processed using Airyscan post-processing of Zen Black (Zeiss) with

automatic Wiener Filter strength parameter. Nanoparticle Z-stacks were segmented using the Trackmate

plugin as well,58 with the quality threshold set to 100, and radius to 0:5 mm for carboxylated nanoparticles.

For segmentation of bacteria, the signal in the Z-stacks was magnified using the histogram matching algo-

rithm implemented in ImageJ59 to match the intensity histogram of each slice to that at the bottom of the

biofilm. Bacterial positions and geometry were extracted by splitting the Z-stacks in a set of substacks using

a 4-by-4 in the xy-plane with a 20% overlap in both x- and y-direction. A Hession-based Frangi vesselness

filter was used to enhance blob-like features in each of the image substack, which were subsequently clas-

sified in bacteria and background using an Otsu threshold scaled with a factor 0.07. Binarized image
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substacks were stitched back together, followed by watershed segmentation of individual bacteria using

the ImageJ platform.60 The position, radii and directions were obtained by computation of the 3Dmoment

matrix of each individual blob.61 The largest eigenvalue was used as the length of the bacteria, while the

two smaller radii were averaged out keeping the ellipsoid volume constant. Objects with a length smaller

than 0:5 mm or radius smaller than 0:25 mm were omitted from further analysis. Finally, lengths bigger than

3 mm were set to 3 mm and the maximum radius was set 1 mm the same way. Thickness of the EPS was

measured manually perpendicular to the bacterial cell wall of 50 randomly chosen bacteria in the central

slice of the Z-stack.59

EPS staining and quantification

In order to quantify EPS, EbbaBiolight 680 (Ebba Biotech AB), which has been reported to stain both cel-

lulose and curli,62 was added at the start of incubation using a 1,000-fold dilution following the manufac-

turer instructions. The EPS was visualized at the end of biofilm incubation (48h), using an excitation wave-

length of 561 nm. To quantify the EPS length scale, we first calculate the distance of each voxel to the

nearest bacterial cell wall using the Euclidean distance transform on a binarized segmented bacterial chan-

nel. Subsequently, the normalized voxel intensity I of the EPS channel is binned and averaged based on

their distance to the nearest bacterial cell wall x. Finally, the distance decay of EPS intensity was averaged

over n independent images and fit using a Gaussian decay as I = I0 exp � ðx=2sMÞ2, fitting I0 and sM.

Structural characterization

The mean thickness of the biofilm was estimated by subdividing bacteria in a 50350 grid (3 mm intervals)

parallel to the substrate. The thickness was then calculated per grid unit as largest distance of bacteria

within the grid unit to the substrate, and the mean thickness is then the average over all these grid units,

per biological repeat.63 The degree of biofilm compaction was calculated by quantifying the average pair-

wise distance of each bacterium to its 20 nearest neighbours. The nematic alignment S was computed as

S = < 3=2ðbn i$bnjÞ2 � 1=2> where ni and nj are the normalized direction vectors of bacteria i and j,52 which

we considered for each cell i its 20 nearest neighbours j. The vertical alignment was calculated as the angle

between the substrate plane and the normalized direction vector of the bacteria.

Brownian dynamics model

Two separate entities are modeled. The first are the time-invariant spherocylindrical bacteria, parameter-

ized by length Lc , radius Rc , node positions x0 and x1, matrix characteristic length sM and matrix viscosity

DhM. The second entity are the nanoparticles, with state variables radius Rp, mass density rp position xiðtÞ
and experienced viscosity hðxiðtÞÞ. The environment state variables are temperature T, medium density r0,

nanoparticle concentration Cp and bulk viscosity h0. Nanoparticles experience reflective boundary condi-

tions when they move too far from the biofilm. There is no interaction between nanoparticles. We assume

that the characteristic time of diffusion is an order of magnitude smaller than the characteristic time of bio-

film growth,64 therefore assume the biofilm as static during the diffusion simulation. State variables and

their scales are listed in Table S3.

Extracellular polymeric substances (EPS) interact with nanoparticles in the biofilm and can slow down diffu-

sion either through chemical, electrostatic or sterical interactions. We assume that increased interaction

strength between NP and EPS results in an elevated viscosity.32,39 Based the experimental decay of EPS

staining, a Gaussian viscosity kernel was used, where viscosity hðxiÞ decays in function of distance to the

surface of the bacteria such that

hðxiÞ = h0 +DhM

XN
j = 1

e�kxi � xjk2=2s2M ; (Equation 2)

where DhM is the difference between viscosity in water, h0 and viscosity near the surface of bacteria, xj the

point on the surface of bacteria j, closest to the NP and sM the characteristic length scale of the viscosity

kernel. Only bacteria within a distance of 2sM were taken into account for the viscosity modification.

This leads to inhomogeneities of the viscosity in the medium and thus the spatially varying overdamped

Langevin equation

ll
OPEN ACCESS

14 iScience 26, 106861, June 16, 2023

iScience
Article



vtxi =
FðxiÞ
gðxiÞ +

fðxiÞ
gðxiÞ+gðxiÞ xðtÞ; (Equation 3)

with g2ðxiÞ = 2kBT=gðxÞ the strength of Gaussian white noise xðtÞwith properties CxðtÞD = 0 and CxðtÞxðt0ÞD =

dðt � t0Þ, FðxiÞ the resultant of contact forces, gðxiÞ the friction coefficient, kB the Boltzmann constant, T the

temperature and a drift force f . The drift force originates from the Stratonovich convention, which best de-

scribes the diffusion of particles inside an inhomogeneous environment.48,65 Since nanoparticles are rep-

resented as spheres, we describe the friction coefficient with Stokes-Einstein so that gðxiÞ = 6prthðxiÞ, with
rt radius of the nanoparticle and hðxiÞ the local dynamic viscosity. The friction coefficient is related to the

local diffusion coefficient DðxiðtÞÞ via the Einstein relation as DðxiðtÞÞ = kBT=6pRphðxiðtÞÞ. The drift force

fðxiÞ = � 1
2kBT

VgðxiÞ
gðxiÞ in Equation 3 is then, due to the viscosity kernel in Equation 2

f ðxiÞ =
1

2

kBTDhM

hðxiÞ
XN
j = 1

xi � xj

s2
M

e�kxi � xjk2=2s2M (Equation 4)

In addition, nanoparticles experience a gravity force Fg = g$ðrp � r0ÞVp towards the bottom of the bio-

film, with Vp the volume of the spherical nanoparticle. Then, contact forces FðxiÞ between bacteria and

nanoparticles are calculated as harmonic repulsive potentials, with stiffness kcp. After contacts, experi-

enced viscosity of each nanoparticle is calculated as described in Equation 2. Resulting velocities and

forces are calculated with the conjugate gradient method, after which resulting positions are calculated

via a Forward-Euler integration scheme. Particles experience a closed boundary box surrounding the

biofilm.

Pore surface area to volume was estimated by calculating viscosity in the biofilm, resulting from the kernel

in Equation 1, in a grid with points interspaced at 1 mm in the x-, y- and z-direction. Surface area was then

calculated via Paraview’s contour filter on grid cells where viscosity is smaller than the cut-off at k xi �
xj k = 2sM, followed by the integrate variables filter. The pore volume was then calculated as the volume

of the grid cells where viscosity is smaller than the cut-off at k xi � xj k = 2sM.

Generation of virtual biofilms

We simulate biofilm structures using the Cahn-Hilliard equations

vu

vt
� V $M

�
V

�
df

du
� lV2u

��
= 0 in U; (Equation 5)

M

�
V

�
df

du
� lV2u

��
= 0 onvU; (Equation 6)

MlVu $ n = 0 onvU; (Equation 7)

with the Dolfin platform from FEniCSx,66 where u is the concentration field to solve for, l = 0:005,M = 1, n

the outward directed boundary normal and test function f = 100u2ð1 � uÞ2.66 We initialize the field of uðxÞ
as

uðx;0Þ = ðc0 + crnÞ
.�

1 + e� hðxÞ � x0
cra

�
;

where n is a uniformly distributed random number between -1 and 1, x is the voxel position in a 563 563 56

grid, cr = 0:1, c0 = 0:5, hðxÞ is height at location x, x0 = 0:15 and cra = 0.15. We simulate for 1e9 time steps

with Dirichlet boundary conditions. The Dirichlet boundary conditions lead to lower mean of field uðxÞ over
time, thus we multiply each uðx; tÞ value with Cuðx;tf ÞD=Cuðx;tÞD, with tf the final time step, where Cuðx;tf ÞD =

0:36. Since the characteristic length Lt scales with t1=3 (Lifshitz–Slyozov law), we generate biofilms at time

steps 1e63 t3i , with ti an integer from 0 to 10, such that Ltft
1=3
i . We seed bacteria at a constant volume den-

sity (2.8% v/v%), after which bacteria are accepted with probability uðx;tiÞ, such that the final volume density

is 1% v/v%. Characteristic length Lt of the virtual biofilms was calculated using Paraview contour filter, fol-

lowed by the integrate variable filter to calculate surface area of the Cahn-Hilliard domains. Characteristic

length was then calculated as Lt = V=S, with S the estimated surface and V the volume of the Cahn-Hilliard

domain. Finally, the slope of Lt as a function of t1=3 was calculated with linear regression (following the

Lifshitz–Slyozov law), such that Lt = 0 mm at ti = 0, see Figure S17.
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Diffusion measures

The time averaged mean squared displacement (TAMSD)

x2i ðDÞ =
1

T � D

XT �D

t = 0

ðxiðt+DÞ � xiðtÞÞ2; (Equation 8)

for particle i, where D is the lag time and T total track length. The diffusion coefficient D is calculated from

the TAMSD via linear least squares, as x2i ðDÞfDiD. Diffusion exponent a is calculated from the TAMSD via

nonlinear least squares, as x2ðDÞfDaD
a.

The ‘‘affinity’’ and ‘‘coverage length’’ measures are computed by calculating pairwise surface-to-surface

distances from each NP to each bacteria. The percentage of NPs which are closer than 1 mm to the closest

bacteria are is called the affinity, while the median distance from each bacteria to the closest NP is called

‘‘coverage length’’. A small coverage length indicates that most bacteria are well reached by the NPs and

are likely susceptible to potential encapsulated treatments. It should be noted that as a treatmentmeasure,

the coverage length is expected to be dependent on both structure of the biofilm as well as on the concen-

tration of NPs.

Reaction-diffusion model in gyroid structures

To demonstrate the difference in antibiotics release from a NP in thick and compact versus thin and sparse

biofilm structures, we simulated diffusion from a point-source — the hypothetical NP— in a gyroid solid of

different length scale (Lg), taking into account a decrease in diffusivity and a fixed absorption rate in the

solid phase. Thus we perform finite element method (FEM) diffusion simulations in an environment with

high-absorption/low-diffusion regions, representing the EPS capturing antibiotics. With this setup, we

want to illustrate how the spatial organization of EPS, for similar volume densities, impacts penetration,

further supporting our statement that coarseness of diffusion-limiting structures can further limit penetra-

tion in the biofilm. As a reference distance, we use the diffusion length Ld . Parameters can be found in

Table S3. We simulate diffusion within a gyroid structure, as it provides a simple mathematical represen-

tation of a porous structure in which the characteristic length can be tuned via a single parameter,

GðxÞ =
2

3
jsinðxaÞcosðyaÞ + sinðyaÞcosðzaÞ + sinðzaÞcosðxaÞjh0; (Equation 9)

where xa = pux +p=16, ya = puy +p=16, za = puz +p=16 and Lg = 1=u a structural parameter determining

the characteristic length scale of the gyroid. Note, that the scaling is chosen such that GðxÞ˛ ½0; 1� and the

shift by the value p=16 was chosen such that the center of the antibiotics source is on a border of the gyroid

surface. The antibiotics source acts as a point source f ðxÞ, with a smooth transition from center to the edge,

following a Gaussian decay as

f ðxÞ =

 
1

25pL2d

!3=2

e

�

 
x2+y2+z2

25L2
d

!
;

from the center of the domain. On the surface of the gyroid, diffusion will be slowest and capture rate high-

est, with a smooth transition between the interior surface and exterior bulk liquid. We define interior where

GðxÞ% vf . The transition from interior with low diffusion coefficient De towards the exterior with high diffu-

sion coefficient Daq, is calculated as

DðxÞ = Daq +
�
De � Daq

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðxÞ � vf
1 � vf

s
:

The square root ensures a sharp transition from the center to the edge. The capture rate rðxÞ transitions
similarly as

rðxÞ = raq +
�
re � raq

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðxÞ � vf
1 � vf

s
:

Concentrations, absorption and diffusion rates are calculated with the DOLFIN Python package66 in a cubic

domain with dimensions 10pLd , discretized as a tetrahedral mesh (993 993 99). We solve the diffusion

equation with source f ðxÞ and absorption rðxÞ
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�V½DðxÞ $VuðxÞ�+ rðxÞ$uðxÞ = f ðxÞ (Equation 10)

in steady state, as we are mainly interested in diffusion and absorption rates. (10) is solved with the gener-

alized minimal residual method using incomplete LU factorization as preconditioner. uðxÞ is the concentra-

tion at location x, both sampled from a P1 function space. The weak form of Equation 10 is then solved with

natural boundary conditions at the edges of the box.

Our simulations show that the main effect of thinner, more dispersed structures is a more concentrated

dose near the source of the antibiotics, which is more diluted for larger Lg (Figure S16). However, further

from the source, the difference in the distribution of the relative dose vanishes. The implications of these

results on delivery of antibiotics can be further clarified by considering the Thiele modulus67

4 =

ffiffiffiffiffiffiffiffiffi
krL

2
f

De

s
: (Equation 11)

This relation describes the dependency of the effective diffusion coefficient De on the sorption rate coef-

ficient kr and characteristic diffusion length Lf , which we can interpret as the coverage length if the source of

antibiotics is the NP. When f is small, diffusion is fast compared to reaction and the full material is treated.

Conversely, when f is large, reaction dominates and treatment is expected to be uneven. Hence, one ex-

pects large values of Lf for disperse biofilms and small values of Lf in compact biofilms due to better NP

penetration. However, De is also likely to be higher in disperse biofilms, since the typical path between

an absorbed NP and bacteria is more porous. Yet, the dominant parameter is expected to be the

length-scale Lf , as physical separation trumps diffusion barriers.

Mathematical rationale for viscosity kernel

Nanoparticles are known to interact with the biofilm via chemical, electrostatic or sterical interac-

tions.15,16,55,68,69 These interactions between NPs and EPS lead to raised viscosity in the medium,32 thus

we represent stronger interactions between NP and EPS via higher viscosities.39 Representing interactions

this way means that we assume diffusion in the biofilm to resemble a heterogeneous diffusion process

(HDP),31,47–49 instead of a continuous time random walk (CTRW), which assumes binding-unbinding events

due to, for example, adhesive properties and chemical binding with EPS.70 Both of these diffusion models

show similar properties,47 however we use the HDP in our model, since waiting times for binding-unbinding

events can be difficult to quantify, especially when taking heterogeneity of the biofilm into account.

Instead, we measure the intensity of EPS stain and assume EPS density is proportional to stain intensity.

Since Gaussian viscosity kernels are often used for diffusion in heterogeneous environments,31 we will

also assume that hðxiÞ declines according to a Gaussian with respect to the distance from the surface of

the bacteria.

QUANTIFICATION AND STATISTICAL ANALYSIS

All significance levels in Figures 1 and 3 were obtained via pairwise t-tests, without multiple test correction

and with 3 biological repeats.
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