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Background: Radiation-induced lung injury (RILI) is a severe side effect of radiotherapy
for non-small cell lung cancer (NSCLC) ,and one of the major hindrances to improve the
efficacy of radiotherapy. Previous studies have confirmed that sodium butyrate (NaB) has
potential of anti-radiation toxicity. However, the mechanism of the protective effect of NaB
against RILI has not yet been clarified. This study aimed to explore the underlying
protective mechanisms of NaB against RILI in NSCLC through network pharmacology,
molecular docking, molecular dynamic simulations and in vivo experiments.

Methods: The predictive target genes of NaB were obtained from the PharmMapper
database and the literature review. The involved genes of RILI and NSCLC were predicted
using OMIM and GeneCards database. The intersectional genes of drug and disease
were identified using the Venny tool and uploaded to the Cytoscape software to identify 5
core target genes of NaB associated with RILI. The correlations between the 5 core target
genes and EGFR, PD-L1, immune infiltrates, chemokines and chemokine receptors were
analyzed using TIMER 2.0, TIMER and TISIDB databases. We constructed the
mechanism maps of the 3 key signaling pathways using the KEGG database based on
the results of GO and KEGG analyses fromMetascape database. The 5 core target genes
and drug were docked using the AutoDock Vina tool and visualized using PyMOL
software. GROMACS software was used to perform 100 ns molecular dynamics
simulation. Irradiation-induced lung injury model in mice were established to assess the
therapeutic effects of NaB.
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Results: A total of 51 intersectional genes involved in NaB against RILI in NSCLC were
identified. The 5 core target genes were AKT1, TP53, NOTCH1, SIRT1, and PTEN. The
expressions of the 5 core target genes were significantly associated with EGFR, PD-L1,
immune infiltrates, chemokines and chemokine receptors, respectively. The results from
GO analysis of the 51 intersectional genes revealed that the biological processes were
focused on the regulation of smooth muscle cell proliferation, oxidative stress and cell
death, while the three key KEGG pathways were enriched in PI3K-Akt signal pathway,
p53 signal pathway, and FOXO signal pathway. The docking of NaB with the 5 core target
genes showed affinity and stability, especially AKT1. In vivo experiments showed that NaB
treatment significantly protected mice from RILI, with reduced lung histological damage. In
addition, NaB treatment significantly inhibited the PI3K/Akt signaling pathway.

Conclusions: NaB may protect patients from RILI in NSCLC through multiple target
genes including AKT1, TP53, NOTCH1, SIRT1 and PTEN, with multiple signaling
pathways involving, including PI3K-Akt pathway, p53 pathway, and FOXO pathways.
Our findings effectively provide a feasible theoretical basis to further elucidate the
mechanism of NaB in the treatment of RILI.
Keywords: radiation-induced lung injury, non-small cell lung cancer, network pharmacology, molecular docking,
molecular dynamics simulation, sodium butyrate, target gene, signaling pathway
INTRODUCTION

Lung cancer is the most common cause of cancer-related death
worldwide (1). Non-small cell lung cancer (NSCLC) is the most
common subtype of lung cancer, accounting for about 85% (2).
The vast majority of NSCLC are diagnosed at an advanced
inoperable stage. Concurrent chemoradiotherapy (CHRT) is
the standard treatment for locally advanced inoperable
NSCLC. CHRT significantly improve the overall survival of
advanced NSCLC, with a 5-year survival rate of approximate
30% (3). However, radiation therapy for NSCLC is usually
accompanied with the radiation-induced lung injury (RILI) (4).
RILI may cause severe dyspnea and chronic pulmonary fibrosis,
resulting in poor quality of life and even death (5). Previous
studies have reported that inflammatory factors, including
transforming growth factor beta (TGF-b) and tumour necrosis
factor alpha (TNF-a), and immunological cells such as T helper
cells and macrophage played vital roles in the occurrence and
progression of RILI (6, 7). However, the exact mechanism of RILI
is still unclear. Currently, the main treatment strategy for RILI is
the combination of glucocorticoids and antibiotics, but the
efficacy is limited. Additionally, the treatment of RILI require a
long-term use of glucocorticoids, which may raise severe side
effects (7). Therefore, there is an urgent need to explore the
underlying mechanism of RILI, and develop effective drugs for
RILI treatment.

Sodium butyrate (NaB) is a kind of short-chain fatty acid
generated from the fermentation of dietary fibers by anaerobic
bacterial within the colon (8). In addition, NaB is confirmed as
a histone deacetylase inhibitor (HDACi). Many studies have
proved that some traditional Chinese medicines can protect
against RILI (9, 10), and NaB has also been reported to reduce
2

radiation toxicity. Lee et al. (11) has demonstrated that NaB
could alleviate radiation-induced cognitive dysfunction.
Previous studies have shown that NaB could improve the
efficacy of radiotherapy without damaging normal mucosa
(12). Perona et al. (13) has reported that intraperitoneally
administration of NaB would optimize the irradiation results.
It is worth mentioning that inflammation is the most vital
feature of acute lung injury (AIL) and RILI. A large number of
previous studies have confirmed that NaB has extensive anti-
inflammatory and immunomodulatory effects (14–16). NaB
was shown to markedly downregulate the levels of interleukin
1b (IL1b) and TNF-a, and suppress the expression of nuclear
factor kB, to attenuate immune response and relieve severe
disruption of lung tissue structural (17). Additionally, the anti-
tumor effect of NaB was revealed (18–20). In our previous
study, we found that the combined therapy of NaB and
docetaxel can additively inhibit proliferation and promote
apoptosis of lung adenocarcinoma cells (21). Although
accumulating evidences mentioned above indicated that NaB
has both anti-radiological toxicity and anti-inflammatory
effects for RILI, the mechanism by which NaB protected
NSCLC from RILI has not been clarified.

Network pharmacology is a new discipline based on the
theory of systems biology and multi-direction pharmacology,
which can predict the pharmacological mechanism of drugs in
disease through identifying multiple potential targets and
signaling pathways (22, 23). Molecular docking and molecular
dynamics simulation (MDs) are mainly used to predict the
binding capability and stability of drug and target genes,
and realize the virtual screening of the binding complex
with drug and target gene (24–26). In this study, we employ
network pharmacology, molecular docking, MDs, and in vivo
June 2022 | Volume 12 | Article 809772
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experiments to explore the underlying mechanisms of NaB for
the treatment of RILI in NSCLC.
METHODS

Schematic Diagram of the
Bioinformatic Analysis
The research procedure of our bioinformatic analysis is shown in
the flowchart (Figure 1). First, we identified 51 intersectional
genes associated with NaB, RILI and NSCLC. Second, based on
the protein-protein interaction network (PPI) of the 51
intersectional genes, 10 hub genes were further screened out.
Subsequently, 5 core target genes were identified as target genes
of NaB against RILI. Also, the 51 intersectional genes were
performed GO enrichment analysis and KEGG analysis. The
relationships of the 5 core target genes with EGFR, PD-L1,
immune cells infiltration, chemokines and chemokine
receptors were investigated. In the end, the 5 core target genes
were performed molecular docking and MDs analyses.

Search and Identification of
Common Targets
First, the 2D structural information of NaB (CAS:156–54-7) was
downloaded from the NCBI PubChem (https://pubchem.ncbi.
nlm.nih.gov/), and entered into the PharmMapper database
(http://www.lilab-ecust.cn/pharmmapper/) to predict the
potential targets. The names of target genes found from the
PharmMapper database were converted to the formal gene
names using the UniProt database (https://www.uniprot.org/).
To optimize the identification of NaB target genes, we also
conducted a literature retrieval, and excluded duplicates. The
retrieval term was “(sodium butyrate [Title/Abstract]) AND
(gene [Title/Abstract])”, and the retrieval time was limited to
2016-2021. The involved genes of RILI and NSCLC were
identified from Online Mendelian Inheritance in Man (OMIM)
(http://omim.org/) and GeneCards database (https://www.
genecards.org/). Finally, we obtained 51 intersectional genes
Frontiers in Oncology | www.frontiersin.org 3
for NaB, NSCLC and RILI through the intersection of Venny
2.1 tool (http://bioinfogp.cnb.csic.es/tools/venny/index.html).

Protein-Protein Interaction Network
Construction and Hub Genes Screening
The 51 intersectional genes were uploaded to the STRING
database (https://string-db.org/) to yield an interaction
network. The protein type was chosen as “Homo sapiens” and
the other parameters were set to default values. The protein
interaction network files were imported into Cytoscape 3.8.2
software. The top 10 hub genes were screened by CytoHubber
plug-in and MCC algorithm in Cytoscape 3.8.2 software.
According to the values of “Degree”, “Betweenness Centrality”
and “Closeness Centrality”, we identified the first 5 core
target genes.

Correlation Analyses Between the Top 5
Core Genes and EGFR, PD-L1, Immune
Infiltrates, Chemokines and
Chemokine Receptors
Based on the analysis of TIMER 2.0 (http://timer.cistrome.org/),
TIMER (https://cistrome.shinyapps.io/) and TISIDB (http://cis.
hku.hk/TISIDB/) databases, we further investigated the
correlations between the 5 core target genes and EGFR, PD-L1,
immune infiltrates, chemokines and chemokine receptors in lung
adenocarcinoma (LUAD) and lung squamous cell carcinomas
(LUSC) which are both the most common types of NSCLC.

GO and KEGG Pathway
Enrichment Analyses
The 51 intersectional genes were imported into the Metascape
database (https://metascape.org/) to perform GO and KEGG
enrichment analyses, and bubble maps were drawn via
bioinformatics online tool (http://www.bioinformatics.com.cn/).
According to the degree of genes enrichment and p-value, we
screened out the top 12 most likely KEGG signaling pathways
(p<0.0001) from the first 20, and identified target genes enriching
in these pathways. The identified genes were uploaded to
Cytoscape 3.8.2 software to construct a “component-target-
pathway” map. Then, 3 key signaling pathways closely
associated with RILI were screened out, and visualized using the
KEGG database (https://www.genome.jp/kegg/).

Molecular Docking Analysis
Subsequently, the best protein crystal structures of the 5 core
target genes were downloaded from the RCSB PDB (https://
www.rcsb.org/) database. These proteins were operated to
remove water molecules, add polar hydrogen, and build active
pockets using the AutoDock Vina tool (27). The 3D structure of
NaB was imported into Chem3D 17.1 for optimization. In the
AutoDock module, we ran to dock NaB to the proteins of 5 core
target genes for 100 times using the Lamarckian Genetic
Algorithm (LGA). Other parameters were set to the default
values. The lowest binding energy for molecular docking was
taken as the final result and visualized by PyMOL software.
FIGURE 1 | Flowchart of bioinformatic analysis.
June 2022 | Volume 12 | Article 809772
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AKT1 with the lowest docking scores were used for the
subsequent MDs.

Molecular Dynamic Simulations Analysis
To further verify the reliability of docking results, GROMACS
software was used to perform molecular dynamics simulation
(MDs) analysis of AKT1 and NaB compounds. Before
proceeding with the simulation, the general AMBER force
field (GAFF) was used for substrates, while the partial atomic
charges were obtained from the RESP method by Multwfn (28,
29). The missing parameters for the ligands were generated by
the parmchk utility from AMBER tools. Na+ ions were added
into the protein surface to neutralize the total charges of the
systems. The systems were solvated in a rectangular box of
TIP3P waters extending up to minimum cutoff of 15 Å from the
protein boundary. The steepest descent and conjugate gradient
method were used to optimize the energy of the initial
structure. Then under canonical ensemble for 0.05 ns, the
system was gently annealed from 10 to 300 K with a weak
restraint of 15 kcal/mol/Å. Under isothermal-isobaric ensemble
at target pressure of 1.0 atm and target temperature of 300K, 1
ns of density equilibration was performed by Langevin-
thermostat and Berendsen barostat with pressure-relaxation
time of 0.001 ns and collision frequency of 0.002 ns. After
minimizations and equilibrations, MDs run of 100 ns was
performed for ATK1-NaB complex systems using GROMACS
software (30). Finally, according to the analysis of the
GROMACS software, we get the corresponding root mean
square deviation (RMSD) and root mean square fluctuation
(RMSF), which can be used to evaluate the stability of ATK1-
NaB complex system.

In Vivo RILI Model and
Experimental Design
Female wild-type C57BL/6 mice (8 weeks; 20–22 g) were
purchased from the Experimental Animal Center of Guangxi
Medical University (Nanning, China) and raised under specific
pathogen-free condition. All procedures involving animals were
approved by the Guangxi Medical University Experimental
Animal Committee, and were performed in accordance with
local and International Animal Welfare Guidelines.

In conducting an experiment, mice were randomly divided
into three groups: Group I (Control group) received saline
intraperitoneal administration but without irradiation
treatment; Group II (IR group) received radiotherapy
combined with saline treatment at each time point as NaB.
Group III (NaB+IR group) received an intraperitoneal
administration of NaB (Sigma-Aldrich, Shanghai, China) half
an hour before irradiation at a dose of 500 mg/kg/day dissolved
in saline and consolidating for seven consecutive days. The
dosage of NaB was referred to previous publication (31). The
single irradiation dose in lung was 15 Gy and dose rate was 1 Gy/
min using 60 Co g-rays, referring to previous research (32).
Before radiation treatment, mice were anesthetized by isoflurane
inhalation and then shielded with lead bricks to protect their
head, abdomen, and extremities from radiation. The mice were
Frontiers in Oncology | www.frontiersin.org 4
euthanized after seven days and their lung tissues excised and
harvested for further study.

Histological Examination
Lung tissues of sacrificed mice were fixed with formalin,
embedded in paraffin, then sliced into 5 mm section.
Subsequently, the sections were subjected to standard
hematoxylin and eosin staining to assess the histopathologic
changes in lung tissue under a light microscope.

Western Blot
Lung tissues were homogenized in RIPA lysis buffer (Beyotime
Biotechnology, Shanghai, China) containing protease and
phosphatase inhibitor cocktail (Beyotime Biotechnology,
Shanghai, China). BCA protein assay kit (Beyotime
Biotechnology, Shanghai, China) was utilized to measure the
protein concentration. An aliquot of protein was separated by
SDS-PAGE, and transferred onto polyvinylidene difluoride
(PVDF) membranes. Blocked with QuickBlock™ Western Blot
Blocking Buffer (Beyotime Biotechnology, Shanghai, China) at
room temperature for 30 min, the membranes were incubated
with specific antibodies at 4°C overnight, including anti-p-PI3K
(1:1000), anti-PI3K (1:1000), anti-p-AKT (1:2000), anti-AKT
(1:1000) (All from Cell Signaling Technology, Danvers, MA,
USA) and anti-GAPDH (1:10000) (Abcam, Cambridge, MA,
USA). After washing 3 times with tris-buffered saline containing
Tween 20 (TBST), the membranes were incubated with the
corresponding HRP-conjugated secondary antibody (EarthOx
Life Sciences, Millbrae, CA, USA) at room temperature for 1 h.
After washing 3 times with TBST, the immunoreactive protein
bands were determined by luminescent visualization using an
enhanced chemiluminescence reagent ECL kit (Beyotime
Biotechnology, Shanghai, China). The signal intensity was
measured using enhanced chemiluminescence detection system
(BioRad, Hercules, CA, USA).
RESULTS

The Search and Identification of Common
Genes for Sodium Butyrate, RILI,
and NSCLC
The 2D structural information of NaB was obtained from the
NCBI PubChem database (Figure 2A). A total of 196 NaB target
genes were predicted, while 4839 genes involved in NSCLC, and
5681 genes in RILI were identified. A total of 51 intersectional
genes are thought to be involved in the mechanism of NaB
against RILI (Figure 2B). Then, the 51 intersectional genes were
used for subsequent research.

Protein-Protein Interaction Network and
Hub Genes
As shown in Figure 3A, the PPI network displayed the
interaction of the 51 intersectional genes. Hub genes network
diagram further showed the interaction degree of the 51
intersectional genes, and identified the top 10 hub genes,
June 2022 | Volume 12 | Article 809772
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including AKT1, TP53, NOTCH1, SIRT1, PTEN, CCND1,
CDH1, EGFR, HDAC1 and TNF (Figure 3B). The larger the
node and the redder the color represent the stronger the
interaction degree. Then, 5 core target genes were screened out
based on the “Degree” algorithm, including AKT1, TP53,
NOTCH1, SIRT1 and PTEN. These 5 core genes were
considered to be the most likely target genes for the protective
effect of NaB against RILI.
Correlations Between the Top 5 Core
Genes and EGFR, PD-L1, Immune
Infiltrates, Chemokines and
Chemokine Receptors
Given that previous studies have reported that epidermal growth
factor receptor-tyrosine kinase inhibitors (EGFR-TKIs)
combined with radiotherapy were more inclined to develop
RILI (33, 34), we further explored the correlation between the
5 core target genes and EGFR using the TIMER 2.0 database. We
Frontiers in Oncology | www.frontiersin.org 5
found that the expression of EGFR was closely associated with
AKT1, NOTCH1, SIRT1 and PTEN (P<0.05), but not TP53
(P>0.05) (Figure 4). It has been confirmed that the use of PD-L1
inhibitors increase the risk of RILI (35). We further investigated
the correlation between PD-L1 and the 5 core target genes. The
result based on the TIMER2.0 database showed that the
expression of PD-L1 was significantly associated with the
expressions of TP53 (P<0.05) in LUAD and LUSC, NOTCH1
(P<0.05) in LUAD, and PTEN (P<0.05) in LUAD (Figure 5).

Since RILI is closely correlated to immune and inflammatory
reaction (6), further analyses using TIMER and TISIDB
databases showed that the expressions of the 5 core target
genes were associated with immune infiltrations in LUAD
(Figure 6) and LUSC (Figure 7), to a certain extent. For
example, the expression of NOTCH1 was closely associated
with B cell, CD4+T cell, macrophage, neutrophil and dendritic
cell in LUAD (P<0.05) (Figure 6C); PTEN was significantly
associated with CD8+T cell, CD4+T cell, macrophage, neutrophil
and dendritic cell in LUAD (P<0.05) (Figure 6E); and SIRT1 was
BA

FIGURE 3 | Protein-protein interaction (PPI) network of the 51 intersectional genes was analyzed by STRING database (A) and the hub targets network including
the top 10 targets were constructed by cytoHubba plug-in (B). In the hub targets network, the larger the node and the redder the color represent the stronger the
interaction degree.
BA

FIGURE 2 | 2D structural information of sodium butyrate (A); Venn diagram of involved genes of sodium butyrate, RILI and NSCLC (B).
June 2022 | Volume 12 | Article 809772
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associated with B cell, CD8+T cell, CD4+T cell, macrophage,
neutrophil and dendritic cell in LUSC (P<0.05) (Figure 7D). In
addition, the expressions of AKT1, TP53, NOTCH1 and SIRT1
were mainly negatively correlated with most chemokines and
chemokine receptors in either LUAD or LUSC (Figures 8, 9);
while the expression of PTEN was mainly positively associated
with chemokine receptors (Figure 9E).
Frontiers in Oncology | www.frontiersin.org 6
GO and KEGG Pathway
Enrichment Analysis
To further explore the underlying function and mechanism of the
51 intersectional genes, we performed GO and KEGG pathway
enrichment analysis. As shown in Figure 10A, the results showed
that the top 20 biological processes (BPs) were mainly focused on
the regulation of smooth muscle cell proliferation, oxidative stress
B

C D

A

FIGURE 5 | Correlations between PD-L1 (CD274) and the 5 core target genes were evaluated using TIMER 2.0 database. (A) TP53-PD-L1 in LUAD. (B) TP53-PD-
L1 in LUSC. (C) NOTCH1-PD-L1 in LUAD. (D) PTEN-PD-L1 in LUAD.
B C D EA

FIGURE 4 | Correlations between EGFR and the 5 core target genes in LUAD and LUSC were studied using TIMER 2.0 database. (A) AKT1-EGFR. (B) TP53-
EGFR. (C) NOTCH1-EGFR. (D) SIRT1-EGFR. (E) PTEN- EGFR.
June 2022 | Volume 12 | Article 809772
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and cell death, etc. The top 20 KEGG pathways mainly included
several pathways involved in cancer, the PI3K-Akt signaling
pathway, p53 signaling pathway, FOXO signaling pathway, viral
carcinogenesis, Epstein-Barr virus infection, cell cycle, microRNAs
in cancer, etc (Figure 10B). We created a “component-target-
pathway” map to exhibit the effect of NaB on the 51
intersectional genes and signaling pathways against RILI using the
Cytoscape software (Figure 11). The most likely signaling pathways
that NaB improved RILI were PI3K-Akt signaling pathway, p53
signaling pathway, and FOXO signaling pathway, based on genes
enrichment degree and p-value. The p-values of all these 3 pathways
are less than 0.0001. The maps of these 3 key pathways were utilized
to explain the mechanism of NaB against RILI (Figure 12).

Molecular Docking
To evaluate the binding ability of NaB to the 5 core target genes,
we performed molecular docking and plotted images. Lower
Frontiers in Oncology | www.frontiersin.org 7
score of binding energy indicates stronger binding affinity of the
docked complex; while binding energy < 0 kcal/mol indicates
that ligand molecules can spontaneously bind to the receptor
proteins (25, 27, 36). Our results revealed that the binding
energies of NaB binding to the 5 core target genes were all less
than 0 kcal/mol. Specifically, the scores of binding energies are
-5.7 kcal/mol (AKT1-NaB), -3.42 kcal/mol (TP53-NaB), -3.9
kcal/mol (NOTCH1-NaB), -5.28 kcal/mol (SIRT1-NaB), and
-4.2 kcal/mol (PTEN-NaB), respectively, indicating a high
affinity between NaB and these 5 core target genes, in
particular AKT1-NaB (Figures 13A–E).

MDs
Since the flexibility of the protein and the solvent environment are
not considered in the molecular docking process (Figures 14A, B),
we further verify the reliability of the docking results through
molecular dynamics simulations (MDs). Considering that AKT1
B

C

D

E

A

FIGURE 6 | Correlations between the 5 core target genes and immune infiltration level in LUAD were analyzed using TIMER database. (A) AKT1. (B) TP53.
(C) NOTCH1. (D) SIRT1. (E) PTEN.
June 2022 | Volume 12 | Article 809772
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has the lowest docking energy with NaB, AKT1 was selected for
100 ns MDs. The RMSD was used to judge whether the AKT1
complex system reaches equilibrium during the simulation
process. Generally, a smaller RMSD value indicates a more
stable system (37). As shown in Figure 14C, the RMSD curve
fluctuated around 2.7Å and the amplitude remained within 3.5 Å,
indicating that the AKT1-NaB complex system was stable and the
bond was firm. We used RMSF to evaluate the stability of each
amino acid of AKT1 protein in complex system. Except for the
loop region at both ends of the AKT1 protein, the RMSF curve
fluctuated within 2.5Å, confirming the strong stability of AKT1-
NaB complex (Figure 14D). In brief, MDs further verified that
AKT1-NaB compound was stable and tightly combined.

NaB Treatment Alleviates Radiation-
Induced Lung Injury
To determine the effect of NaB on RILI, the mice were
intraperitoneal injected with 500 mg/kg NaB pre- and post-
radiotherapy. After 1 week of a single dose of 15Gy local
Frontiers in Oncology | www.frontiersin.org 8
irradiation inducing lung local radiation model, we collected lung
tissues for histological evaluation. As shown in Figure 15A, mice in
control group showed no significantly destruction in lung tissues;
while lung tissues from mice in IR group demonstrated obviously
interstitial congestion and edema, with thickened alveolar walls and
collapsed alveolar. With NaB (500 mg/kg) treatment, these
pathological changes were significantly reversed. Taken together,
these results suggested that NaB treatment alleviates RILI.

NaB Treatment Inhibits PI3K/AKT
Signaling Pathway in Radiation-Induced
Lung Injury
Our bioinformatic results reveal that PI3K/AKT pathway maybe a
key signaling pathway involved in NaB against RILI. Then, we
further investigated the modulatory effect of NaB on PI3K/AKT
pathway. As seen in Figures 15B–D, the phosphorylation levels of
PI3K and AKT in IR group were increased compared to control
group. NaB treatment significantly reversed the radiation-induced
phosphorylation of PI3K and AKT. Our results revealed that NaB
B

C

D

E

A

FIGURE 7 | Correlations between the 5 core target genes and immune infiltration level in LUSC were analyzed using TIMER database. (A) AKT1, (B) TP53,
(C) NOTCH1, (D) SIRT1, (E) PTEN.
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treatment may protect against RILI by inhibiting the activation of
PI3K/AKT signaling pathway.
DISCUSSION

Radiotherapy for thoracic malignancies is a standard therapeutic
strategy in advance NSCLC (38). However, RILI is a severe side
Frontiers in Oncology | www.frontiersin.org 9
effect of radiotherapy with great impact on the curative effect of
NSCLC, since it limits the radiation dose, a crucial factor
involving in effective tumor killing (39, 40). Although growing
evidence suggests that inflammation (41, 42), immune regulation
(43, 44), and reactive oxygen species are involved in the
occurrence and development of RILI (39), the exact
mechanism is still unclarified, and there is no specific drug for
treatment. It is extremely necessary to investigate the mechanism
B C

D E

A

FIGURE 8 | Correlations between chemokines and the 5 core target genes were explored using TISIDB database. (A) AKT1-chemokines. (B) TP53-chemokines.
(C) NOTCH1-chemokines. (D) SIRT1-chemokines. (E) PTEN-chemokines.
B C

D E

A

FIGURE 9 | Correlations between chemokine receptors and the 5 core target genes were analyzed using TISIDB database. (A) AKT1-chemokines receptors.
(B) TP53-chemokines receptors. (C) NOTCH1-chemokines receptors. (D) SIRT1- chemokines receptors. (E) PTEN-chemokines receptors.
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of RILI, and develop new drugs. NaB has been reported, by a
large number of studies, that exerts potential activities of anti-
radiation toxicity (11, 12), anti-inflammation (45–47),
immunomodulation (48, 49), and anti-tumor (50–52). The
anti-lung cancer effect of NaB has been proved in our
preliminary study (21). However, the mechanism of the
protective effect of NaB against RILI needs further exploration.
In this study, among the 51 intersectional genes of NaB, RILI and
NSCLC, 5 core target genes were identified and thought to be
involved in the mechanism of NaB against RILI, including
AKT1, TP53, NOTCH1, SIRT1 and PTEN. We revealed the
close relationship between the 5 core target genes and immune
cell infiltration, and most of the chemokines and chemokine
receptors. GO analysis of the 51 intersectional genes exhibited
that BPs were focused on the regulation of smooth muscle cell
proliferation, oxidative stress and cell death. Whereas the three
key KEGG pathways were enriched in the PI3K-Akt pathway,
p53 pathway, and FOXO pathway. We further constructed a
compound-target-pathway network, depicting the relationship
between NaB and the involved genes and pathway of RILI.
Finally, we demonstrated that the 5 core target genes have
good affinity and stability with NaB. Our experimental in vivo
Frontiers in Oncology | www.frontiersin.org 10
also verified that NaB can improve RILI. Collectively, all the
findings above showed that NaB may act on multi-target genes,
multi-pathway, and multi-function to protect against RILI.

Through the PPI network and hub genes analyses of the 51
intersectional genes, AKT1, TP53, NOTCH1, SIRT1 and PTEN
were identified as the most likely potential targets of NaB
treatment for RILI. All these target genes have been confirmed
to correlate to radiation toxicity. A study reported that
phosphorylation of AKT increased in the lung of irradiated
mice, and myrtol inhibited the phosphorylation of AKT to
protect against RILI (53). The AKT-mediated pathway was
significantly associated with RILI grade 3 (54). TP53 is a
tumor suppressor gene associated with RILI. A study of Yang
et al. (55) has shown that the polymorphisms of TP53 and ATM
were associated with the risk of RILI in lung cancer patients
treated with radiotherapy. Mathew et al. (10) reported that
simvastatin could reverse RILI-associated dysregulated gene
expression including TP53. Genetic alterations in NOTCH1
were associated with a high mean grade of radiation-induced
toxicity in head and neck squamous cell carcinoma (56). SIRT1
has a protective effect against radiation injury (57). Additionally,
Zhang et al. (58) reported that active PTEN signaling after
BA

FIGURE 10 | GO analysis and KEGG analysis of the 51 intersectional genes were performed using Metascape database. (A) GO analysis of target genes. (B) KEGG
pathway analysis of target genes.
FIGURE 11 | Compound-targets-pathways map was constructed using Cytoscape 3.8.2 software. The compound (sodium butyrate) was green node, targets were
blue and red nodes, and pathways were showed by yellow nodes, respectively. The red represents the 5 core target genes. The edges represent the interactions
among them.
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radiation is closely related to RILI. Our result in vivo also
confirmed the increased phosphorylation levels of AKT with
radiotherapy, and NaB protect against radiation-induced lung
injury with decreased phosphorylation of AKT. Collectively, all
these genes, including AKT1, TP53, NOTCH1, SIRT1 and
PTEN, may play a vital role in radiotoxicity, and we speculated
that NaB treatment against RILI is associated with the regulation
of these target genes.
Frontiers in Oncology | www.frontiersin.org 11
Numerous studies have found that RILI is closely related to
inflammatory cytokine and immune cells (6, 7). In our findings,
the expressions of the 5 core target genes showed some
relationship with either immune infiltrations or chemokines
and chemokine receptors. Based on these findings, we further
performed GO function and KEGG pathway analysis of target
genes. The results from GO analysis revealed that the major
biological processes were enriched in the regulation of smooth
B

C

A

FIGURE 12 | Key KEGG signaling pathways were visualized using the KEGG database. (A) PI3k-Akt signaling pathway. (B) p53 signaling pathway (C) FOXO
signaling pathway. Red rectangles represent some of the target genes of the 51 intersectional genes. Green rectangles indicate unidentified proteins.
B C

D E

A

FIGURE 13 | Stereogram and docking energy score of molecular docking using AutoDock Vina tool and PyMOL software. (A) AKT1-NaB. (B) TP53-NaB.
(C) NOTCH1-NaB. (D) SIRT1-NaB. (E) PTEN-NaB. The yellow dotted line represents the interaction between NaB and the target protein. NaB, sodium butyrate.
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muscle cell proliferation, oxidative stress, and cell death. The
identified 5 core target genes have also been reported to involve
in these biological processes. Previous research has reported that
AKT1 played an important role in the proliferation and
migration of vascular smooth muscle cells (VSMCs) and anti-
oxidative stress-induced apoptosis (59). Wu et al. (60)
demonstrated that the reduction of ribosome biogenesis in
Frontiers in Oncology | www.frontiersin.org 12
aortic smooth muscle cells may lead to TP53-dependent
proliferation inhibition, oxidative stress, and apoptosis. Xuan
et al. (61) proved that NOTCH1-activated extracellular vesicles
of cardiac mesenchymal stem cells promoted cardiomyocyte
proliferation and angiogenesis. Liu et al. (62) found that SIRT1
could promote the proliferation of SK-N-SH cells, and protect
them from cell death induced by oxidative stress. Sedding and
B

C D

A

FIGURE 14 | 100 ns molecular dynamic simulations of AKT1-NaB using the GROMACS software. (A) The 3D stereoscopic molecular map of AKT1 and NaB
docking. (B) 2D display of water and hydrogen bond docking between AKT1 and NaB. (C) RMSD and (D) the RMSF of molecular dynamic simulations. NaB,
sodium butyrate.
B C D

A

FIGURE 15 | Sodium butyrate treatment attenuates radiation-induced lung injury. (A) Hematoxylin and eosin staining of lung tissues 1 week after radiation
administration. Scale bar 100 mm. (B) The protein levels of p-PI3K, PI3K, p-AKT and AKT in lung tissue were detected by Western blot. (C, D) Quantitative analysis
of (B). Results are representative of three independent experiments, and the differences between data were evaluated by one-way ANOVA, with p value less than
0.05 considered statistical significance. **p < 0.001 vs. Control; ##p < 0.05 vs. IR.
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colleagues founded the up-regulation of PTEN induced by
oxidative stress in damaged vascular VSMCs (63). The biological
processes related to the 5 core target genes further support the
results of our GO analysis. Noteworthy, these biological processes
are also closely related to the occurrence and development of RILI
(64, 65). For example, hydrogen therapy was confirmed to
attenuate irradiation-induced lung damage by reducing oxidative
stress (64). Isoflavone have showed radioprotective effects in
irradiated lungs by limiting excessive immune cell homing via
vascular endothelium into damaged lung tissue (65). Taken
together, NaB may act on these target genes to modulate
biological processes including smooth muscle cell proliferation,
oxidative stress, and cell death, thereby alleviating RILI.

The results from KEGG analysis indicated that multiple target
genes of NaB were mainly enriched in the PI3K-Akt pathway,
p53 pathway, and FOXO pathway, which were shown to play an
essential role in radiotherapy. Our RILI model also showed
significantly increased phosphorylation of PI3K and AKT with
radiotherapy. Notably, NaB treatment suppress the activities of
PI3K and AKT, and protect against RILI. Research has shown
that severe RILI in lung cancer patients was associated with
genetic variants in the PI3K-Akt signaling pathway (54).
Repeated radon exposure induced lung injury by activating the
PI3K/AKT/mTOR pathway (66). RILI can lead to chronic
pulmonary fibrosis, which can be reduced by inhibition of the
PI3K/AKT/mTOR pathway (67). Alleviation of radiation-
induced DNA damage were associated with downregulating
p53 mediated signaling pathway (68). Increased MMP-2
expression mediated by p53 is involved in RILI (69).
Additionally, research showed that the baicalein inhibited
radiation-induced inflammatory response through up-
regulating FOXO activation, and down-regulating NF-kB (70).
Moskalev et al. (71) demonstrated an essential role of FOXO in
hormesis and radiation adaptive response which had a protective
effect on the body. Overall, NaB may alleviate RILI by
modulating the pathways mentioned above.

The limitations of this study include the following aspects.
First, our results of involved genes and signaling pathways of
RILI need a really world cohort to verify. Second, we still need
Frontiers in Oncology | www.frontiersin.org 13
further biological experiments to verify the pharmacological
mechanisms of sodium butyrate.
CONCLUSION

In conclusion, NaB may alleviate RILI through multiple target
genes including AKT1, TP53, NOTCH1, SIRT1 and PTEN. In
addition, multiple signaling pathways involved in the protective
effect of NaB against RILI, including PI3K-Akt pathway, p53
pathway, and FOXO pathways. Hence, the mechanism of NaB
against RILI is multi-target and multi-pathway. Our findings
effectively provide a feasible theoretical basis for further
elucidation of NaB in the treatment of RILI.
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