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Abstract

Psychiatric disorders are associated with accelerated aging and enhanced risk for 

neurodegenerative disorders. Brain aging is associated with molecular, cellular and structural 

changes that are robust on the group-level, yet show substantial inter-individual variability. Here 

we assessed deviations in gene expression from normal age-dependent trajectories, and tested 
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their validity as predictors of risk for major mental illnesses and neurodegenerative disorders. 

We performed large-scale gene expression and genotype analyses in postmortem samples of two 

frontal cortical brain regions from 214 control subjects aged 20–90 years. Individual estimates 

of “molecular age” were derived from age-dependent genes, identified by robust regression 

analysis. Deviation from chronological age was defined as “delta age”. Genetic variants associated 

with deviations from normal gene expression patterns were identified by expression quantitative 

trait loci (cis-eQTL) of age-dependent genes or genome-wide association study (GWAS) on 

delta age, combined into distinct polygenic risk scores (PRScis-eQTL and PRSGWAS), and tested 

for predicting brain disorders or pathology in independent postmortem expression datasets and 

clinical cohorts. In these validation datasets, molecular ages, defined by 68 and 76 age-related 

genes for two brain regions respectively, were positively correlated with chronological ages 

(r=0.88/0.91), elevated in bipolar disorder (BP) and schizophrenia (SCZ), and unchanged in major 

depressive disorder (MDD). Exploratory analyses in independent clinical datasets show that PRSs 

were associated with SCZ and MDD diagnostics, and with cognition in SCZ and pathology in 

Alzheimer’s disease (AD). These results suggest that older molecular brain aging is a common 

feature of severe mental illnesses and neurodegeneration.
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INTRODUCTION

Due to improvements in medical interventions and living conditions, the number of 

individuals reaching the age of 65 in the United States rose 3-fold in the 20th century, 

from 4.1 percent in 1900 to 12.4 percent in the year 2000, and may rise above 20% 

by the middle of this century – roughly 85 million people at current growth rates.1 This 

increase in life expectancy is paralleled by an increased prevalence of neurodegenerative 

and neuropsychiatric disorders of late life. Progress has been made in revealing some of 

the cellular and molecular mechanisms of neurodegenerative diseases, such as Alzheimer’s 

Disease (AD) and Parkinson’s diseases, and the neurovascular causes of late-life depression 

and dementia.

“Normal” brain aging and its association with functional changes and late-life brain 

disorders were long thought to be inescapable, broad-ranging and nonspecific. Recent 

molecular studies demonstrate that age-dependent molecular changes are conserved, specific 

and potentially modifiable. Studies by our group2, 3 and others4, 5 have demonstrated that 

aging of the human brain is associated with continuous and progressive changes in the 

expression of up to ~10% of all genes, that these changes are conserved across brain 

regions, and that they affect specific biological pathways, including receptor function, 

signal transduction, mitochondrial function, cellular defenses, glial/neuronal structure and 

the extracellular matrix. Moreover, age-dependent genes include numerous genes also 

associated with brain diseases, wherein age- and disease-related changes in expression 

are, for the most part, directionally similar. For instance, the expression of brain-derived 

neurotrophic factor (BDNF) is low in multiple brain disorders, but is also reduced by 
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50% in healthy individuals aged 65 years or older.6 These parallel trajectories have 

raised the possibility that deviations from normal age-related gene expression trajectories 

may contribute to either vulnerability or resilience to various brain-related disorders,7 

together providing a compelling rationale for investigating aging and brain disorders 

simultaneously, and suggesting novel therapeutic approaches. Moreover, people with severe 

mental illness (particularly SCZ and BP) die at a much younger age, on average, than 

healthy individuals,8–10 providing further rationale behind looking for mechanisms of 

accelerated (brain) aging in these illnesses.

We have previously proposed the concept of “molecular age” as an assay to measure 

biological aging of the brain and to assess individual deviation from chronological age.2, 3 

Molecular age is a summary value that describes the predicted chronological age for a 

specific individual based on regression analysis of expected age-related trajectories for 

age-dependent gene expression. Other groups have devised similar approaches using either 

epigenetic marks measured in blood11 or brain structural magnetic resonance imaging,12, 13 

with similar results showing progressive, specific and predictive changes. In this report, 

individual deviations between molecular and chronological ages, defined as delta age, 

provided a means to identify biological mediators and genetic modulators of normal aging 

and potentially brain disorders. Specifically, we predicted that biological aging of the brain, 

i.e. molecular age, would be robust, predictive of chronological age, and significantly 

elevated in subjects with major mental illnesses, as measured in postmortem brain samples. 

To extend these studies to patient cohorts, we predicted that common genetic variants 

associated with changes in either single age-dependent gene expression or with integrated 

delta age measures would show greater prevalence in psychiatric or neurodegenerative 

disorders.

To address these questions, we performed large-scale gene expression analyses in two 

related frontal cortex brain regions, combined with genetic analyses, in a large human 

postmortem cohort (Figure 1). We applied robust statistical approaches to define age­

dependent genes and individual molecular ages in one brain region and used the second 

region from the same subjects to confirm results. We then identified single nucleotide 

polymorphisms (SNP) associated with expression changes in age-dependent genes or with 

delta age, using expression quantitative trait loci (cis-eQTL) or genome-wide association 

(GWA) methods, respectively, and combined results into polygenic risk scores (PRS). 

Finally, we used molecular ages and PRS to test our predictions in independent postmortem 

expression datasets and clinical cohorts (Table 1 and Supplemental Table 1).

RESULTS

Age-dependent gene expression and molecular age predictive validity

To identify age-related genes, we fitted a robust regression model14 to gene expression 

data obtained in two closely related regions of the frontal cortex [Brodmann areas (BA) 

11 and 47] in a large human postmortem cohort (n=204 after QC, see Supplements; 20–

90 year range with even distribution across decades; Supplemental Table 2).15 The model 

was conducted independently for each gene and each of the two brain regions, taking into 

account brain and population heterogeneity (see Methods). Supplemental Table 3 reports 
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the number of detected age-associated genes under different levels of false discovery rate 

(FDR) control in each brain region and their intersections. For instance, at FDR=10−4, 

1065 genes were identified as age-dependent in both regions (Figure 2A), being up- or 

downregulated in older individuals. An analysis of biological pathways represented by 

these genes revealed high consistency with existing knowledge of brain aging: ~40 of 

the top 50 affected pathways related to altered synaptic structure (synaptogenesis, axonal 

guidance) and function, including glutamatergic, GABAergic and multiple neuropeptide 

(opioid, BDNF, CRH) signaling pathways, and Calcium signaling (Supplemental Table 

4). For independent validation of expression changes, we selected three genes that are 

downregulated with age and that belong to a GABAergic signaling pathway known to be 

affected by age, i.e. somatostatin (SST), SST receptor 1 (SSTR1) and alpha5-containing 

GABA-A receptor (GABRA5),6, 16 and confirmed age-dependent changes using qPCR on 

independent RNA samples (Figure 2B).

We next defined the molecular ages of individual subjects. We constructed a prediction 

model using an elastic net approach, based on expression levels of the 1065 age-dependent 

genes (FDR=10−4; Figure 2A). The derived molecular ages were highly correlated with 

chronological ages (r=0.96 for BA47 and r=0.97 for BA11, p<10−16 for both regions; Figure 

3A–B) and consistent across the two regions (Figure 3C; r=0.98; p<10−16). Accordingly, the 

differences between molecular age and chronological age, denoted “delta age”, were also 

correlated across regions (Figure 3D; r=0.80, p<10−16). Similar results were obtained when 

assessing relative or proportional differences (Supplemental Figure 1; r=0.81; p<10−16). 

Although the FDR=10−4 identified an approximate number of age-related genes2, 3, 4, 5 

(~10%), we also performed a sensitivity analysis to assess the impact of different q-value 

cut-off for age-related genes included in the molecular age prediction, and determined that 

it had minimum impact on the results (Supplemental Figures 2–3 and Supplemental Table 5; 

Supplemental Methods).

Gene expression-based brain molecular ages in brain disorders

We next hypothesized that delta age may index an older or younger brain at the molecular 

level compared to chronological age (e.g. red symbols in Figure 3D) and that these 

deviations may be behaviorally and clinically meaningful. To test this hypothesis, we 

collected independent postmortem large-scale gene expression studies from control subjects 

and subjects with MDD, SCZ, BP and AD (Table 1 and Supplemental Table 1; Supplemental 

Methods for cohort details). Using an elastic net-based approach, 68 and 76 genes with the 

strongest predictive values were selected from 1065 age-related genes in BA47 and BA11 

respectively, and used for the molecular age prediction model (See gene list and weights in 

Supplemental Table 6).

Since some of the cohorts were not initially designed for assessing progressive age effects 

across the whole lifespan (e.g., small sample size or uneven distribution across ages), we 

first tested the potential of the gene panel to predict chronological age using control subjects 

in each cohort. Of the 24 independent transcriptomic studies we collected (Supplemental 

Table 7), 17 studies had control sample size less than 40 (category A), 2 studies had 

large sample size but a very old and narrow age distribution (>95% samples > 65 years; 
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Category B) and 5 studies had large sample size and adequate age distribution (Category 

C). Successful validation of molecular age prediction was obtained in control samples of all 

5 category C studies (i.e. r>0.7 between molecular and chronological ages; Supplemental 

Table 7), 5 out of 17 category A studies and none of the two category B studies. Molecular 

ages and delta ages were then calculated using the case subjects of the ten successful 

validation studies and applying the two separate BA47 and BA11 molecular age prediction 

models, and compared to control subjects.

Results are depicted in Figure 3E–F. Delta ages of the three MDD cohorts did not 

significantly differ from chronological ages of control subjects. Three of the five SCZ 

cohorts showed significantly positive delta ages compared to control subjects using the 

BA47 model (Supplemental Table 8 - Pitt-SCZ PC L5: p=0.014, 3.59±1.56 years older; Pitt­

SCZ MO1 L5: p=0.033, 5.42±2.74 years older), and CommonMind SCZ Pitt (p<3×10−4, 

6.34±1.73 years older). Results in the other two SCZ cohorts were similar, but only at 

trend levels (Lieber SCZ: p=0.096, 1.83±1.40 years older; CommonMind SCZ MSSM: 

p=0.078, 2.20±1.55 years older). The two BP cohorts showed greatest magnitude of 

effects using the same BA47 model (CommonMind BP MSSM: p<0.006, 7.56±2.62 years 

older; CommonMind BP Pitt: p<2×10−4, 4.76±1.36 years older). The results were then 

summarized across cohorts by meta-analysis using a random effects model for the MDD 

and SCZ cohorts, and by mega-analysis for BP by directly combining CommonMind MSSM 

and CommonMind Pitt. These analyses confirmed the absence of molecular age deviation 

in MDD (−0.59±1.67 years; p, NS) and the older molecular ages for SCZ (2.94±0.77 years 

older; p<2×10−4) and BP (7.52±1.26 years older; p<4×10−8) patients, compared to control 

subjects. Almost identical results were obtained using the prediction model derived from the 

BA11 expression dataset (Supplemental Table 8 and Figure 3F), and similar results were 

obtained when applying both models to proportional (%), rather than absolute values for 

delta ages (Supplemental Table 9).

In summary, gene expression-based prediction of molecular brain age is robust and can 

detect individual deviations from chronological ages. At the group level, SCZ and BD, but 

not MDD subjects, showed significantly older brain molecular ages compared to control 

subjects. Results could not be obtained in AD due to the narrow age range of those cohorts.

Genetic-based prediction of clinical diagnostics and functional outcomes

We next sought to construct a SNP-based polygenic risk score (PRS) predictive of delta age 

in the original expression dataset, and investigate whether PRSs are predictive of disease 

status or selected functional and pathological measures in independent clinical cohorts 

(hence bypassing underpowered effects in single cohorts). Diagnostics were available for 

SCZ, MDD and AD, and functional measures were available for age-related locomotor 

activity and various aspects of cognition (see cohorts details in Supplemental Methods and 

functional measures in Supplemental Table 10).

We first used a genome-wide association (GWA) analysis to identify SNPs associated 

with delta ages independently in BA11 or BA47, as calculated in the previous section 

using elastic net (with leave-one-out-cross-validation for prediction, see Supplements for 

details). To account for population admixture, we used the top five principal components 
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as covariates in the regression model (Supplemental Figure 4). The BA11 and BA47 GWA 

p-values were then meta-analyzed across the two brain regions by adaptively weighted 

Fisher17 (AW-Fisher; see Supplemental Methods for details) and SNPs were identified under 

different statistical thresholds (302 SNPs under p<10−4, 112 SNPs under p<10−5, 36 SNPs 

under p<10−6 and 10 SNPs under p<10−7). See Supplemental Figure 5 for Manhattan 

plot. We note that although these p-values were overly liberal since they were obtained in 

two related brain regions, the ranks of these SNP sets are invariant. We therefore tested 

these associations in independent cohorts in which genetic data was available (Table 1 and 

Supplemental Table 1) by extracting these SNPs, aggregated them with equal weight to 

generate four PRSGWAS scores at increasing stringency levels, and assessed for correlations 

with phenotypes. By controlling for false discovery rate (FDR)=0.2, 3 q-values<0.2 are 

observed in PRSGWAS (Figure 4) in SCZ Lieber study.

As a complementary approach we applied a cis-expression quantitative trait locus (cis­

eQTL) analysis for prioritization of presumably functional variants. For this, we first 

selected genes relevant to aging in the original gene expression analyses (Supplemental 

Table 3: 1548 genes at q<10−3; 2550 genes at q<10−2). In addition to genetic PCs, we 

performed transcriptomic PCA and applied the top PCs to adjust in the regression model 

to reduce the false positive findings in cis-eQTL analysis 18 (details in Supplemental 

Methods and Supplemental Figure 6). Cis-eQTL SNPs were identified for those genes 

in both brain regions, and q-values were derived after AW-Fisher meta-analysis using 

thresholds with decreasing stringency (q<1%, 5%, 10% and 20%). See Figure 2C and 

Nikolova et al 19 for qPCR validation of cis-eQTL effects. The cis-eQTL SNPs were then 

extracted from the respective cohorts, aggregated with equal weight to generate PRScis-eQTL 

scores at increasing stringency levels for age-related gene and cis-eQTL selection, resulting 

in 8 PRScis-eQTL scores (Figure 4). The rationale for this approach was that consistent 

findings across various stringency levels (as shown in Figure 4 Heatmap graphs) would 

provide a degree of confidence in the results. Assessing the PRScis-eQTL scores for 

correlations with clinical diagnostic categories revealed significant associations with late-life 

depression (MDD-IRL cohort) and SCZ (Lieber cohort) with FDR < 0.2, and a marginal 

association with AD (Figure 4). PRScis-eQTL scores were marginally but concordantly 

(across different SNP sets) associated with the presence of neuritic plaques in AD. Only 

marginal associations were observed with aspects of cognition. Overall, 41 comparisons out 

of 264 (i.e. 12 PRSs by 22 functional outcome) resulted in p-values<0.1 (26.4 false positives 

expected by chance). Note that the two PRS approaches were not redundant to each other. 

Indeed, only one SNP overlapped between PRSGWAS (302 SNPs) and PRScis-eQTL (1330 

SNPs). This lack of overlap was expected since these two approaches are based on distinct 

hypotheses and index different biological constructs.

DISCUSSION

In this study, we characterized transcriptional and genetic aspects of molecular aging in the 

frontal cortex of adults across the adult lifespan. Confirming and extending prior work, we 

identified a large number of age-related genes showing robust linear effects. Based on these 

age-dependent genes, we defined the molecular age of individual subjects and confirmed a 

high correlation with chronological age. We then defined delta age values, based on how 
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far each subject’s molecular age deviates from their chronological age, and confirmed the 

results in a closely-related brain region in the same cohort. We then validated the functional 

significance of this metric in several independent cohorts, where we found elevated delta 

ages in individuals with SCZ as well as BP disorder, suggesting older molecular brain ages 

in individuals with these severe mental illnesses, compared to chronological age-matched 

controls. Further demonstrating the functional significance of this construct, we found that 

two sets of distinct SNPs associated with older molecular age via two distinct mechanisms 

(GWAS and cis-eQTL) were associated with clinically relevant diagnostic, cognitive and 

neurological variables across several cohorts. Taken together, these results identify novel 

genetic contributions of brain aging and provide new insight into age-related brain disorders.

The current findings confirm prior work showing robust and specific age-dependent changes 

in gene expression2–5 and extend them to a wider age range and additional brain regions. 

Using age-dependent gene expression trajectories, we defined a novel metric of molecular 

brain age and a complementary measure, denoted “delta age”, reflecting the discrepancy 

between this metric and chronological age. Notably, we found that molecular brain age was 

2–6 years higher than chronological age in individuals with SCZ across several independent 

cohorts, while the molecular brain age of subjects with BD was between 4.7 and 7.5 years 

greater than chronological age across cohorts. No increase in brain aging was noted in 

subjects with MDD. A limitation of these studies is that correction for several factors was 

not performed (e.g. psychiatric medications, disease chronicity) since that information was 

not available for most cohorts. These results are partially consistent with prior work using 

metrics of neuroanatomical brain age assessed by in vivo structural MRI. Specifically, one 

prior study found that structural brain age in participants with SCZ was on average 5.5 

years older than their chronological age, while BP was associated with a 3.1 year brain 

age increase 12, with a more recent large-scale study adjusting these estimates to 3.9 and 

2 years, respectively20. Notably, the former study also found that the brain age gap was 

proportional to illness chronicity across disorders. Potential effects of chronicity are also 

supported by a more recent study, which used similar methods to demonstrate that brain age 

in individuals with first-episode SCZ was only ~2.6 years older than their chronological age, 

while early-stage BP was no different from controls.13 The wide range of molecular brain 

age estimates across SCZ cohorts in our study may reflect differences in pre-mortem disease 

chronicity, however this information was not available in the majority of the postmortem 

cohorts. Nonetheless, the overlapping brain age gaps obtained by our current molecular 

results and prior structural MRI findings in SCZ suggests that the two metrics may reflect 

related or complementary biological processes and, together, support the notion that SCZ is 

associated with premature or, possibly, accelerated brain aging.

The gap between molecular brain age and chronological age estimates that we obtained for 

BD were substantially higher than equivalent metrics reported in structural MRI studies. It 

is possible that the current cohort had high levels of chronicity, relative to those used in 

structural MRI studies, which may have driven this discrepancy. Alternatively, it is possible 

that molecular brain age changes precede macroscale structural brain change detectable 

by MRI (i.e., molecular brain age may on average be older than structural brain age, 

particularly in BD). Future studies completing the difficult but not impossible challenge 
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of obtaining structural MRI and postmortem molecular gene expression data in the same 

individuals would be necessary to test the validity of this conjecture.

Intriguingly, we did not find evidence of elevated molecular brain age in MDD. This result 

stands in contrast to prior work, which found that MRI-assessed structural brain age was 

approximately 4 years higher than chronological age in individuals with depression,12 but 

it is consistent with a more recent study, which found a non-significant increase of only 

0.8 years in structural brain age in MDD20. This discrepancy may again be driven by 

confounding effects of disease chronicity, which strongly drove the structural brain age 

effect in Koutsouleris et al,12 but were not accounted for by Kaufman or in the current study. 

It is also possible that the brain age effect sizes in MDD are much smaller or that the disease 

heterogeneity is greater than those seen in other disorders (e.g., SCZ, BD), thus limiting our 

power to detect a significant effect.

Our results are interesting to consider in light of well-established, non-overlapping metrics 

of molecular aging, which rely on age-dependent changes in DNA methylation patterns to 

estimate tissue-specific epigenetic age. The majority of studies on DNA methylation age use 

the “epigenetic clock” developed by Horvath et al,11 which estimates epigenetic age based 

on 353 CpG sites across the entire epigenome. These studies have found no evidence of 

elevated epigenetic age, relative to chronological age in SCZ, either peripherally or in the 

brain.21–23 Similarly, another study found no elevated epigenetic age in BD, in the blood or 

brain.24 However, the latter study did identify a slightly elevated epigenetic age in blood in 

older, but not younger individuals, once again suggesting the potential confounding effect of 

chronicity. This effect did not emerge in the brain.24 In contrast, our findings of significantly 

and robustly elevated molecular brain age in both SCZ and BD suggest that the two metrics 

likely capture distinct biological processes. A recent study found no effect of MDD on 

Horvath’s epigenetic clock in brain tissue.25 However, another study combined a larger 

sample size with sequencing across the entire epigenome to obtain a more detailed estimate 

of epigenetic age in MDD.26 This study found a small but reliable effect, wherein MDD 

was associated with 7.68 months older methylation age in peripheral blood and 1.1 years 

older brain methylation age. This study confirms that accelerated aging effects in MDD are 

likely small in size; therefore, increased power and precision of estimates obtained through a 

combination of larger sample sizes and more detailed sampling on the molecular level may 

be necessary to detect them reliably.

Using an alternate approach to assess epigenetic changes occurring in age-dependent 

genes, we recently showed in a subset of the present postmortem cohort that epigenetic 

changes preferentially occur in age-dependent genes,27 hence potentially driving, or at 

least correlating with molecular brain aging. We further showed that epigenetic changes 

in age-dependent genes were significantly enriched in subjects with MDD, SCZ, BP and 

AD, together pointing to a potential mechanism of age-by-disease interactions through 

preferential age-related methylation changes occurring in disease-associated genes.27

Previous work28, 29 has shown that brain aging is at least partially under genetic control. To 

confirm this link and probe the potential clinical utility of our novel molecular age construct, 

we identified SNPs associated with brain aging, through two distinct molecular mechanisms 
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(GWAS and cis-eQTL), aggregated them into two sets of polygenic risk scores (PRSGWAS 

and PRSciseQTL), and mapped them onto age-related cognitive and clinical outcome 

variables across several independent cohorts. Several distinct and overlapping phenotypic 

patterns emerged. Both PRS were higher in individuals with SCZ, suggesting that the 

difference between molecular and chronological age identified in individuals with SCZ may 

be at least partially driven by common DNA variations. PRSGWAS was uniquely associated 

with lower processing speed and lower general cognition, independently of diagnosis, in 

one of the cohorts. The association with reduced processing speed is in partial agreement 

with prior proof-of-principle work from our group, showing that genetic variants shifting the 

expression of an age-dependent gene towards a more old-age-like state are associated with 

psychomotor slowing even in healthy young adults.19 Finally, PRScis-eQTL was uniquely 

associated with late-life depression and, marginally, with AD diagnosis. Intriguingly, while 

there was no link between PRSciseQTL and cognition, PRSciseQTL was associated with 

neuritic plaques, which are a risk factor for cognitive impairment, particularly in the context 

of aging.

Although promising, these genetic effects should be interpreted with caution. As a 

limitation, our sample was relatively underpowered to detect SNPs with significant 

functional impact. In addition, as our PRS analyses were meant to be exploratory, we did 

not apply correction for multiple comparisons across the different phenotypic measures and 

cohorts. While the suggestive effects we identified provide encouraging initial evidence that 

genetic variants can be used as peripheral indices of molecular brain age, these complex 

polygenic associations will need to be replicated in future work before they can be used 

for clinical prediction. For instance, we are planning on testing the predictive values of the 

various PRSs in the Psychiatric Genomic Consortia for MDD, BPD and SCZ, with a focus 

on the specific clinical and demographic parameters of the various cohorts included into the 

consortia databases to ensure adequate power to detect age-related PRS effects. If further 

refined, the proposed genotype-based predictive model may identify molecular targets to 

reduce brain aging as a cause or consequence of morbidity in severe mental illness. The 

model could also provide a screening tool to identify individuals at high risk for accelerated 

brain aging. Such a tool may offer opportunities for targeted early lifestyle and medical 

interventions to prevent further age-related decline and offset the risk of age-dependent 

neuropsychiatric illness in vulnerable groups.

METHODS

Detailed methods are available in the supplements

Human postmortem cohort

Postmortem brains were collected from the Allegheny County Coroner’s Office (Pittsburgh, 

PA). A committee of experienced clinical scientists examined clinical records, toxicology 

results and standardized psychological autopsy data. The absence of psychiatric DSM-IV 

diagnosis was determined by psychopathology, medical and social histories, and history 

of substance abuse. Individuals were also screened for the absence of neurodegenerative 
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disorders by neuropathological examination. See details in Supplemental Table 2 and 

Supplements.

Gene expression

Total RNA was extracted from frozen samples and processed for microarray by the 

Gene Expression & Genotyping Core Facility at Case Western Reserve University. cDNA 

was hybridized on Affymetrix® Human Gene 1.1 ST arrays (Affymetrix, Santa Clara, 

CA), covering over 30,000 coding transcripts. Gene expression values were extracted 

via Expression Console build 1.2.1.20 using RMA method and quantile-normalization to 

eliminate potential batch effect (Supplemental Figure 7 and 8).

Genetic variants

Total DNA was extracted from fresh frozen brain samples and hybridized onto Genome­

Wide Human SNP array 6.0 featuring 909,622 SNPs (Affymetrix, Santa Clara, CA). 

Genotype calls were generated using Affymetrix Genotyping Console version 4.1.3.

qPCR validation

Subjects were randomly chosen from young (17–38 years old) and old (58–72 years old) age 

distribution and group-matched for PMI, pH, RNA ratio and RIN. qPCR was performed as 

previously 30.

Age-related genes detection

A robust regression model 14 was applied to identify age-related genes in a large class of 

monotonic increasing or monotonic decreasing trajectories. P-values were assessed by fitting 

the regression model for each gene. Multiple comparisons were corrected by false discovery 

rate using Benjamini-Hochberg procedure 31.

Molecular age prediction model

The identified age-related genes were combined using elastic net regression, which 

performed regularization and gene selection. We treated chronological age as a dependent 

variable and age-related genes and other covariates as independent variables to adjust for 

potential confounding effects. This method embedded a variable selection procedure that 

picked up an optimal set of genes to predict chronological ages. To allow the model to 

automatically select a reasonable number of age-related genes, we started with all 1065 

age-related genes (q<10−4 in both brain regions). We defined molecular age as the predicted 

age from the elastic net model. To avoid over-fitting, we performed a leave-one-out cross­

validation (LOOCV) to predict the molecular age for each subject. Delta age was defined as 

the difference of molecular age and chronological ages.

See Supplements for Genome-wide association (GWA) analysis for delta age and 

Expression quantitative trait loci (eQTL) analysis of age-related genes
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Polygenic risk score

The SNPs were coded as 0, 1, and 2 according to the number of minor alleles. PRSs were 

defined for each subject by summarizing across multiple SNPs. For GWA, we assigned 

a weight (1 or −1) to each SNP depending on the sign of GWA effect, and calculated a 

weighted sum as the PRS. For the cis-eQTL approach, the weight for each SNP was the 

product of the sign of the cis-eQTL effect and the sign of the age-related gene effect. A 

weight product equal to 1 indicates older age and −1 indicates younger age.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study flow chart.
Firstly, transcriptomic data from the Pitt cohort (BA47 and BA11) were used to identify age­

related genes. A molecular age prediction model was constructed by using top age-related 

genes. “Delta age” was defined as the difference between molecular and chronological ages, 

which served as a proxy measure of molecular brain aging. We then tested the robustness of 

the findings in external cohorts. Secondly, genetic data from the European subjects in same 

cohorts in was used to identify SNPs associated with brain aging. Two approaches (Genome­

wide association and Cis-eQTL analyses) were used to narrow down the potential SNP lists. 

Polygenic risk scores were defined for each subject as a cumulative score measuring how 

much genetic risk a subject carries toward premature brain aging. Finally, our proposed risk 

scores were validated against clinical diagnoses and related functional outcomes.
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Figure 2. 
A. Heatmap for 1065 age-associated genes in the Pitt cohort in BA11 and BA47. Red to 

green describes high to low expression. B. Microarray data validation by qPCR. Robust 

downregulation of three components of an integrated GABA-related signaling unit with 

age. Expressions are in arbitrary units. Two-sided p-values are reported. (*, p<0.05; **, 

p<0.01; ***, p<0.001). C. Cis-eQTL validation by qPCR for VAMP1. The correlation 

between microarray data and qPCR was 0.73. For validation of VAMP1 cis-eQTL, joint 

effect between two SNPs (rs2534717 as SNP1 and rs12580729 as SNP2) has been 
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evaluated. There was an observed decrease in VAMP1 expression for subjects carrying 

homozygous minor alleles from SNP1 in comparison to subjects carrying homozygous 

major alleles. There was also an observed increase in VAMP1 expression for subjects 

carrying homozygous alleles from SNP2 in comparison to subjects carrying homozygous 

major alleles. The correlation between microarray data and qPCR was 0.73 (p<0.001) 

although two-sample t-tests indicate differences only at trend levels (p<0.1).
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Figure 3. 
Delta age may index an older or younger brain at the molecular level compared to 

chronological age. Scatter plot and Pearson’s correlation (r) between chronological and 

predicted molecular ages in BA47 (A; r=0.96) and BA11 (B; r=0.97). C. Scatter plot and 

Pearson’s correlation of molecular ages between BA11 and BA47 (r=0.98). D. Scatter plot 

and Pearson’s correlation of delta ages between BA11 and BA47 (r=0.8). The red symbols 

indicate brains of distinct subjects with large deviations in molecular level compared to 

chronological age (absolute delta age greater than 10 in either brain region). Bar plot for 

delta age comparisons (E: BA47 and F: BA11) in cases versus controls in three brain 

disorders (MDD, SCZ and BP). MDD_1 to MDD_3 stand for three MDD cohorts from 

Pittsburgh cohort; SCZ_1 to SCZ_4 are four SCZ studies (two from Pittsburgh cohort, 

one from Lieber cohort, and one from CommonMind cohort); BP_1 and BP_2 are two 

studies from CommonMind cohort. See Supplemental Methods and Supplemental Table 7 

for detailed naming correspondence. Y-axis is the delta age mean difference in cases over 

controls in each study plus/minus one standard deviation. *, 0.01–0.05; **, 0.01–0.001; ***, 

<0.001. Meta-analysis was further applied to summarize results across different studies in 

MDD and SCZ. Mega-analysis was performed to directly combine two BP studies since 

both of them are from CommonMind cohorts.
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Figure 4. 
Heatmap for polygenic risk score associations with clinical diagnostics and functional 

outcomes in external cohorts (IRL-Grey, ROSMAP, Health ABC, and Lieber center). (A) 

P-values; (B) FDR. The columns refer to different SNP lists used for calculating polygenic 

risk scores. The rows refer to different diagnostic or functional outcomes. PRSGWAS scores 

were associated with SCZ diagnosis and with three aspects of cognitive functions in the 

Lieber cohort. Rows are classified into broad domains (I) Measures in control cohort, 

(II) Cognition in AD, (III) Cognition in SCZ, (IV) AD-related diagnosis and pathologies, 

(V) SCZ diagnostic, and (VI) MDD-related diagnosis and others. PRScis-eQTL scores were 

associated with late-life depression and SCZ, and marginally with AD. PRScis-eQTL scores 

were also associated with the presence of neuritic plaques in AD. Only marginal associations 

were observed with aspects of cognition.

Lin et al. Page 18

Mol Psychiatry. Author manuscript; available in PMC 2021 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lin et al. Page 19

Table 1.

Cohorts.

Sample size Age range

Cohort Name Type Data Control Case 5% 95%

Pitt (cross-validated) Pitt-aging Postmortem Transcriptomics + Genetics 204 0 22.0 72.9

Pitt-MDD MD2_ACC_F Pitt-MDD1 Postmortem Transcriptomics 13 13 26.5 64.8

Pitt-MDD MD2_DLPFC_F Pitt-MDD2 Postmortem Transcriptomics 16 16 27.1 68.6

Pitt-MDD MD2_DLPFC_M Pitt-MDD3 Postmortem Transcriptomics 14 14 28.2 61.7

Pitt-SCZ PC L5 Pitt-SCZ1 Postmortem Transcriptomics 32 32 25.3 64.7

Pitt-SCZ MO1 L5 Pitt-SCZ2 Postmortem Transcriptomics 16 16 37.7 63.4

Lieber SCZ Lieber Postmortem + Clinical Transcriptomics + Genetics 99 88 17.2 70.3

CommonMind SCZ MSSM CMMD-SCZ1 Postmortem + Clinical Transcriptomics + Genetics 115 85 42.0 90.0

CommonMind SCZ Pitt CMMD-SCZ2 Postmortem + Clinical Transcriptomics + Genetics 73 36 24.4 68.6

CommonMind BP MSSM CMMD-BP1 Postmortem + Clinical Transcriptomics + Genetics 115 11 41.3 90.0

CommonMind BP Pitt CMMD-BP2 Postmortem + Clinical Transcriptomics + Genetics 73 31 24.0 66.9

ROS-MAP AD ROSMAP Postmortem + Clinical Genetics 384 251 76.9 90.0

Health ABC Health ABC Clinical Genetics 1794 0 NA (> 65)

IRL-Grey+HIP fracture studies IRL Clinical Genetics 254 0 NA (> 65)

Sample sizes reflect sample sizes after quality control evaluation.
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