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Abstract

Metastatic progression, including extravasation and micro-metastatic outgrowth, is the main cause 

of cancer patient death. Recent studies suggest that cancer cells reprogram their metabolism to 

support increased proliferation through increased glycolysis and biosynthetic activities, including 

lipogenesis pathways. However, metabolic changes during metastatic progression, including 

alterations in regulatory gene expression, remain undefined. We show that transforming growth 

factor beta 1 (TGFβ1) induced Epithelial-to-Mesenchymal Transition (EMT) is accompanied by 

coordinately reduced enzyme expression required to convert glucose into fatty acids, and 

concomitant enhanced respiration. Over-expressed Snail1, a transcription factor mediating TGFβ1-

induced EMT, was sufficient to suppress carbohydrate-responsive-element-binding protein 

(ChREBP, a master lipogenic regulator), and fatty acid synthase (FASN), its effector lipogenic 

gene. Stable FASN knock-down was sufficient to induce EMT, stimulate migration and 

extravasation in vitro. FASN silencing enhanced lung metastasis and death in vivo. These data 

suggest that a metabolic transition that suppresses lipogenesis and favors energy production is an 

essential component of TGFβ1-induced EMT and metastasis.
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Introduction

Metastatic disease is the primary cause of death in many cancers, especially in patients with 

breast and non-small cell lung (NSCLC) cancers (1, 2). Tumor metastasis is a complex 

process, starting with primary tumor invasion through endothelial barriers by a process 

known as EMT, characterized by loss of cell-cell adhesion and increased cell motility (3–5).

Transforming growth factor beta1 (TGFβ1) production within the tumor microenvironment 

is frequently enhanced in breast and NSCLCs (6). Chronic TGFβ1 exposure stimulates 

cancer cell EMT, increasing cell motility and metastasis through its downstream signaling 

pathways (7), including induction of several transcriptional factors, like Snail1 (8, 9).

In general, cancer cells maintain a high level of glycolysis in the presence or absence of 

oxygen (i.e., the Warburg effect). Elevated glucose metabolism serves a variety of functions, 

including energy production, provision of macromolecular precursors, and establishment of 

an NADPH pool to enable cells to resist oxidative stress (10, 11). In addition to higher 

glycolytic rates, rapidly proliferating cancer cells commonly have substantial increases in de 

novo fatty acid synthesis for lipogenesis and membrane production (12). Several lipogenic 

enzymes are required for cancer cell growth, including ATP citrate lyase (ACLY), FASN 

and acetyl-CoA carboxylase (ACC) (13–17).

Although glucose metabolism has been intensively investigated in rapidly growing cancer 

cells, metabolic changes that occur during EMT are poorly understood. Here, we 

demonstrate that transcriptional regulators of lipogenesis, ChREBP and SREBP, are 

dramatically down-regulated in A549 adenocarcinoma NSCLC cells during TGFβ1-induced 

EMT, a mechanism driven by increased SNAIL1 expression. Accordingly, cancer cells 

undergoing EMT have increased respiration, accompanied by elevated oxygen consumption 

and corresponding increases in ATP content. Importantly, Snail1 plays a key role in 

regulating this metabolic reprogramming, since cells forced over-expression of Snail1 

strongly suppressed ChREBP expression, a key lipogenic transcription factor. In turn, 

suppressed ChREBP levels reduced expression of FASN, an essential enzyme in de novo 

fatty acid synthesis, and enhanced EMT. Furthermore, stable FASN silencing by shRNA 

knockdown was sufficient to enhance EMT, accompanied by prototypic changes in 

expression of key functional mesenchymal marker genes, vimentin and E-cadherin, with 

stimulated cell migration in vitro. When examined in vivo, stable FASN knockdown cells 

showed enhanced metastatic potential and caused increased lethality due to metastatic 

spreading in NOD/SCID mice. Together, these data suggest that suppressing lipogenesis is 

an essential metabolic component of EMT, and a requirement for successful establishment 

of distant metastases by diverting energy needed for cell migration and metastases.
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Results

Changes in metabolic enzyme expression during EMT

Significant EMT was noted in A459 non-small cell lung carcinoma cells after low dose 

exposure to TGFβ1, as previously described (18). RT-PCR analysis showed that E-cadherin, 

N-cadherin and Snail1 were regulated by TGFβ1 treatment, and all changes were blocked by 

addition of TGFβ1 type I kinase inhibitor (TGF inhibitor) (Figure 1a), strongly suggesting 

that the observed changes in EMT gene expression were specifically mediated by 

downstream TGFβ1 signaling. TGFβ1-induced EMT was further confirmed by increased 

cell motility in transwell assays (Figure 1b).

Most cancer cells have high levels of glycolysis and fatty acid synthesis (10). However, in 

cancer cells undergoing an EMT, cells become more mobile and may alter their overall 

metabolism. Indeed, expression level of fatty acid synthase (FASN) was dramatically 

decreased upon TGFβ1-induced EMT (Figures 1c). Consistently, the fractional contribution 

of glucose to the fatty acid palmitate was reduced upon TGFβ1 treatment. This reduction 

was manifested in both the isotopomer distribution of palmitate and in the fraction of the 

lipogenic acetyl-CoA pool derived from [U-13C]glucose (Figures 1d). Several transcription 

factors known to control lipogenesis, including PPARα, PPARγ, SREBP1a and SREBP1c, 

were also down-regulated in A549 NSCLC cells in response to TGFβ1 (Supplementary 

Figure 1), with ChREBP demonstrating the most dramatic down-regulation (Figure 1c). All 

TGFβ1-induced metabolic changes were significantly suppressed by TGF inhibitor co-

administration. Concomitantly, we noted dramatic increases in intracellular ATP content and 

oxygen consumption in TGFβ1-treated A549 NSCLC cells (Figures 1e). The down-

regulation of lipogenesis was independent of TGFβ1 induced cell cycle arrest 

(Supplementary Figure 2). TGFβ1 regulated lipogenic gene expression changes were also 

tested in mouse mammary epithelial cells (NMuMG) (Supplementary Figure 3), in which we 

previously demonstrated dramatic EMT responses (19).

TGFβ1-induced EMT in A549 cells is a reversible process (20), whereby TGFβ1 withdrawal 

causes a mesenchymal-to-epithelial transition (MET). While decreases in E-cadherin, ACC, 

and FASN were noted during TGFβ1 treatment with concomitant increases in N-cadherin 

and Snail1 protein levels, these responses were quickly reversed upon TGFβ1 withdrawal 

(Figure 2a and 2c). Changes in FASN and ACC protein levels corresponded to dramatic 

decrease and rebounding of ChREBP mRNA levels after TGFβ1 exposure and withdrawal 

(Figure 2b), and mRNA levels of other lipogenic transcription factors also showed reversible 

expression (Figure 2d).

Snail1-mediated metabolic regulation during EMT

Snail1 is an important transcription factor that mediates the TGFβ1-induced EMT response 

(8, 9). To explore the role of Snail1 in metabolic regulation stimulated by TGFβ1 exposure, 

Snail 1 was over-expressed in A549 cells by infection with an adenoviral expression vector 

(Supplementary Figure 4). As reported previously, Snail1 over-expression resulted in 

classical features of mesenchymal cells, lower E-cadherin, with concomitantly higher 

vimentin expression (Figures 3a and 3b). These cells showed significantly enhanced 
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mobility, shown by scratch and transwell assays, with or without TGFβ1 treatments (Figures 

3c). Furthermore, Snail1 overexpression exhibited concomitant elevated intracellular ATP 

levels and oxygen consumption (Figures 3d). Thus, Snail1 over-expression stimulated EMT 

responses, and associated metabolic shifts in the absence of TGFβ1 exposure.

Similar to TGFβ1-induced EMT changes, Snail1 over-expressed cells expressed 

significantly lowered mRNA and protein levels of FASN and ACC (Figures 3a and 3e), 

which were not significantly affected by TGFβ1 treatments. Furthermore, ChREBP mRNA 

levels were also dramatically decreased in Snail1 over-expressed cells (Figure 3f). Thus, 

over-expression of Snail1 closely mimicked metabolic regulation of lipogenic genes in 

TGFβ1-exposed A549 cells. As both FASN and ACC are known ChREBP target genes (21), 

the metabolic regulatory role of Snail1 might be mediated by transcriptional control of 

ChREBP on FASN and ACC.

FASN silencing enhances metastatic capacity

Fatty acid synthesis is required for rapidly proliferating cancer cells, and prior studies have 

shown that knock-down of FASN expression can impair cancer cell growth and overall 

survival (22). To examine the roles of diminished FASN expression on cell motility, we 

transiently knocked down FASN using siRNA transfection (siFASN) and noted significantly 

lower E-cadherin expression (Figure 4a), which suggested an EMT and possibly increased 

mobility and metastatic capacity.

To further explore the functions of FASN expression on EMT and metastasis, stable FASN 

knockdown A549 cells were generated by lentiviral-mediated shRNA infection using three 

separate FASN targeting oligomers. A pooled population of shFASN cells demonstrated 

enhanced mobility in transwell assays, which was further increased by TGFβ1 treatment 

(Supplementary Figure 5). Three stable shFASN knockdown cell clones were separately 

isolated and each showed over fifty-percent decreased FASN mRNA expression levels 

(Figure 4b), similar to TGFβ1-exposed cells, with significantly suppressed FASN protein 

levels (Figure 4c). As expected, FASN silencing resulted in a reduced fractional contribution 

of glucose carbon to fatty acid synthesis (Fig. 4d). Compared to non-target controls, 

shFASN knockdown clones expressed significantly lower E-cadherin levels, with 

concomitantly higher N-cadherin and vimentin expression (Figure 4e). All shFASN clones 

showed dramatically elevated mobility in transwell assays (Figure 4f).

As observed with TGFβ1-exposed cells, shFASN clones exhibited significant gradient 

increases in intracellular ATP pools correlating with the extent of FASN level knockdown. 

Consistently, FASN knockdown clones also had higher oxygen consumption rates (Figure 

4g).

shFASN knockdown enhances A549 NSCLC cell lung colonization and lethality in NOD/
SCID mice in vivo

Next, we investigated the role of FASN loss in metastasis and lethality in NOD/SCID mice 

in vivo. Stable shNT and shFASN1 cells, which has slower growth rates and showed 

enhanced mobility in vitro (Figure 5a), were injected into the tail veins of female NOD/

Jiang et al. Page 4

Oncogene. Author manuscript; available in PMC 2016 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SCID mice. Initially, the deposition of cells into the lungs within was not different between 

the two cell injections as measured 4 h post-injection (Figure 5b). While many of the 

initially deposited NSCLC cells eventually died out in both conditions, later (>20 days) 

bioluminescent (BLI) images of mice revealed enhanced metastatic tumor colonization 

derived from luciferase-tagged shFASN cells (Figure 5c), with subsequent increased tumor 

volumes over time (Figure 5d). Mice injected with shFASN cells also displayed significantly 

decreased overall survival than animals injected with shNT A549 cells (Figure 5e). 

Autopsies of animals with initial lung cancers derived from shNT or shFASN only showed 

lung cancer colonization within the first 200 days. In contrast, mice that eventually died 

from injected shFASN cells not only demonstrated larger tumor volumes increased 

involvement of the overall lung, and decreased survival, but also dramatically increased 

metastatic spread to various other tissues, including adjacent lymph nodes, colon, liver and 

thymus (Table 1). In contrast, NOD/SCID mice that died from control or shNT A549 cells 

showed cancer involvement only in their lungs, with no effective spreading to adjacent 

lymph nodes or other tissues at the time of euthanasia due to large tumor volumes 

(Supplementary Figure 6).

Discussion

Although cancer cells have higher glycolytic rates than normal cells, mitochondria of cancer 

cells are usually fully functional (23, 24). During TGFβ1-induced EMT, increased oxygen 

consumption strongly suggests that mitochondrial oxidative phosphorylation is stimulated, 

to generate ATP. Recent study showed that reduced migration is associated with reduced 

OXPHOS and ATP levels in viable cancer cells (25).

Increased de novo fatty acid synthesis is a general metabolic feature of cancer cells (26). 

Prior studies suggested that enzymes in this pathway might be potential targets for cancer 

therapy, as genetic knockdown or chemical inhibition of these enzymes decreased cancer 

cell proliferation in vitro and subcutaneous xenograft tumor growth in vivo (13–17). In 

response to TGFβ1, we discovered that ACC and FASN were coordinately decreased in 

A549 NSCLC cells, through a Snail1-mediated transcriptional regulatory network. Our data 

strongly suggested that Snail controls metabolic reprogramming of cancer cells in response 

to TGFβ1 by regulating several key metabolic transcriptional factors, including SREBP and 

ChREBP (21, 27). Here, we discovered that ChREBP was dramatically down-regulated by 

TGFβ1 in A549 cells, and forced overexpression of Snail1 mimicked this response. From 

promoter analyses, we identified three potential Snail1 binding sites (CACCTG at −130, 

−682, and −1295 bp from the transcription start site) in the human ChREBP promoter that 

were identical to those in the human E-cadherin promoter, suggesting that Snail1 could 

directly bind to the ChREBP promoter and negatively regulate its expression, which will be 

further investigated by ChIP assay.

TGFβ1 exposure stimulates cell migration, a process requiring a re-balancing of energy from 

fatty acid synthesis to EMT promotion. Since Snail1 forced overexpression simulated the 

same responses, this essential transcription factor appears important for both the 

morphological as well as the metabolic reprogramming that occurs during EMT. Indeed, 
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methods to target Snail would be a potentially important means to inhibiting cancer 

progression at both the levels of metabolic and morphologic re-programming.

Our observation that decreased fatty acid synthesis regulates and ultimately stimulates cell 

migration and metastases raises considerable caution in targeting FASN or lipogenesis to 

prevent cancer. FASN knockdown A549 cells grew slower than control shNT A549 cells, 

consistent with prior results (22), where the authors concluded that targeting these pathways 

could be an effective anticancer strategy. However, our results indicate that cells with 

decreased FASN also showed enhanced metastatic potential, similar to TGFβ1-exposed 

cells. Thus, while targeting FASN or lipogenesis in general, may suppress growth of 

primary tumors, a major consequence is enhanced metastasis in NOD/SCID mice injected 

with shFASN A549 cells to mimic extravasation and cancer progression. One possibility is 

that loss of FASN expression increases the availability of substrates to supply oxidative 

phosphorylation. The resulting shift from anabolism to energy production may help support 

migration and ultimately metastasis (28).

These results strongly suggest TGFβ1, elevated in many cancer microenvironments (29) 

represents a new paradigm in cancer metabolic reprogramming, central for EMT-derived 

cell migration and metastases. TGFβ1 exposure shifts metabolism from fatty acids synthesis 

to enhanced oxidative phosphorylation, which generates sufficient ATP needed for cell 

migration and metastasis. The data suggest that targeting FASN or other lipogenic enzymes 

in cancer, while potentially eliciting temporary growth inhibition, might have the untoward 

consequence of increasing long-term risk of metastasis.

Materials and methods

Reagents

Recombinant Human TGFβ1 was purchased from R&D systems (Minneapolis, MN). The 

TGFβ1 type I kinase inhibitor (TGF inhibitor, cat. # HTS-466284) was purchased from 

Calbiochem (Hessen, Darmstadt).

Cell lines

A549 NSCLC cells were purchased from the American Type Culture Collection (ATCC). 

Normal murine epithelial mammary gland (NMuMG) cells were kindly provided by Dr. 

Gray Pearson (UT Southwestern) and grown and used for EMT analyses as described(19). 

All cells were MAP tested and were free of mycoplasma contamination.

Stable Snail1 over-expressing A549 cells were generated using retroviral-mediated pBABE-

Snail1 expression vectors kindly provided by Dr. Sendurai A. Mani (University of Texas, 

M.D. Anderson Cancer Center, Houston, TX). A pooled cell population was used for 

experiments after puromycin selection. Stable A549 non-targeted (shNT) and FASN 

knockdown (shFASN) cells were generated by lentiviral-mediated expression of three 

separate targeting shRNAs for the FASN gene, and stable clones isolated. The shFASN1 

clone was selected for the in vivo study.
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Palmitate de novo synthesis assay using [U-13C]glucose

In brief, cells were cultured in medium containing [U-13C]glucose for 24 hours. The cells 

were harvested with 0.4ml 0.1% Triton-X 100, followed by methanol:chloroform extraction. 

The chloroform phase was dried down with nitrogen gas resuspended with a 2ml 

methanol:toluene (4:1 V/V) mixture containing 0.01% butylated hydroxytoluene and 2μl 

acetyl chloride, and heated to 100°C for 1 hour to generate methyl esters of palmitate and 

other fatty acids. After cooling down the sample, 5 ml of 6% K2CO3 was added. The 

samples were centrifuged to separate the phases, and the upper toluene phase was 

transferred to a GC/MS vial. Metabolites were analyzed using an Agilent 6970 gas 

chromatograph networked to an Agilent 5973 mass selective detector. Retention times and 

mass fragmentation signatures of methylpalmitate were validated using a pure standard. The 

mass isotopomer distribution analysis measured the fraction of each metabolite pool that 

contained every possible number of 13C atoms; that is, a metabolite could contain 0, 1, 2, … 

n 13C atoms, where n = the number of carbons in the metabolite. For each metabolite, an 

informative fragment ion containing all carbons in the parent molecule was analyzed using 

MSDChem software (Agilent), integrating the abundance of all mass isotopomers from m+0 

to m+n, where m = the mass of the fragment ion without any 13C. For palmitate, m=270, 

n=16. The abundance of each mass isotopomer was then corrected mathematically to 

account for natural abundance isotopes and finally converted into a percentage of the total 

pool. Glucose contributed lipogenic acetyl-CoA was calculated from the enrichment data by 

regression mathematical model.

Oxygen consumption rate (OCR) analyses

OCRs were measured using the XF24 Analyzer (Seahorse Bioscience) as described(30). 

OCRs were normalized by cell number and data presented as relative X-fold changes vs 

control cells.

Intracellular ATP measurements

Intracellular ATP levels were measured using Cell Titer-Glo® Luminescent Cell Viability 

Assays (Promega). ATP concentrations were normalized by cell number and data expressed 

as relative X-fold changes vs. untreated control cells.

Transwell migration assays

Log-phase Snail1 overexpressing, shFASN knockdown, or appropriate control (vector alone 

or shNT) A549 cells (2 × 104) were pretreated with TGFβ1 for 24 h, with or without TGF 

inhibitor (400 nM, 1h) and seeded into matrigel pre-coated trans-well chambers in 0.1% 

FBS DMEM. Cells migrating through membranes and attaching to the bottom of transwell 

plates were counted after 48 h using BLI.

Wound healing assay in vitro

Stable vector control and Snail1 overexpression A549 cells were treated with TGFβ1, with 

or without TGF inhibitor (added 1 h prior to TGFβ1) and assessed for wound healing as 

described(19). Relative X-fold changes compared to untreated or vector alone control cells 

were measured.
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Cell cycle analyses

A549 cells were treated with or without TGFβ1 for 48 h. Trypsinized cells were stained with 

PI, and analyzed for cell cycle distribution by flow cytometry as described (31).

Ionizing Radiation

A549 cells were exposed to 2.5, 5.0 or 7.5 Gy of ionizing radiation (IR), cultured for 24 h 

under normal growth conditions, and then harvested for Western blot analyses of cell cycle 

markers and metabolic enzymes.

Metastatic analyses

Female NOD/SCID mice (10 animals/group, 6–8 weeks old, 18–20 grams) were tail-vein 

injected with log-phase luciferase-labeled shFASN or shNT A549 cells (1 × 106) and 

imaged 4h (to assess initial cells lodged into lungs) and at various times (days) post-

injection. BLI measurements, animal weights, and survival were measured over time. Mice 

were sacrificed when weights decreased 10% due to tumor formation. Sacrificed mice were 

assessed for metastatic spread to lymph nodes, and other normal tissues by BLI signals ex 

vivo, and confirmed for tumor tissue using H & E staining as described (32).

Immunohistochemistry (IHC)

Normal (n=2/group) tissues were processed, parafin embedded, sectioned (3 um) and stained 

with H&E to confirm tumor versus normal tissue as described (19).

Immunoblot analyses

Protein extraction and immunoblot analyses were performed as described(33). Primary 

antibodies used in this study were FASN, ACC, E-cadherin, Vimentin, Snail1 (Cell 

Signaling Technology, Beverley, CA), N-cadherin, p53, p21 (Santa Cruz Biotechnology, 

Dallas, TX), a-Tubulin, Actin (Sigma-Aldrich, St. Louis, MO), and GAPDH (Calbiochem).

Statistical analyses

All experiments were performed at least two times in duplicate, with many experiments 

performed three times in triplicate. Data in vitro were analyzed by two-tailed student’s T 

tests. Tumor volumes, monitored by BLI, and survival (Kaplan-Meier) curves were 

statistically analyzed by ANOVA analyses. Data are represented as mean ± SEM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Changes of de novo lipogenesis during TGFβ1 induced EMT
A549 cells were treated with 2ng/ml TGFβ1, with or without 400nM TGF inhibitor for 48h. 

(a) EMT functional proteins E-cadherin, N-cadherin and Snail1, were analyzed by real-time 

PCR (RT-PCR). (b) Transwell assays of A549 cells were treated with TGFβ1, with or 

without TGF inhibitor. (c) mRNA expression levels of FASN and ChREBP were analyzed 

by RT-PCR as in panels A. (d) Labeling of palmitate in A549, after culture in medium 

containing [U-13C] glucose for 24 hours, and calculated glucose contributed lipogenic 
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acetyl-CoA. (e) Intra-cellular ATP levels and OCRs were measured in TGFβ1 treated cells. 

(*P<0.05 comparing to BCA control.) (Data are represented as mean ± SEM.)
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Figure 2. TGFβ1 induced reversible EMT responses in A549 cells
A549 cells were treated with TGFβ1 (2 ng/ml) for the indicated days (marked TGFβ1 

treatment). After 12 days, TGFβ1-treated A549 cells were washed with PBS and 

subsequently cultured in normal growth medium without TGFβ1 for 3, 6, or 9 days. (a) 

Protein levels of key EMT functional proteins and metabolic enzymes were analyzed by 

western-blotting. (b) mRNA levels of ChREBP were monitored by RT-PCR. (c) mRNA 

levels of EMT functional proteins (E-cadherin, N-cadherin, and Snail1) and (d) lipogenic 

transcriptional regulatory factors (PPAR-gamma, SREBP1, and SREBP2) were monitored 

by RT-PCR. (*P<0.05 comparing to day0. #P<0.05 comparing to day12 TGFβ1 treatment.) 

(Data are represented as mean ± SEM.)
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Figure 3. Snail1 involved in TGFβ1 regulated lipogenesis
(a) Protein levels of E-cadherin, Vimentin, FASN and ACC were analyzed by western-

blotting in stable Snail1 over-expressed A549 cells. (b) The mRNA expression levels of 

Vimentin and E-cadherin were analyzed by RT-PCR. (c) Transwell assay and scratch assay 

of control and Snail1 over-expressed A549 cells. (d) Intracellular ATP content and OCRs in 

Snail1 over-expressed cells with or without TGFβ1 treatment. (e) mRNA levels of lipogenic 

genes FASN and ACC were analyzed by RT-PCR. (f) mRNA levels of ChREBP were 

shown by RT-PCR. (*P<0.05 comparing to control A549 cells.) (Data are represented as 

mean ± SEM.)
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Figure 4. Fatty acid synthase knockdown mimic TGFβ1 induced EMT
(a) Whole A549cell lysates were harvested 48h after siRNA transfection, and protein levels 

of FASN and E-cadherin were shown by western-blotting. (b) mRNA levels of FASN were 

monitored by RT-PCR in three FASN knockdown cell populations. (c) Protein levels of 

FASN and EMT functional proteins were shown by western-blotting in FASN knockdown 

cell lines. (d) Labeling of palmitate in control or FASN-silenced cell lines cultured in 

medium containing [U-13C] glucose for 24 hours, and calculated glucose contributed 

lipogenic acetyl-CoA. (e) mRNA levels of EMT functional proteins E-cadherin, N-cadherin 

and Vimentin were analyzed by RT-PCR. (f) Cell mobility was measured by transwell 
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migration assays. (g) Intracellular ATP content and ORCs were monitored for stable 

shFASN knockdown and shNT A549 cells. (*P<0.05 comparing to shNT A549 cells.) (Data 

are represented as mean ± SEM.)
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Figure 5. Stable shFASN knockdown increases metastasis in A549 NSCLC cells
(a) Growth curve of A549 shFASN knockdown cells in vitro. (b) Stable knockdown shNT 

(top) or shFASN (bottom) A549 cells (1×106) were injected into the tail veins of 

anesthetized NOD/SCID female mice, and cell deposition into the lungs were analyzed 4h 

post-injection. Note that identical viable cell numbers (measured by BLI) deposited into the 

lungs. (c) Representative images of mice injected with stable shNT or shFASN A549 cells 

as in ‘A’, but analyzed 20 days later. (d) Relative tumor volumes were measured by BLI 

intensities at the indicated times. (e) Kaplan-Meier survival for mice bearing stable shNT vs 

shFASN knockdown A549 lung xenografts. (Data are represented as mean ± SEM.)
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Table 1

shFASN knockdown leads to enhanced metastatic spread weeks after lung colonization.

#Animals/Condition of 20 total1

Distal organ affacted shNT shFASN

a. Gastrointestinal 0 1

b. Liver 0 2

c. Bone marrow 0 0

d. Kidney 0 1

e. Spleen 0 0

f. Heart 0 0

g. Thymus 0 10

h. Brain 0 0

 Total affected mice: 0/20 14/202

1
Experiments were performed three times. Two experiments were performed with n=5 per group, and a third experiment was performed with n=10. 

Data in this table summarizes results of all 20 animals treated similarly with no one experiment having statistically more metastatic spread than the 
others. The presence of tumor tissue was confirmed by H&E staining.

2
p≤0.001

Oncogene. Author manuscript; available in PMC 2016 January 23.


