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Tuning perception and decisions
to temporal context

Philippe Blondé,1,3,* Árni Kristjánsson,1 and David Pascucci2

SUMMARY

Recent work suggests that serial dependence, where perceptual decisions are biased toward previous
stimuli, arises from the prior that sensory input is temporally correlated. However, existing studies
have mostly used random stimulus sequences that do not involve such temporal consistencies. Here,
we manipulated the temporal statistics of visual stimuli to examine the role of true temporal correlations
in serial dependence. In two experiments, observers reproduced the orientation of the last stimulus in a
sequence, while we varied temporal correlations in the stimulus features at two timescales: stimulus his-
tory within the trial and decision history across trials. We found a clear dissociation: increasing temporal
correlation in the stimulus history led to adaptation-like repulsive biases, whereas increasing temporal
correlation in the decision history reduced attractive biases. Thus, we suggest that temporal correlation
enhances the discriminative ability of the visual system, revealing the fundamental role of the broader
temporal context.

INTRODUCTION

From the swaying leaves of a tree to passing clouds, our visual world is in perpetual change. Our eyes are in constant motion as well, with

frequent saccades and blinks, resulting in a discontinuous and ever-changing input to the retina. Despite this, the brain is able to maintain

a continuous and stable representation of the visual world.

Recent studies suggest that to maintain continuous visual representations, the brain integrates prior and current stimuli based on the tem-

poral and spatial characteristics of sensory events.1–3 For instance, when similar visual features occur in close temporal and spatial proximity,

they are integrated into a unified and continuous percept of a constant object. This idea, a tenet of several recent models of vision,2,4–7 is

largely inspired by the behavioral phenomenon of serial dependence, in which perceptual decisions are biased toward stimuli seen in the

recent past.1,8 A classic example is the bias observedwhen two similarly oriented stimuli are shown one after the other, with the second orien-

tation being judged asmore similar to the first than it truly is. Similar effects can be found in almost all visual tasks, ranging from those involving

elementary features1,6,9–16 to more complex and abstract ones,17–22 suggesting that the dependence on prior events is a pervasive and gen-

eral aspect of perceptual decision-making23 that cannot be overcome even in situations where it is non-adaptive.24

Serial dependence is believed to be rooted in the strong temporal correlation of natural statistics.2,3,25,26 It has been proposed that expo-

sure to such correlations has shaped our internal ‘‘priors’’ about the stability and continuity of visual objects, thus, leading us to interpret cur-

rent sensory input as similar to the immediate past. This notion, closely linked to Bayesian and predictive theories of the brain,5,27–32 rests on

the assumption that there is a true correlation between recent perceptual input and the present input.

If the visual system relies on Bayesian inference to update its representation of the current state of the environment, then the transition

probabilities in a sequence of items should be a determining factor in the mechanisms responsible for serial dependence.31 Interestingly,

nearly all available evidence of serial dependence, comes from studies where transition probabilities are uniform and temporal correlation

is disrupted by design—i.e., by presenting random sequences of sensory signals. This puts into question the assumption that serial depen-

dence in such a context represents an integration of previous stimuli based on stability priors, and leaves an explanatory gap in the under-

standing of these phenomena, as the conditions under which serial dependence is observeddo not necessarily reflect the context in which it is

expected to emerge. In principle, combining the present and the past can be an adaptive strategy in the context of static or slowly changing

visual input.33 However, it has no clear advantage in the presence of largemoment-to-moment changes, such as radical changes in the orien-

tation or direction of motion of a stimulus,1,12 as well as changes in the identity or gender of a face,18 to name some examples. These latter

types of stimulus presentation, typically used in many experiments on serial dependence, involve a highly volatile, non-ecological visual

context where prior stimuli are highly unlikely to be constant from one moment to the next.

Moreover, the timescale of these effects also matters. For instance, a small change over several seconds might indicate a negligible fluc-

tuation in the sensory input. The same change over a short timescale may signal the beginning of a transition leading to a fundamental
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change. Similarly, the same change may have a completely different impact depending on the overall rate of changes in the stimulus stream.

Only by taking these aspects into account can we draw conclusions about the mechanisms behind the temporal integration of sensory events

and their relation to natural statistics.

An additional argument for examining temporal statistics in perception is the occurrence of a repulsive after-effect in a highly stable

context. Classic studies on visual adaptation demonstrate that stable visual input repels perception away from recent stimuli, increasing

the sensitivity to small changes, an effect opposite to attractive serial dependence.34–37 Several studies over the past decade have indicated

that repulsive and attractive history effects originate from different mechanisms, and even at different processing stages, reflecting the con-

stant need to strike a balance between discriminating changes and maintaining continuity.5–7,38–42 Most of the research in recent years has

strived to disentangle the nature of these two effects, often linking repulsion to early sensory processes and attraction to later processing

stages, such as decision-making and working memory.8 However, this work has typically relied on standard paradigms with randomized se-

quences of stimuli, which tells us nothing about how these history effects operatewithinmore realistic temporal sequences. It remains unclear,

therefore, whether these mechanisms operate at different time scales and how they depend on the actual temporal statistics, when temporal

statistics change.

Here, we investigate the effect of temporal statistics on serial dependence by manipulating the transition probability distribution of stim-

ulus sequences in an orientation adjustment task. In two experiments, observers performed a sequential no-report paradigm inwhich each trial

contained a sequence of visual features of varying lengths.6,43 The task required them to monitor the entire sequence and to reproduce the

orientation of the last stimulus (see Figure 1).Wemanipulated the temporal statistics at two levels: the sequence itself (stimulus history) and the

A

B

Figure 1. The sequence of events on a single trial

(A) In the sequential no-report paradigm, each trial contains a sequence of stimuli (here from 4 to 12 oriented Gabor patches). Participants reproduce the

orientation of the last one using a response tool. To minimize after-images and aftereffects, the stimulus is shown with a low-contrast and embedded in

visual noise (see STAR Methods). The stimulus history refers to the effect of the second-to-last stimulus shown within the trial sequence. The decision history

refers to the effect of the orientation reproduced on the preceding trial.

(B) Manipulating the orientation transition probability within the trial sequence (Experiment 1) or across trials (Experiment 2) allows us to vary temporal statistics in

the stimulus and decision history, respectively. The two probability functions in the left-top plot depict the stable (narrow gray function) and volatile (green

function) conditions of Experiment 1, where we manipulated the stimulus history. The distributions below depict the two conditions of Experiment 2, where a

similar manipulation was applied at the level of the decision history, while keeping the stimulus history random (see STAR Methods). As shown in the right-

side plot, in Experiment 1 the orientations were highly similar within each trial of the stable condition (gray dots and line in the right-side plot) and highly

dissimilar in the volatile condition (green squares and line in the right-side plot). Note that orientation changes across trials (e.g., decision history) in the

stable condition of Experiment 1 were completely random, thus, dissociated from local stimulus history.
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consecutive trials (decision history, Figure 1), with the idea that the twomay tap into serial dependence at different processing stages, namely,

a stage of perception versus a post-perceptual processing one. In Experiment 1, we made the stimulus history stable (high similarity between

the stimuli) or volatile (low similarity between the stimuli), while in Experiment 2, we applied the same manipulation to decision history.

We hypothesized that if stability priors become more prominent in the presence of a true temporal correlation, then attractive serial

dependence should be stronger under stable temporal statistics compared to volatile ones. Manipulating temporal statistics should also

impact stimulus and decision history effects in different ways, in line with models assuming repulsion and attraction at the two different levels

of processing. In line with this, we found a clear double dissociation. Temporal statistics at the stimulus level affected serial dependence due

to prior stimuli but not prior decisions. Conversely, temporal statistics at the decision level affected serial dependence due to prior decisions

but not prior stimuli. The resulting pattern points to two separate and largely independent phenomena. On the one hand, increased stability

at the short-term timescale of stimulus history led to the build-up of adaptation-like repulsive effects. On the other hand, decision history at

longer time scales always induced an attractive effect. However, this effect was surprisingly reduced rather than increased when temporal

stability in decision history increased.

Taken together, our results provide evidence for a complex interdependency between temporal statistics and serial dependence, in which

the effects of prior history depend not only on the temporal statistics of sensory input, but also on the level of processing at which temporal

statistics act. Crucially, similar stimuli are judged asmore different under stable temporal statistics, revealing a previously unknown contextual

effect in serial dependence which suggests that in the presence of temporal correlation in sensory input, the brain increases sensitivity to

changes.

RESULTS

Experiment 1

To investigate the effect of temporal statistics on serial dependence, we used the sequential no-report paradigm.6,43 On each trial, partici-

pants were shown a sequence of stimuli and asked to reproduce the orientation of the last one. A crucial aspect of this paradigm is that it

allowed us to assess serial dependence at two levels: stimulus history and decision history. Stimulus history refers to the effect of the sec-

ond-to-last stimulus in the sequence, which is never reproduced and therefore requires no active decision. Decision history refers to the effect

of the stimulus reproduced on the previous trial, which is always associated with a decision and a response (see STARMethods and Figure 1).

In this experiment, we manipulated the temporal statistics at the level of the stimulus history. We used two transition probability functions

that created either a stable or volatile condition (Figure 1B). In the stable condition, the orientations of stimuli were highly similar within each

trial, while in the volatile condition, they were highly different (see STARMethods). We hypothesized that if participants internalize these pat-

terns and form priors to guide their perception of the next stimulus, we would observe stronger attractive serial dependence from stimulus

history in the stable condition, where temporal correlation is high.

First, we analyzed performance in the adjustment task by comparing the error standard deviation in the stable (8.62G 1.29�) and volatile

conditions (8.63 G 1.41�). The analysis revealed no significant difference between the two (t(19) = 0.11, p = 0.912).

To analyze serial dependence, wemeasured the bias due to the stimulus and the decision history with model-based (doG) andmodel-free

analyses (see STAR Methods). Both approaches involve estimating the error bias as a function of the difference between the previous and

current orientation (D). When errors and D have the same sign (e.g., when both the previous orientation and the current error are clockwise

or counter-clockwise to the current stimulus orientation), serial dependence is attractive: the current stimulus is reproduced as similar to the

previous. Conversely, when the sign of errors and D is opposite, serial dependence is repulsive. The direction of the errors with respect to D is

quantified by both the half-amplitude parameter a of the doG curve in the model-based analysis and by the ‘‘bias’’ metric in the model-free

analysis (see STAR Methods).

The doG fit for the effect of the stimulus history revealed significant repulsive serial dependence in the stable condition (see Figure 2A),

with a negative a of�1.44� (pperm < 0.001). In the volatile condition, the estimated awas 0.75� (pperm = 0.023), indicating an attractive bias. The

direction of the bias was significantly different between the two conditions (volatile vs. stable, difference in a = 2.19�, pperm < 0.001). The

model-free analysis confirmed these results, revealing a large effect size of the difference in the bias between the two conditions (volatile

vs. stable, t(19) = 5.21, p < 0.001, Cohen’s d’ = 1.17).

We repeated the same analysis, but now considering the orientation of the stimulus reported on the preceding trial—i.e., the decision

history. The doG fit revealed attractive serial dependence in both the stable (a = 0.80�, pperm = 0.027) and volatile conditions (a = 0.87�,
pperm = 0.019), with no difference between the two, according to both the model-based (volatile vs. stable, difference in a = 0.07�,
pperm = 0.445) and model-free statistics (volatile vs. stable, t(19) =�0.32, p = 0.750, d’ =�0.07). Hence, while the manipulation of the stimulus

history led to opposite effects, with a strong repulsive bias in the stable condition, the effect of decision history was always attractive.

In our paradigm, the longer the sequence of stimuli the larger the number of samples characterizing the temporal statistics. To further

assess the time course of these biases as a function of the sequence length, we ran a series of linear regressions, modeling the strength

of the model-free bias as a function of the number of stimuli shown on each trial (from 4 to 12). Two linear models were run separately for

the effect of stimulus and decision history. In the analysis of the stimulus history, the linear model included the sequence length, the condition

(volatile vs. stable), and their interaction as the main predictors. In this model, the bias due to the second-to-last stimulus in the sequence was

the dependent variable.We found a significant linear regression (F(4; 356) = 22.9, p < 0.001, R2 = 0.16), indicating a negative slope of the effect

of sequence length (b = �0.26, p = 0.048), with a significant main effect of the stimulus history condition (b = �1.77, p = 0.047), and a trend

toward a significant interaction (b =�0.35, p = 0.061). As shown in Figure 2B, the interaction trend wasmostly driven by themore pronounced
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negative effect of the sequence length in the stable, compared to the volatile condition. This suggests that, when the stimulus history is stable,

each additional stimulus leads to a more marked increase in repulsive serial dependence.

To analyze decision history, we ran a similar linear model with the same predictors, but the dependent variable was the bias due to the

stimulus reported on the previous trial. This analysis also revealed a significant regression model (F(4; 356) = 2.76, p = 0.042, R2 = 0.01),

with a significant interaction between the effect of sequence length and decision history (b = 0.48, p = 0.006). The attractive bias toward

the stimulus reported on the preceding trial increased as a function of the number of stimuli in the stable condition, but decreased in the

volatile condition, indicating that, even though decision history effects were always attractive, they were slightly modulated by local stimulus

history (Figure 2B).

Experiment 2

In Experiment 1, we found repulsive serial dependence when stimulus history was stable. In contrast, decision history led to an overall attrac-

tive serial dependence. Notably, decision history effects persisted even though several stimuli intervened between consecutive decisions.

This might suggest that (1) stable stimulus history can generate repulsive biases similar to adaptation, which accumulate over short time

scales, and (2) decision history may manifest as a distinct form of serial dependence, operating on a separate timescale and unaffected by

local stimulus history.
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Figure 2. Results of Experiment 1

(A) Error as a function ofD. Left panel: the effect of stimulus history in the stable (gray lines, dots, and shaded areas) and volatile condition (green lines, diamonds,

and shaded areas). Right panel: the effect of decision history in the stable and volatile conditions. Lines represent the doG fit; shaded areas are interpolated

running averages of the errors on each D bin (showed shown by the dots and diamonds) with 1 standard deviation.

(B) Sequence length analysis and regression fits with 95% prediction intervals for stimulus history effects (left panel) and decision history effects (right panel).
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In Experiment 2, we investigatedwhether temporal statistics would affect decision-related serial dependence. To this aim, wemanipulated

the orientation transition probability function at the level of decision history while keeping the local stimulus history random. We presented

participants with separate blocks, one with a stable condition, in which the orientation they had to reproduce varied according to a narrow

transition probability distribution, and another with a random condition, in which the orientation varied according to a uniform transition

probability distribution similar to classic serial dependence studies (see STAR Methods). For consistency with Experiment 1, we refer to

the random condition as volatile. For this experiment, we choose to employ a uniform distribution rather than a distribution resembling

the shape utilized in the volatile condition of Experiment 1 to avoid a potential imbalance in data points for small D values in comparison

to the stable condition.

We hypothesized that if participants internalized the temporal correlation in their decisions, serial dependence would be stronger in the

stable condition because previous decisions were highly similar to current ones.

The manipulation of temporal statistics at the level of decision history led to a significant difference in performance, with a lower standard

deviation of adjustment errors in the stable (8.40G 1.32�) than the volatile condition (8.82G 1.22; t(16) = 2.64, p = 0.018). Serial dependence

from the stimulus history was absent in both the stable (a=�0.55�, pperm = 0.110) and volatile conditions (a= 0.46�, pperm = 0.175). Themodel-

based analysis also revealed no significant bias (difference in a, volatile vs. stable: 1.01�, pperm = 0.157) and the model-free analysis revealed

only a trend for a significant difference between conditions (volatile vs. stable, t(16) = 1.83, p = 0.086, d’ = 0.44).

In contrast to the effect of stimulus history, strong attractive serial dependence from the decision history was evident in both conditions

(Figure 3A). Surprisingly, however, attractive serial dependence was stronger in the volatile (a = 2.19�, pperm < 0.001) than the stable con-

dition (a = 1.07�, pperm = 0.001; difference in a, volatile vs. stable: 1.12�, pperm = 0.006), even though decisions were highly temporally corre-

lated in the stable condition. This difference between conditions was confirmed by the model-free analysis (volatile vs. stable, t(16) = 2.14,

p = 0.048, d’ = 0.52). Hence, when manipulating temporal statistics at the level of decision history, the local stimulus history was not

affected and produced no bias at all, whereas the attractive serial dependence due to previous decisions was stronger for volatile than

stable sequences.

As in Experiment 1, we evaluated changes in the strength of both stimulus and decision history effects as a function of the sequence length.

The model for stimulus history effects was significant (F(4; 302) = 5.64, p < 0.001, R2 = 0.04), with a significant negative slope for the effect of

sequence length (b = �0.41, p = 0.004), but no main effect of the volatile vs. stable conditions (b = �1.76, p = 0.294), nor a significant inter-

action (b = 0.1, p = 0.609). The model for decision history effects was also significant (F(4; 302) = 9.16, p < 0.001, R2 = 0.07), with a significant

main effect of the volatile vs. stable history condition (b = �2.9, p = 0.04), but only a tendential effect of the sequence length (b = 0.19,

p = 0.108) and no interaction (b = 0.14, p = 0.406). This additional analysis revealed that local stimulus history effects tended toward repulsion

with increased sequence length, while the attractive bias due to decision history increased.

One potential explanation for the reduced attractive serial dependence in the stable condition is that observers integrated information

from more than one trial in the past because of the temporal correlation of decisions across entire blocks of trials. The effect of the very

last trial may therefore have been reduced because previous trials also had a strong influence. To check this possibility we performed a linear

regression after linearizing the relationship betweenD and single-trial errors by pre-multiplyingDwith a doGof the width obtained in themain

analysis (i.e., considering D with respect to one trial back).25,44 Two separate linear models were generated for the stable and volatile condi-

tions, which included the linearized effect of both themost recent (n-1) and the preceding trials (n-2) as themain predictors of the aggregated

single-trial errors of all observers. In the volatile condition, a significant linear model (F(3; 1856) = 28, p < 0.001, R2 = 0.03) revealed an effect of

D(n-1) (b = 0.15, p < 0.001) and of D(n-2) (b = 0.04, p = 0.026). Conversely, in the stable condition, a significant linear model (F(3; 1869) = 7.61,

p < 0.001, R2 = 0.008) revealed only an effect of D(n-1) (b = 0.06, p = 0.001) but no effect of D(n-2) (b = 0.01, p = 0.298). Not only was serial

dependence for the preceding trial reduced in the stable condition, but also how far back in time the bias extended.

DISCUSSION

We investigated the role of temporal statistics in serial dependence, an aspect that prior research has often overlooked by relying solely

on random sequences of stimuli. In two experiments, we manipulated the temporal statistics of consecutive stimuli to make them either

more similar or more distinct from one another. We focused on examining the effects of varying temporal statistics at two levels—the

stimulus level and the decision level—that have been related to independent effects of prior history in several recent studies.5–7,39,40

Our results reveal a double dissociation: manipulating temporal statistics had a targeted effect solely at the level where it was applied,

with distinct effects of stimulus history and decision history. High temporal correlation in the stimulus history led to the build-up of

adaptation-like repulsive effects (Figure 2A), whereas high temporal correlation in the decision history reduced attractive serial depen-

dence (Figure 3A).

These results have several important implications. Firstly, they confirm evidence that there are two distinct stages at which previous stimuli

influence perception and perceptual decisions, which are largely independent of each other.6 Recent research supports this dissociation, as

several studies have demonstrated that the influence of pure sensory stimulation typically leads to a repulsive bias.6,40,45–47 On the other hand,

the attractive bias has been linked to higher-level processing stages that involve memory and decision-making processes where sequential

perceptual episodes are combined together to maintain stable representations of the relevant stimuli features.12,38

Modeling work has attempted to account for these opposing biases by positing the existence of history effects at higher-level processing

stages that interact with or even counteract low-level adaptation.6,7 These models suggest that the repulsive bias is attributable to low-level

mechanisms similar to visual adaptation and negative aftereffects, which help maintain sensitivity to changes.5–7 This is in line with the
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build-up of repulsive biases as a function of the sequence length found in our experiments, particularly when the stimulus history was stable,

and suggests that the visual system gradually adapts to the prevailing flow of visual input even at short time scales. The only instance in which

we observed a weak attractive effect of stimulus history was in the volatile conditionwhere the sequence had highly diverse stimuli (Figure 2A).

If we assume that these biases reflect how the brain tunes itself to external statistics, then a volatile environment should not produce any adap-

tation-like bias since few regularities can be discerned from such an environment, and weak attractive serial dependence from pure stimulus

history might prevail. Alternatively, in extremely uncertain environments, the most recent information might serve as the dominant reference

point for predicting the next state of the environment.48,49

The putative computational goal of serial biases has been extensively discussed, and existingmodels typically propose that both repulsion

and attraction stem from how the visual system tunes itself to the expected temporal statistics of the visual world. Repulsion, which has been

often observed on longer time scales of seconds or evenminutes, has been linked tomechanisms that reallocate processing resources based

on the prevalent flow of sensory events according to efficient coding schemes5 and intrinsic expectations about slow changes in visual input.35

Conversely, attraction has been associatedwith stability priors where visual events tend to be similar at shorter time scales.1,2,4,5 The pattern of

results observed in our study appears to be the opposite, with repulsion at shorter time scales and attraction at longer ones. This may reflect

the design of our sequential no-report paradigm, where rapid sequences of non-reported stimuli are interleavedwith task-relevant events. As

a result, attention and processing effort may be primarily allocated toward the end of event sequences, because the relevant stimulus is
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Figure 3. Results of Experiment 2

(A) Errors as a function ofD. Left panel: the effect of stimulus history in the stable (gray lines, dots, and shaded areas) and volatile condition (green lines, diamonds,

and shaded areas). Right panel: the effect of decision history in stable and volatile conditions. Note that in this experiment, themanipulation of stable and volatile

temporal statistics was applied at the level of decision history. Lines represent the doG fit; dashed lines indicate non-significant fits; shaded areas are running

averages of the group-average errors with 1 standard deviation.

(B) Sequence length analysis and regression fit with 95% prediction intervals for stimulus history effects (left panel) and decision history effects (right panel).
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expected to occur later. According to the view that attractive serial dependence requires attention to previous stimuli,1 as well as task engage-

ment and post-perceptual processing,6,12,39 reduced attention to the stimuli preceding the last one in the sequence may explain the prev-

alence of repulsive biases.6,43

Prior studies have utilized methods such as backward masking and longer intervals between stimuli to avoid the confounding effects of

repulsive aftereffects and adaptation on attractive serial dependence.1,50 Although thesemethodsmay enhance attractive effects over repul-

sive ones, they do not reflect the natural conditions under which we typically perceive stimuli and hamper the understanding of how the two

effects interact. Moreover, the need for such methods underscores the presence of multiple processing stages, where the overall impact of a

stimulus must be regulated to observe a particular effect. In this study, we also attempted to minimize the residual effects of the stimulus by

presenting low-contrast Gabors embedded in visual noise. This approach utilized weaker sensory signals compared to previous studies using

the sequential no-report paradigm.6,43 As a result, we observed no overall repulsive effects of stimulus history in three out of four conditions

(i.e., the volatile condition of Experiment 1 and both conditions of Experiment 2), providing further support for the idea that the strength (e.g.,

contrast, signal-to-noise ratio) of the stimulus plays a significant role in producing repulsive effects. Nonetheless, in Experiment 1, where stim-

ulus history was stable, we found a repulsive effect that increased with the sequence length, suggesting the accumulation of adaptation-like

processes in response to short-term correlations in the stimulus (Figure 2B).

Another relevant finding is how sequence lengthmodulates these effects. As sequence length increased, there was greater repulsion in all

conditions that was even stronger within the stable sequence (Figure 2B). At the same time, there was a general increase in attraction toward

the previous trial (Figure 3B). This pattern was consistent across both experiments, except for the volatile condition of Experiment 1, where it

was reversed (Figure 2B). The increased attractive effect due to longer sequences is in line with a recent study demonstrating that the attrac-

tive effect of a previously reported stimulus increases as a function of the number of non-reported intervening stimuli.51 One potential expla-

nation for this result is that all stimuli may in principle cause attractive and repulsive effects—i.e., the two opposite biases coexist. While task-

relevant processing enhances the attractive component, stimuli that receive less attention and post-perceptual processing exert a stronger

repulsive effect.1,6 The length of the sequence in the present paradigm also covaried with the interval between two decisions and, therefore,

attractive effects could have also been amplified by the persistence of previously reported stimuli in workingmemory,39,52 even if the previous

stimuli were no longer relevant. As mentioned, the only result that deviated from this pattern was the reverse effect of sequence length in the

volatile condition of Experiment 1, where additional stimuli in the sequence decreased the attractive effect of the orientation reported on the

preceding trial. The nature of this effect remains unclear. We can speculate that longer volatile sequences contained orientations that were

similar to the one reported on the previous trial, interfering with and reducing the attractive effect. Alternatively, volatile sequences of stimuli

may exert an impact at both the stimulus and decision history levels, leading to a reduced reliance on prior stimuli when reporting cur-

rent ones.

One might question whether the repulsive effects observed in this study and previous research can be interpreted as a form of negative

serial dependence that goes beyond, and is not merely a consequence of, short-term adaptation.1,5,6,39,43,51 Several alternative mechanisms

can be proposed, including the active removal of information that is no longer relevant from working memory and the influence of reference-

repulsion effects.51 Although the specific mechanisms are still debated, previous studies have demonstrated that these repulsive effects,

including those observed in the sequential no-report paradigm used here, are largely specific to location and exhibit a stronger spatial tuning

compared to attractive serial dependence.5,39,43 This may suggest an earlier origin of the effect, consistent with typical findings on visual af-

tereffects and adaptation.6,7,36 Importantly, while adaptation effects are typically observed with prolonged exposure to high-contrast stimuli,

these findings demonstrate that the temporal characteristics of even weak and brief stimuli can produce repulsive effects of similar

magnitude.

Lastly, a key finding is the observed decrease in serial dependence when stability was introduced at the decision history level (Figure 3B).

This result may seem counterintuitive since one would anticipate greater influences of past events in the presence of true temporal correla-

tion, a principle upheld by existing models.2,3,5 That is, when the similarity between consecutive stimuli is high, the prior assumption about

stability could become even stronger, leading to more pronounced biases toward the past. However, our findings provide clear evidence of

the opposite. An important factor that may account for this result is the lower variability in adjustment errors observed in the stable condition

of Experiment 2, which indicates that participants made more accurate decisions under highly similar temporal sequences. These findings

suggest that observers efficiently use temporal statistics by recalibrating their discriminative abilities based on the overall distribution and

size of stimulus differences within a block of trials. When the sequence of decision-relevant stimuli is highly temporally correlated, discrimi-

nation performance around the prevailing stimulus value increases, leading to increased precision and an enhanced ability to differentiate

between two slightly different stimuli. This ultimately reduces the bias toward the past.

Our findings suggest that the ability to discriminate a small change in the stimulus depends on the overall rate and size of changes in the

temporal statistics. This explanation is reminiscent of Gestalt-inspired configurational theories of perception,53 which suggest that perception

results not only from present and past stimuli but also from ‘‘background stimuli’’ that reflect the broader spatial and temporal context in

which stimuli are experienced. In this view, perceptual judgments are based on differences between stimuli rather than the stimuli themselves.

This idea is also consistent with classic models of perceptual judgments, such as the relative judgment model.54,55 Crucially, the perceived

difference between stimuli depends on contextual factors that extend beyond the relation between the current and immediately preceding

stimulus. Our results suggest that the overall temporal statistics are a key determinant in this process, eventually revealing that under stable

temporal contexts, the brain becomes better at discriminating small differences rather than relyingmore on the combination of previous and

current stimuli, an aspect that theories and models of serial dependence should take into account.
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In sum, in our daily lives, we often encounter stimuli that have stable features and require us to interact with them for extended periods.

During typical perception-action cycles, wemonitor these features for some time and intermittently sample the current state of the stimulus to

inform our decisions and actions. Our study shows that this processmay be facilitated by twomechanisms that utilize temporal correlations in

stimulus statistics. These mechanisms enhance sensitivity to short-term changes and promote stable but more precise representations de-

pending on the broader temporal context.

Limitations of the study

The sequential no-report paradigm used here, designed to disentangle stimulus and decision-related effects, differs from standard para-

digms of serial dependence, in which a stimulus is always followed by a response. Thus, the generalizability of the findings to more classic

paradigmswill require further research. Moreover, as mentioned, we did not present amask following each stimulus as in classic serial depen-

dence studies. This could have favored visual adaptation and repulsive aftereffects in the stimulus history, which might have hindered attrac-

tive serial dependence. The temporal statistics investigated here were also restricted to a few conditions with a limited set of basic distribu-

tions tested (e.g., stable, volatile, and random). The effect of other, more complex distributions should therefore be tested in the future.

Finally, in our work we only used visual orientations with Gabor stimuli as the main feature of interest, and therefore, further testing is needed

to generalize the results to other features or more complex stimuli.
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(2019). Serial dependence in a simulated

clinical visual search task. Sci. Rep. 9, 19937.
https://doi.org/10.1038/s41598-019-56315-z.

20. Taubert, J., and Alais, D. (2016). Serial
dependence in face attractiveness
judgements tolerates rotations around the
yaw axis but not the roll axis. Vis. Cognit. 24,
103–114. https://doi.org/10.1080/13506285.
2016.1196803.

21. Van der Burg, E., Rhodes, G., and Alais, D.
(2019). Positive sequential dependency for
face attractiveness perception. J. Vis. 19, 6.
https://doi.org/10.1167/19.12.6.

22. Xia, Y., Leib, A.Y., and Whitney, D. (2016).
Serial dependence in the perception of
attractiveness. J. Vis. 16, 28. https://doi.org/
10.1167/16.15.28.

23. Kiyonaga, A., Scimeca, J.M., Bliss, D.P., and
Whitney, D. (2017). Serial Dependence across
Perception, Attention, and Memory. Trends
Cogn. Sci. 21, 493–497. https://doi.org/10.
1016/j.tics.2017.04.011.

24. Abrahamyan, A., Silva, L.L., Dakin, S.C.,
Carandini, M., and Gardner, J.L. (2016).
Adaptable history biases in human
perceptual decisions. Proc. Natl. Acad. Sci.
USA 113, E3548–E3557. https://doi.org/10.
1073/pnas.1518786113.

25. Cicchini, G.M., Benedetto, A., and Burr, D.C.
(2021). Perceptual history propagates down
to early levels of sensory analysis. Curr. Biol.
31, 1245–1250.e2. https://doi.org/10.1016/j.
cub.2020.12.004.

26. Dong, D.W., andAtick, J.J. (1995). Statistics of
natural time-varying images. Netw. Comput.
Neural Syst. 6, 345–358. https://doi.org/10.
1088/0954-898X/6/3/003.

27. Friston, K. (2010). The free-energy principle: a
unified brain theory? Nat. Rev. Neurosci. 11,
127–138. https://doi.org/10.1038/nrn2787.

28. Huang, Y., and Rao, R.P.N. (2011). Predictive
coding. WIREs Cognit. Sci. 2, 580–593.
https://doi.org/10.1002/wcs.142.

29. Kersten, D., Mamassian, P., and Yuille, A.
(2004). Object Perception as Bayesian
Inference. Annu. Rev. Psychol. 55, 271–304.
https://doi.org/10.1146/annurev.psych.55.
090902.142005.

30. Knill, D.C., and Pouget, A. (2004). The
Bayesian brain: the role of uncertainty in
neural coding and computation. Trends
Neurosci. 27, 712–719. https://doi.org/10.
1016/j.tins.2004.10.007.

31. Meyniel, F., Maheu, M., and Dehaene, S.
(2016). Human Inferences about Sequences:
A Minimal Transition Probability Model. PLoS
Comput. Biol. 12, e1005260. https://doi.org/
10.1371/journal.pcbi.1005260.

32. Trapp, S., Pascucci, D., andChelazzi, L. (2021).
Predictive brain: Addressing the level of
representation by reviewing perceptual
hysteresis. Cortex 141, 535–540. https://doi.
org/10.1016/j.cortex.2021.04.011.

33. Taubert, J., Alais, D., and Burr, D. (2016).
Different coding strategies for the perception
of stable and changeable facial attributes.
Sci. Rep. 6, 32239. https://doi.org/10.1038/
srep32239.

34. Anstis, S., Verstraten, F.A., and Mather, G.
(1998). The motion aftereffect. Trends Cogn.
Sci. 2, 111–117. https://doi.org/10.1016/
S1364-6613(98)01142-5.

35. Chopin, A., and Mamassian, P. (2012).
Predictive Properties of Visual Adaptation.
Curr. Biol. 22, 622–626. https://doi.org/10.
1016/j.cub.2012.02.021.

36. Clifford, C.W.G., Webster, M.A., Stanley,
G.B., Stocker, A.A., Kohn, A., Sharpee, T.O.,
and Schwartz, O. (2007). Visual adaptation:
Neural, psychological and computational
aspects. Vision Res. 47, 3125–3131. https://
doi.org/10.1016/j.visres.2007.08.023.

37. Gibson, J.J., and Radner, M. (1937).
Adaptation, after-effect and contrast in the
perception of tilted lines. I. Quantitative
studies. J. Exp. Psychol. 20, 453–467. https://
doi.org/10.1037/h0059826.

38. Ceylan, G., Herzog, M.H., and Pascucci, D.
(2021). Serial dependence does not originate
from low-level visual processing. Cognition
212, 104709. https://doi.org/10.1016/j.
cognition.2021.104709.

39. Fritsche, M., Mostert, P., and de Lange, F.P.
(2017). Opposite Effects of Recent History on
Perception and Decision. Curr. Biol. 27,
590–595. https://doi.org/10.1016/j.cub.2017.
01.006.

40. Moon, J., and Kwon, O.-S. (2022). Attractive
and repulsive effects of sensory history
concurrently shape visual perception. BMC
Biol. 20, 247. https://doi.org/10.1186/s12915-
022-01444-7.

41. Sadil, P., Cowell, R.A., and Huber, D.E. (2021).
The Push-Pull of Serial Dependence Effects:
Attraction to the Prior Response and
Repulsion from the Prior Stimulus, 10,
p. 31234.

42. Zhang, H., and Alais, D. (2020). Individual
difference in serial dependence results from
opposite influences of perceptual choices
andmotor responses. J. Vis. 20, 2. https://doi.
org/10.1167/jov.20.8.2.

43. Pascucci, D., and Plomp, G. (2021). Serial
dependence and representational
momentum in single-trial perceptual
decisions. Sci. Rep. 11, 9910. https://doi.org/
10.1038/s41598-021-89432-9.

44. Stein, H., Barbosa, J., Rosa-Justicia, M.,
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be addressed to the lead contact, Philippe Blondé (phblonde@hi.is).

Materials availability

No materials are available for this study.

Data and code availability

� The raw data for Experiments 1 and 2 is publicly accessible and can be found at Zenodo Data: https://zenodo.org/record/8109972 and

Mendeley Data: https://data.mendeley.com/datasets/tmwd9zkmcx/1.
� Sample code for both experiment is also available at Zenodo Data: https://zenodo.org/record/8109972 and Mendeley Data: https://

data.mendeley.com/datasets/tmwd9zkmcx/1.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

In total 37 healthy participants from the EPFL and the University of Lausanne, 20 in Experiment 1 (7 females, 18 - 27 years, Mage = 21.30,

SDage = 1.98) and 18 in Experiment 2 (7 females, 19 - 35 years, Mage = 23.50, SDage = 4.49), took part in the study for a monetary reward

(20 CHF/hour). Ancestry, race, or ethnicity were not assessed. The sample size was based on previous work using similar stimuli and para-

digms.6,43 Participants had normal or corrected-to-normal vision andwere naı̈ve as to the purpose of the experiments. Visual acuity was tested

with the Freiburg Acuity test.56 Written informed consent was collected from all participants beforehand.

The study was approved by the local ethics committee under the Declaration of Helsinki (except for preregistration) (World Medical Or-

ganization, 2013).

METHOD DETAILS

Apparatus and stimuli

Stimuli were presented on a gamma-corrected VG248QE monitor (resolution: 1920 x 1080 pixels, refresh rate: 120 Hz) and were generated

with custom-made scripts written in Matlab (R2013a) and the Psychophysics Toolbox,57 on a Windows-based machine. Participants sat

approximately 57 cm from the computer screen, with the head held stable in a chin rest. The experiments were performed in a dim room.

Figure 1 illustrates the main aspects of the paradigm. The design of the experiments used was a variant of the ‘sequential no-report’ para-

digm used in previous work.6,43 Each trial contained a sequence of 4 to 12 stimuli created by combining 50% of the image of an oriented

Gabor patch (spatial frequency of 1.2 cycles per degree, peak contrast of 10%Michelson, Gaussian envelope of 1� in diameter, randomphase)

and 50% of white noise filtered at the same spatial frequency as the Gabor. A central fixation spot was shown for 1000 ms at the beginning of

each trial and was followed by the Gabor sequence. Each Gabor was presented for 200 ms and followed by a blank interval of 400 ms. The

number of stimuli in the sequence was randomly determined on each trial and 400 ms after the sequence ended, participants were shown a

response tool, made of a circular frame with two small triangles. The two triangles were the extremities of an imaginary line that participants

had to adjust to reproduce the perceived orientation of the last Gabor. The response was confirmed by clicking on the left mouse button.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Experimental data Zenodo https://zenodo.org/record/8109972

Experimental models: Organisms/strains

37 participants in total.

- 20 in experiment 1, 7 females, Mage = 21.30 years, SDage = 1.98.
- 18 in experiment 2, 7 females, Mage = 23.50 years, SDage = 1.98.

N/A N/A

Software and algorithms

MATLAB, R2023a Mathworks https://matlab.mathworks.com/
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After the response was submitted, a new trial started with a random inter-trial interval of 750-1500 ms. In total, 280 trials were presented in

each experiment.

In Experiment 1, the orientation of the last Gabor in the sequence, and the orientation of the immediately preceding stimulus, were

selected from the full 0:179� orientation range in steps of 20� (with the only constraint that the maximum absolute difference between orien-

tations could not exceed 60�). The orientation of the first Gabor in the sequencewas chosen at random.Within the trials, the stimuli before the

last two could vary according to two conditions run in four separate blocks. Stable and volatile blocks were alternated, with the first block

being randomly chosen for each participant. In the stable condition, orientation changes were regulated by a Von Mises circular transition

probability function centred on 0� (e.g., highest probability at stimulus repetition) with concentration parameter k of 4.2073 (i.e., correspond-

ing approximately to a normal standard deviation of 30�). In the volatile condition, the transition probability function was inverted (i.e.,

the same function as in the stable condition, but the probability of repetition was the lowest, see Figure 1B). To maximize the number of

data points around small orientation differences, where serial dependence is typically more pronounced, the orientation difference between

the last and the immediately preceding stimulus in the sequence was randomly determined within theG60� range (in steps of 20�). While the

constraint ofG60� across the entire sequence limited the range of orientation differences, it still allowed for an effective control over the tem-

poral statistics of orientation changes within this range. The orientation of the last stimulus that participants had to report was independent of

the last stimulus of the previous trial.

In Experiment 2, orientations were selected from the whole 0:179� range in steps of 1�, in order to have even more detailed resolution. All

orientation changes within the trial sequence were randomly determined. The key manipulations in this experiment occurred at the orienta-

tion level that participants had to reproduce on each trial. In the stable condition, changes in the reproduced orientation across trials were

regulated by a similar Von Mises transition probability distribution as for the within-trial manipulation of Experiment 1, with a small offset

added to ensure orientation changes also at large orientation distances. In the random condition, orientation changes were randomly deter-

mined also at the level of the orientation reproduced on each trial.

For simplicity, in both experiments, we will refer to the effect of the last non-reported stimulus within the sequence as stimulus history, and

to the effect of the stimulus reported on the preceding trial as decision history. At the end of each experiment, participants were asked if they

had noticed any difference in either stimulus or decision history. Someparticipants reported that stimuli were sometimesmore correlated, but

none reported being fully aware of any difference in transition probabilities between the blocks.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were conducted usingMatlab (R2013a). Themain analysis was based on the adjustment error metric. Adjustment errors

were computed as the acute-angle difference between the reported and the true stimulus orientation, in degrees. Before analysis, errors were

cleaned from outliers, considered as absolute errors larger than 45� or outside the 1.5 interquartile range. Trials with adjustment times slower

than 10 s were also considered outliers. These criteria led to the exclusion of 6.33% trials in total, across the two experiments. After outlier

exclusion, errors were further pre-processed by mean-centering and removing the orientation bias confound.6 Subjects were excluded if

the percentage of outlier trials exceeded 20% or if the standard deviation of the errors (before outlier cleaning) exceeded 45�. This led to

the exclusion of only one subject in Experiment 2.

Errors were analysed both using a model-based and a model-free approach.38 The model-based analysis consisted of fitting a 1st deriv-

ative of a Gaussian function1 to the adjustment errors as a function of the variable D, obtained as previous minus current orientation. The doG

has the following form:

error = Dawce�ðwDÞ2

where c is a constant c =
ffiffi

2
p
e� 0:5 and w is the inverse of the curve width. The amplitude parameter a quantifies the deviation of the errors, in

degrees, from the actual orientation, as a function of the D variable: positive values of a indicate a systematic deviation of errors towards

the orientation of the preceding stimulus, and negative values indicate a deviation away—i.e., repulsion. The parameters of the doG function

were estimated on the aggregate data of all participants, by solving a constrained non-linear minimization problem with the sum of squared

residuals as the cost function.

Model fitting was performed separately on each condition of interest. For example, in the analysis of stimulus history effects in Exper-

iment 1, we separately estimated the model parameters for the stable and volatile condition, considering the D between the last non-re-

ported stimulus in the trial sequence and the one to be reported at the end as the variable of interest. When analysing decision history

effects, we considered the D between the orientation of the stimulus reported one trial before and the one reported now. Statistical sig-

nificance of the amplitude parameter was assessed via bootstrap resampling and surrogate null statistics, by randomly shuffling the sign of

adjustment errors and comparing the observed a with the distribution of surrogate a (N = 10000). Serial dependence between conditions

was compared by randomly shuffling the condition labels 10000 times and comparing the distribution of the resulting differences against

the observed one.

In the model-free approach, we subtracted the average error for D within the 1-50� range from the average error in the corresponding

negative D.38,58 The resulting index, quantifying the amount of systematic deviation of the errors from zero (either in the positive or negative

direction) was used for subsequent analysis. An estimate of the model-free bias was also used in the analysis of sequence effects, where we

evaluated changes in the effect of stimulus and decision history as a function of the length of the sequence of stimuli on the current trial. For

ll
OPEN ACCESS

12 iScience 26, 108008, October 20, 2023

iScience
Article



this analysis, model-free biases were estimated for each possible sequence length (4-12 stimuli, with a sliding average of 3 stimuli) and sub-

mitted to a linear regression with sequence length, condition, and their interaction as the main predictors. For each regression, the volatile

condition was coded as 0 and the stable one as 1. Hence, the effect of the condition corresponds to the difference from volatile to stable and

the reported parameters of sequence length correspond to its effect for the volatile condition. In accordance with the standard significance

criterion in experimental psychology, we used a threshold of a < .05 to indicate a significant result and a < .1 for a significant trend for all

statistical tests.
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