
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11791  | https://doi.org/10.1038/s41598-022-13821-x

www.nature.com/scientificreports

Stochastic model of ERK‑mediated 
progesterone receptor 
translocation, clustering 
and transcriptional activity
Tatiana T. Marquez‑Lago1* & Stanly Steinberg2

Progesterone receptor (PR) transcriptional activity is a key factor in the differentiation of the uterine 
endometrium. By consequence, progestin has been identified as an important treatment modality 
for endometrial cancer. PR transcriptional activity is controlled by extracellular-signal-regulated 
kinase (ERK) mediated phosphorylation, downstream of growth factor receptors such as EGFR. 
However, phosphorylation of PR also targets it for ubiquitination and destruction in the proteasome. 
Quantitative studies of these opposing roles are much needed toward validation of potential new 
progestin-based therapeutics. In this work, we propose a spatial stochastic model to study the effects 
of the opposing roles for PR phosphorylation on the levels of active transcription factor. Our numerical 
simulations confirm earlier in vitro experiments in endometrial cancer cell lines, identifying clustering 
as a mechanism that amplifies the ability of progesterone receptors to influence gene transcription. 
We additionally show the usefulness of a statistical method we developed to quantify and control 
variations in stochastic simulations in general biochemical systems, assisting modelers in defining 
minimal but meaningful numbers of simulations while guaranteeing outputs remain within a pre-
defined confidence level.

Abbreviations
PR	� Progesterone receptor
PRA	� Progesterone receptor subtype A
PRB	� Progesterone receptor subtype B
p4	� Progesterone ligand
ERK	� Extracellular-signal-regulated kinase
EGFR	� Epidermal growth factor receptor
ub	� Ubiquitin
TF	� Transcription factor (ligand-bound PR dimer)
TFAA	� TF from PRA homodimer
TFBB	� TF from PRB homodimer
TFAB	� TF from PRA-PRB heterodimer
CLT	� Central limit theorem

Endometrial cancer is the most common malignancy of the female genital tract, making up 97% of all uterine 
cancers, and is the fourth most common cancer in women1,2. Progesterone, acting through its receptors PRA and 
PRB, is the principal steroid hormone that inhibits the growth of endometrial cancer cells3, through its ability 
to form homo- and hetero-dimers that bind to the promoters of specific genes and regulate their transcription. 
However, progestin therapy ultimately fails in most patients, an event that is typically linked to the loss of PR2. 
Hence one goal for endometrial cancer therapy is to maintain PR levels and activity to maintain responsiveness 
to progestin.

Among various factors, three seem to play a major role in controlling PR function: the nuclear localization of 
PRA and PRB, the presence of progestin ligand, and cross-talk with pathways stimulated by epidermal growth 
factor receptors (EGFR/ErbB1). In the absence of growth factor stimulation, progesterone-induced nuclear 
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localization of PRB is a relatively inefficient and slow process that takes place over approximately 30 min4. In 
contrast, EGFR activation induces progesterone-independent translocation of PRB to the nucleus much more 
rapidly, typically within 5 min4. This mechanism of PRB nuclear translocation can be blocked by protein kinase 
inhibitors, as explained by events downstream of growth factor receptor signaling: the EGFR cascade results in 
the activation of ERK protein kinases, which in turn phosphorylate PR on serine 294 in response to progestin 
ligand. Phosphorylation permits PRB targeting to the nucleus and enhances its affinity for ligand, improving 
the likelihood that PRB will form active dimers and upregulate target gene transcription5. However, the same 
phosphorylation event results in PR ubiquitination and destruction in the proteasome6. Thus, phosphorylation 
of PR by activated ERK both induces the optimal transcriptional conformation of PR and targets the molecule 
for proteolysis4.

Phosphorylation of PR by ERK in response to constitutively high levels of EGF/ErbB1 signaling, a condition 
present in some tumors, may limit the long-term effectiveness of progestin therapy in the treatment of endome-
trial cancer by down-regulating receptor levels. Consequently, the primary objective of this study is to model 
ERK-mediated regulation of PR levels and activity. We also consider other known characteristics of these nuclear 
receptors, such as clustering within the nucleus1,7 and the differential distributions of resting PRA and PRB. For 
this, it has been previously shown that approximately 50% of PRB is cytoplasmic in the absence of progesterone, 
while PRA is nearly all nuclear whether or not ligand is present8. With the addition of progesterone ligand, 
however, cytoplasmic PRB shuttles into the nucleus, a process that appears to require receptor phosphorylation6. 
Our model includes the translocation of PRB into the nucleus and, by numerically fine-tuning parameters, 
we identify conditions that are predicted to maintain optimal levels of activated PR, theoretically allowing for 
extended progestin treatment. We also find that fine-tuning EGFR activity with a tyrosine kinase inhibitor along 
with PR ligand-induced clustering increases the ability of progesterone receptors to regulate gene transcription.

Our modeling workbench was used to find conditions that will optimize the production of transcription 
factor, depending on cell cytology conditions. We utilize several tools for this, including coarse-grain numerical 
solutions, a fine-grain spatial stochastic simulator, and tools for testing the sensitivity of the system to changes in 
the parameters. The fine-grain stochastic models were created in ChemCell, a whole-cell spatially and temporally 
resolved stochastic simulator for cell chemistry that treats proteins, protein complexes and organic molecules as 
individual particles diffusing via Brownian motion, where each particle has a spatial position and is assigned a 
species type9. We purposely present our original simulations with ChemCell, in memoriam of Dr. Alex Slepoy10, 
an early collaborator in this project. However, we note we also validated our results using Smoldyn11, a broadly 
used spatial simulator. The coarse grain model is deterministic and is based on solving chemical mass balance 
equations, allowing estimation of cascade parameters and consequently reducing the number of costly stochastic 
simulations. We additionally performed kinetic analysis and developed simple models for approximating trans-
location processes between cellular compartments. Lastly, we introduce a simple yet novel method for measuring 
variations in stochastic simulations based on the Bonferroni’s inequality12, facilitating easy determination of the 
number of simulations necessary to remain within a pre-determined level of accuracy. There are alternative meth-
ods to split spatial models into parts, such as13, but depending on the simulator, and especially when dealing with 
disparate chemical and diffusion rates, it can prove useful to predetermine the number of simulations necessary 
to capture essential dynamics of a stochastic system within a predefined level of confidence, as presented here.

Materials and methods
Cell and nuclear dimensions.  Endometrial cell diameters were estimated for suspended Hec50co cells 
using the Vi-cell XR cell viability analyzer (Beckman-Coulter). We selected Hec50co cells for our model because 
they faithfully replicate molecular characteristics of type II endometrial cancers14. For determination of cytoplas-
mic and nuclear volumes, Hec50co cells were fixed in 2% glutaraldehyde, embedded in epon and thin sections 
prepared for routine transmission electron microscopy. Images were acquired on a Hitachi H7500 equipped with 
a digital camera. Hec50co cells were initially obtained from Kimberley Leslie and subsequently analysed in the 
Oliver laboratory (cf. Acknowledgments). Dimensions of cellular compartments were estimated using ImageJ 
(courtesy of Tomas Mazel, cf. Acknowledgments).

Cell‑signaling models.  The choice for a particular modeling approach depends on features characteristic to 
each biological system, such as molecular concentrations, distribution, the types of reactions (diffusion-limited 
or reaction-limited) and whether discreteness and internal noise have no noticeable macroscopic effects, among 
various factors. The most detailed cell signaling models are both stochastic and spatial and are numerically rep-
resented by either stochastic partial differential equations or studied by spatiotemporal simulations representing 
stochastic particles. The latter generally perform single particle tracking and contain information on the places 
and times where all molecular reactions occur. One example of such a simulation platform is ChemCell9, used 
here in tribute to Alex Slepoy, but we note there are other simulation algorithms that perform the same and even 
more elaborate spatiotemporal simulations such as Smoldyn11,15–17, MCell10,18,19, and Green’s function reaction 
dynamics20–25, while being continuously maintained.

We split our model into two parts, accordingly. The first part refers to reactions involving large homogeneous 
molecular concentrations, followed by a compartment translocation event in a relatively large time span, repre-
sented by a deterministic non-spatial model. These results feed the second model in the form of rate constants 
and validate the temporal dynamics of reactions occurring upstream of the formation of active PR clusters. This 
second part of our model considers spatially inhomogeneous reaction–diffusion events. Both parts are explained 
in detail in the “Results” section.
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Stochastic variation envelopes.  Since the output of general stochastic simulations can show consider-
able variability, it is advisable to perform a sufficiently large number of simulations and then report on the mean 
of their outputs as the result of a model. However, it is at least as important to quantify the variability in the 
results of the simulations, and to determine a meaningful number of simulations that will be required to main-
tain a desired level of accuracy, throughout the simulation time span.

To that effect, we introduce a straightforward method that can be used to construct envelopes for general sto-
chastic simulations. Such envelopes contain the outputs of simulations at all time steps, with a pre-specified con-
fidence level. A more detailed description, justification and extensions of this method can be found in12. Here, we 
present a summary the methodology, within the context of chemical kinetics in cells. However, it should be kept 
in mind that the exact same methodology can be used for any application that requires stochastic simulations.

Let us first assume that any stochastic modeling program is run M times under identical conditions (except 
for the pseudo-random values used as seeds to the code) and outputs concentration results Xi

j for each j-th run at 
time t = ti, for 1 ≤ i ≤ N and 1 ≤ j ≤ M . These concentration results, or numbers of molecules, are obtained for 
each chemical species. Next, assume that the results can be modeled by random variables with finite population 
mean µi and standard deviation σi , both of which can be approximated by the sample mean Xi  and standard 
deviation Si  at every time step t = ti.

The Central Limit Theorem (CLT) states that, in random sampling from an arbitrary population with mean 
µ and standard deviation σ , if the sample size M is large enough, we will have that the standard normal random 
variable Z is such that

where N(0,1) denotes the normal distribution with mean µ = 0 and standard deviation σ = 1 . This means that, 
whether the population original distribution is continuous or discrete, symmetric or asymmetric, normal or 
not, as long as the population variance is finite, the distribution of the sample mean X  is nearly normal if the 
sample size M is large.

Having this in mind, we can use the CLT to construct variation estimates for any set of stochastic simulations. 
To say something about their outputs, one must compute their average at all desired time steps which, in turn, 
are guaranteed to be normally distributed if the number of simulations is large enough. A confidence interval is 
then defined in terms of the inverse survival function for the normal distribution, where αǫ[0, 1] is the confidence 
level and can be chosen at will. So, the interval

will contain the unknown population mean µ approximately (1− α)100% of the times.
The question now is how to construct a common variation envelope for all time steps, namely considering 

the whole simulation. For such a purpose, we will use a statistical tool commonly known as Bonferroni’s inequal-
ity, which performs multiple sample comparisons with heteroscedasticity, i.e. under the assumption where the 
standard deviation cannot be considered to be uniform for all samples26,27.

Bonferroni’s inequality states that the probability of occurrence of one event of out a possible set of events is 
no more than the sum of the probabilities for the individual events. Alternatively, it can be stated as

where Ai denotes any event, and Ai is its complement. Following this idea, one can construct an interval at each 
time point ti, 1 ≤ i ≤ N , with a confidence level of 1− α/N , ensuring that the overall confidence is of at least 
1− α . In other words, Bonferroni’s inequality implies that the probability P of the mean µi being in the 1− α/N 
confidence interval at N time points satisfies

where these N confidence intervals are called a confidence envelope.
There are many ways in which the growth of the confidence envelope can be used. One is to guarantee fluc-

tuations remain within a certain range at a certain confidence level, but another one is to calculate the number 
of simulation steps that would be necessary to remain within a pre-defined accuracy level. A very simple and 
efficient way is to construct the confidence envelopes based on a subset of the original time steps. Ideally, such 
time steps should be relevant (e.g. experimental measures, or points in which there is considerable variability), 
in order to ensure that the simulations are statistically correct and reflect what one observes from the biology, 
controlling for variability, else re-fine time steps in line with desired level of accuracy.

Deterministic coarse grain simulations and sensitivity analysis.  Spatially resolved stochastic simu-
lations can be computationally very expensive and, depending on molecular concentrations and reaction–dif-
fusion timescales, single simulations may be obtained after several CPU days—if feasible at all. Accordingly, in 
some instances, and solely when retaining spatial resolution is not necessary, one can opt for less costly deter-
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ministic models. In this case, numerical solution of the resulting ordinary differential equations was done with 
Maple and Matlab. Sensitivity analyses were also carried out and used to monitor the change of the output with 
respect to reaction rates and to explore possible locations of feedback loops within the reaction cascade. As a 
result of our sensitivity analysis, we labeled all rates deemed not to affect the general output of the simulation 
as “flexible” (see Table 1). This term basically means that, compared to chemical events involving equivalent 
reactants, a variation of up to 2 orders of magnitude increasing or decreasing a rate did not affect the output of 
the signaling pathway simulation as a whole. Overall, for such reactions and for numerical purposes, we noticed 
there is a window of variability of 4 orders of magnitude in certain kinetic parameters. This is extremely conveni-
ent, considering exact kinetic rates for some of the reactions are quite hard to measure or find in the literature. 
With no apparent “switches” or bistability in this system, we then used these idealized kinetic rates and per-
formed sets of stochastic simulations, to account for scenarios of molecular clustering.

Parameter estimations.  Estimates for compartmental volumes, numbers of molecules/concentrations 
and rate constants, were based on calculations and references reported in Tables  1 and 2, unless otherwise 
specified. Values reported in Table 1 are based on12,28–36. To convert from molarity units to numbers of mol-
ecules inside a compartment, values were multiplied by the volume of the compartment in units of liters, times 
Avogadro’s constant. Accordingly, there can be 522–522,100 molecules for progesterone ligand from the results 
reported in Tables 1 and 2, as in31, and the concentration of the progesterone ligand (p4) ranges between 1 and 
10 ng/mL, equivalent to concentrations ranging between 10–6 and 10–9 M in Hec50co cells, our reference system 
for modelling. An average molarity of 10–7 M was adopted for all simulations. All other species concentrations 
were obtained directly from the references reported in Table 1.

Volumes for each cellular compartment (cytoplasm, nucleus) were determined by morphometric analysis of 
electron micrographs taken of ultra-thin sections of Hec50co endometrial cells (Fig. 1). A diffusion coefficient 
of 10–8 cm2/s was assumed for molecules inside the cytoplasm, while a coefficient of 10–9 cm2/s was assumed for 
molecules inside the nucleus, in accordance with30,36,37.

Consent for publication.  Both authors consent to the publication of this work.

Results
An illustration of the model summarizing key aspects of progesterone receptor regulation is presented in Fig. 2 
and described in the legend. Once in the nucleus, in our model PR is assumed to dimerize to bind to DNA and 
to activate gene transcription. While nuclear translocation of PR monomers occurs by either addition of ligand 
or ERK activation4,8 in both cancer and normal cells, the formation of active PR dimers and their subsequent 
spatial organization into clusters relies heavily on serum progesterone7, solely in normal cells. The latter has been 
confirmed by experiments showing formation of clusters following progesterone cycles. In addition, in endo-
metrial cancers, normal tissue tends to have uniform PR distribution, whereas adjacent cancerous cells feature 
clusters, confirming differential reliance for PR spatial organization between normal and cancerous tissues in 
the same systemic environment7.

Table 1.   Concentrations of molecular species, diffusion, and reaction rates.

Parameter Value References

EGFR 50,000–100,000 per cell Measured experimentally and29

ERK 50,000–100,000 per cell 30 and36

Progesterone (p4) 10−9–10−6 molar, and we used a molarity of 10–7 for all simulations 32 and37

Progesterone receptors 10,000–12,000 per cell 34 and35

Ubiquitin In excess (not rate limiting) 33

Diffusion inside cytoplasm 10−8 cm2/s 31 and37

Diffusion inside nucleus 10–9 cm2/s 31 and37

k1 1 Flexible12, and explained in text

ki, ‘i’ ≠ 1, 2, 4, 6, 7 1010 12 and explained in text

Table 2.   Dimensions and volumes for cellular compartments.

Method
Cell dimensions/diameter 
( µm) Cell volume ( µm3)

Nuclear dimensions/
diameter ( µm) Nuclear volume ( µm3) N

Cell counter 17.7 ± 2.1 2900 – – 1930

Electron microscopy 18.2 ± 3.4 3130 11.2 727 4

Confocal microscopy 19 3611 12.8 1100 11

Histology 22.2 × 11.8 × 11.8 3100 17.9 × 9.6 × 9.6 870 2027
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For purposes of our model, we term a ligand-bound PR dimer the transcription factor (TF). Note that due 
to the presence of two isoforms of PR that can form both homo- and heterodimers, TF can occur in three varie-
ties, TFAA, TFAB and TFBB. Once dimers are formed, all three distinct types of TF are potential substrates for 
ubiquitination and subsequent proteasomal destruction4,6. Of note, the rate at which this appears to happen is 
much slower to that of ERK-mediated ubiquitination of PR. Additionally, the formation of clusters, at least in 
the early stages, is not linked to PR degradation7.

Rapid loss of active dimers due to ubiquitination and degradation.  The first simulation model 
explores PRB and ERK translocation in response to rapid ERK activation, compared to slow ligand-depend-
ent translocation in scenarios of blocked EGFR activity. Due to both spatial homogeneity and high molecular 
concentrations, our simulations in this first part of the model are solely deterministic. The same holds for all 
the steps involved in the two scenarios related to EGFR-induced phosphorylation, namely ERK-mediated and 
ligand-dependent nuclear translocation of PRB.

For the first scenario, we considered the ERK-mediated nuclear translocation of 95% of cytoplasmic PRB 
molecules after 5 min4. We assumed 66% of activated cytoplasmic ERK molecules to translocate to the nucleus 
within 5 min, considering an idealized cell in which activated ERK is initially cytoplasmic only, also considering 
that overexpressed ERK accumulates in the nucleus about 1.5–2 times its concentration in the cytoplasm38. For 
the second scenario, we considered ligand-mediated nuclear translocation of 95% of cytoplasmic PRB molecules 
after 30 min8. This defines rates k2, k4, k6 and k7 in the model, while all reactions included in this first part of the 
model are outlined in Table 3 and consistent with models in39. Molecular species in chemical reactions have the 
following notation: subscript cyt indicates the chemical species is in the cytoplasm, while subscript nuc indicates 
the chemical species is in the nucleus. A p directly preceding a chemical species denotes it has been phosphoryl-
ated, while b denotes the chemical species is bound to p4 ligand. Lastly, ub stands for ubiquitin.

As noted before, we used a deterministic approach for model 1, and we considered the following initial 
uniformly distributed numbers of molecules: EGFR = 50,000 as part of lumped reaction 1, ERKcyt = 50,000, 
PRBcyt = 3000 , and p4 = 36,540 (equivalent to 10–7 M within the cytoplasmic volume), where all other species 
are reaction products and, hence, were considered to have an initial null concentration. Numerical solutions at 
this level provided accurate estimates of translocation rates to be used in the next subsection as well as control 
benchmarking of the spatial simulator, on conditions of spatial homogeneity.

Inhomogeneous distribution of PRB may accelerate ubiquitination and degradation.  Reports 
and experiments indicate that in normal cells, the presence of high progesterone levels results in an increased 
intra-nuclear clustering of progesterone receptors, suggesting that PR distributions are hormonally regulated. 
Specifically, PRA and PRB have been observed to be evenly distributed in the proliferative phase of the men-

Figure 1.   Morphometric analysis of electron micrographs taken of ultra-thin sections of Hec50co endometrial 
cells. Volumes for each simulation cellular compartment (cytoplasm, nucleus) were determined from 
estimations of suspended Hec50co cells.
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strual cycle, and clustered into discrete foci in the secretory phase. In contrast, in endometrial cancer cells, PRA 
has been observed to be predominantly evenly distributed in the nucleus whereas PRB is frequently observed in 
intranuclear clusters1. Thus, the main difference between the distributions noted in the normal and cancerous 
cells is the lack of an even distribution of PRB in the nucleus of cancer cells in the presence of progesterone 1. 
The clusters have been described as foci, where PRB was present more than PRA and where 33% of the cases 
contained more than six foci per nucleus. This suggests that PRB is the principal isoform in nuclear foci. It also 
has been reported that when PR are in clusters, these are generally localized in regions of active chromatin, sug-
gesting they represent transcriptionally active PR7. In normal cells, the median length of each foci was observed 
to be 0.75 μm with an interquartile range of 0.65–1.5 μm1, whereas in cancer tissues clusters exhibit a median 
length of 1.04 μm with an interquartile range of 0.78–1.94 μm7. It has been further suggested the difference in 
size corresponds to alterations in chromatin structure, which in turn allows for clusters to comprise a larger 
number or different complement of proteins than in normal tissues7.

There are other significant differences between PR clusters in normal and cancer tissues, other than their 
median size: their formation reliance on serum progesterone, and the ratio of homo- and hetero-dimers. A 
notable difference between normal tissue and cancer in PR formation is the relative distribution of PRA and 
PRB in foci, where both PRA and PRB form clusters in normal tissues but in endometrial cancers PRB was more 
common than PRA in foci1. Together with results in7, it was suggested there is aberrant PR cluster formation in 
cancer, compared to normal cells, which is likely impact PR-mediated transcription. Our model and simulations 
explore this hypothesis in detail.

For the second model, summarized by corresponding reactions in Table 3, we incorporated the translocation 
rates and initial conditions from the first model, and compared clustered active PR dimers in both scenarios, 
namely ERK-mediated and ligand-dependent nuclear translocation of PRB. Due to spatial organization, only 
stochastic simulations were performed for this part of the model and these used the same concentration of 
molecular species and reaction set rate constants considered in the deterministic model, along with the cor-
responding reactions outlined in Table 3 and the following additional initial numbers of molecules (uniformly 
distributed): PRBcyt = PRBnuc = 3000 , ERKcyt = 50, 000 , PRAnuc = 6000 , p4 = 15, 610 (equivalent to 10–7 M 
within the nucleus). With the reaction and diffusion parameters in hand, a set of 20 stochastic simulations was 

Figure 2.   Illustration of the model summarizing key aspects of progesterone receptor regulation. 
Approximately 50% of PRB is cytoplasmic in the absence of progesterone, while PRA is considered to be 
100% resident in the nucleus whether or not ligand is present8. Two ligand binding steps are required to 
maximally support PRB shuttling into the nucleus where it can form active dimerized transcription factor. 
In one step, growth factors bind to surface receptors, such as the EGFR, leading to the activation of the MAP 
kinase family members, ERK1 and ERK2. Activated ERK phosphorylates PRB. Cytosolic, phosphorylated 
PRB binds progesterone and translocate to the nucleus6. Ligand binding at this stage is not rate-limiting. On 
one hand, ligand binding is a relatively fast event (compared to the expected time for PR translocation). On 
the other, growth factors may bypass ligand activation by inducing rapid translocation to the nucleus, with 
ligand concentrations that are normally too low to stimulate activation without other stimuli4. PRA is also a 
substrate for ERK phosphorylation, once active MAP kinase translocates to the nucleus. Nuclear, ligand-bound 
progesterone receptors form hetero- and homodimers and, in endometrial tissue, stimulate transcription of 
genes that mediate differentiation and growth arrest. PRA and PRB are also substrates for ubiquitination, 
targeting receptors for translocation to the cytosol and proteosomal degradation.
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performed with ChemCell and stochastic variation envelopes were obtained, confirming variability could be 
contained within the pre-defined confidence level (99%). Consistent with ChemCell definitions, all stochastic 
simulations were performed with particles moving within a small cube surrounding each of their current loca-
tion. Such movement is considered Brownian, in the sense that the new location is sampled from a Gaussian 
distribution that is truncated to fit within the cube, the size of which is determined by the diffusion coefficient 
of the particle. The maximum probability for reaction was set to be Pmax = 0.5 and a uniform time step of 
0.001 s was used. Results were collected every 50 time steps, from which variation bounds were constructed for 
a total simulation time of 30 s, noting all variation envelopes were constructed with a confidence level of 99%, 
controlling accuracy at all time points at that level. We note that, even though individual confidence levels need 
not be equal (as long as their sum equals 1− α ), equal confidence levels were used for all time steps since there 
was no time step for which variations in the simulations seemed to be considerably larger than the rest. We also 
note we only needed a relatively low number of simulations, as opposed to hundreds, given use of our variation 
bounds method.

Considering these facts, two types of simulations representing active PR dimers formation and their subse-
quent shuttling to clusters were performed. Since cell environments with 4–6 clusters are most common7, we 
performed simulations with 6 spherical clusters, with identical length of 1.04 μm. The active PR dimers clusters 
were centered at the following locations, in µm units: (± 2.95, 0, 0), (0 ± 2.95, 0), and (0, 0 ± 2.95). Even though 
total TF was observed to be slightly higher in the ERK-mediated PRB nuclear translocation case, clustered TFAB 
was found to be roughly half of that in the ligand-induced PRB nuclear translocation case, after only 30 s. This 
is relevant, as heterodimeric TF seems to account  for 88.5% of gene transcriptions, with PRA and PRB dimers 
accounting for  only 3.5% and 8%, respectively.

PR clusters influence transcription.  Even though progestin treatment can reverse pre-malignant endo-
metrial hyperplasia, the effect in endometrial cancer is far less successful. In advanced cancers, loss of PR leads 
to insensitivity to progestin and hormone independent growth. At the cellular level, progesterone acts through 
its receptors PR inducing cellular differentiation and stopping uncontrolled proliferation, inhibiting the growth 
of endometrial cancer3. Aside, PR phosphorylation via the EGFR pathway leads to ubiquitination, which could 

Table 3.   Reactions considered in all models (‘sc’ indicates scenario).

Reaction Region Notes Model

1: ERKcyt
k1→ pERKcyt

Cytoplasm Lump phosphorylation, following model in30 1, sc 1

2: pERKcyt
k2→ pERKnuc Cytoplasm Nuclear translocation (~ 5 min) 1, sc 1

3: PRBcyt + pERK
cyt

k3→ pPRBcyt + ERK
cyt

Cytoplasm PRB phosphorylation 1, sc 1

4: pPRBcyt
k4→ pPRBnuc

Cytoplasm Nuclear translocation, (~ 5 min) 1, sc 1

5: pPRBcyt + p4
k5→ bpPRBcyt

Cytoplasm Ligand bound PRB 1, sc 2

6: bpPRBcyt
k6→ bpPRBnuc

Cytoplasm Nuclear translocation, (~ 30 min) 1, sc 2

7: ERKnuc
k3→ ERKcyt Nucleus ERK translocation for activation (~ 20 min) 1, sc 1

8: PRAnuc + pERKnuc
k8→ pPRAnuc + ERKnuc

Nucleus PRA phosphorylation 2, sc 1

9: pPRBnuc + p4
k9→ bpPRBnuc

Nucleus pPRB binding to ligand 2, sc 1

10: pPRAnuc + p4
k10→ bpPRAnuc

Nucleus pPRA binding to ligand 2, sc 1

11: PRBnuc + p4
k12→ bPRBnuc Nucleus PRB binding to ligand 2, both

12: PRAnuc + p4
k12→ bPRAnuc Nucleus PRA binding to ligand 2, both

13: bPRAnuc + bPRAnuc
k13→ TFAA Nucleus TFAA formation 2, both

14: bPRAnuc + bPRBnuc
k14→ TFAB Nucleus TFAB formation 2, both

15: bPRBnuc + bPRBnuc
k15→ TFBB Nucleus TFBB formation 2, both

16: bpPRAnuc + bpPRAnuc
k16→ TFAA Nucleus TFAA formation 2, sc 1

17: bpPRAnuc + bpPRBnuc
k17→ TFAB Nucleus TFAB formation 2, sc 1

18: bpPRBnuc + bpPRBnuc
k18→ TFBB Nucleus TFBB formation 2, sc 1

19: bpPRAnuc + bPRAnuc
k19→ TFAA Nucleus TFAA formation 2, sc 1

20: bpPRAnuc + bPRBnuc
k20→ TFAB Nucleus TFAB formation 2, sc 1

21: bpPRBnuc + bPRAnuc
k20→ TFAB Nucleus TFAB formation 2, sc 1

22: bpPRBnuc + bPRBnuc
k21→ TFBB Nucleus TFBB formation 2, sc 1

23: pPRB
(

bpPRB
)

+ ub
k23→ ub Nucleus pPRB (or bpPRB) ubiquitination 2, sc 1

24: pPRA
(

bpPRA
)

+ ub
k24→ ub Nucleus pPRA (or bpPRA) ubiquitination 2, sc 1
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explain why endometrial cancer cells preferentially lose PR and do not respond to progestin therapy. Therefore, 
other than stopping uncontrolled proliferation, blocking the EGFR pathway may also result in higher levels of 
PR and sensitivity to progestin adjuvant therapy.

For this reason, obtaining an optimal progesterone transcription level is important and could set the stage for 
effective precision dual therapy with progestin and a tyrosine kinase inhibitor in endometrial cancer patients. 
This is an approach that, albeit not yet personalized, has started to attract attention and bear fruits40,41, while 
Systems biology methods could help find conditions to activate and protect enough PR from ubiquitination, 
promoting maximal transcription and allowing for progestin treatment.

Our next goal was then to simulate mRNA transcription considering clustered progesterone receptors. To 
do so, we explored two vastly different possibilities in cancerous cells, and compared them to the uniformly 
distributed case, representing normal cells. For these stochastic spatial simulations, we used the reaction set 
and rates described in Table 4, and ran 50 stochastic simulations for each case, to remain within the pre-defined 
confidence level (99%).

We will refer to the first case as ‘storage’, corresponding to clusters where only proportions of PRA and PRB 
are localized, with concentrations of 10 and 90% respectively, matching experimentally observed high concen-
trations of PRB, as described above. All other species were not considered localized, and the rest of the PR were 
evenly distributed throughout the nucleus. To evaluate the ‘storage’ hypothesis, we considered the following 
initial numbers of uniformly distributed particles: 2500 ERK, 2500 ERKa, 160 p4, 160 ub, and 150 hypothetical 
DNA binding sites. The reaction rates considered for this reaction set were k1 = k15 = 1, k12 = 0.0355, k13 = 0.8852, 
k14 = 0.0793, k22 = 30, k23 = 1, and kj = 1010 for all binary reactions. These reactions and rates followed experimental 
findings referenced in Table 1 and38,42–48. Rates k12, k13 and k14 are order 1, multiplied times the fraction that cor-
responds to the transcription of homodimers vs heterodimers (see “Discussion”). We note, however, that some 
tested variations in k12, k13 and k14 did not significantly change conclusions derived from our simulations, when 
these three rates summed to 1. We further simulated cell environments with 4, 7 and 15 clusters; namely, at or 
above typical cell environments with 4–6 clusters, as experimentally observed and explained above. For the case 
with 4 foci, each cluster contained 63 molecules of PRA and 563 of PRB, while the remaining 2248 molecules of 
PRA and 248 molecules of PRB were uniformly distributed throughout the nucleus. The simulations representing 

Table 4.   Reactions and rates considered in the transcription model.

Reaction Region Notes

1: ERK k1→ ERKa
Lumped Lumped ERK activation

2: PRA+ p4
k2→ bPRA Nucleus Ligand bound PRA

3: PRB+ p4
k3→ bPRB Nucleus Ligand bound PRB

4: bPRA+ ERKa
k4→ PRAa + ERK Nucleus PRA activation

5: bPRB+ ERKa
k5→ PRBa + ERK Nucleus PRB activation

6: PRAa + PRAa
k6→ TFAA Nucleus TFAA formation

7: PRAa + PRBa
k7→ TFAB Nucleus TFAB formation

8: PRBa + PRBa
k8→ TFBB Nucleus TFBB formation

9: DNA+ TFAA
k9→ DNA− TFAA Nucleus TFAA binding to DNA

10: DNA+ TFAB
k10→ DNA− TFAB Nucleus TFAB binding to DNA

11: DNA+ TFBB
k11→ DNA− TFBB Nucleus TFBB binding to DNA

12: DNA− TFAA
k12→ DNAi +mRNAi

Nucleus Lumped transcription, mRNA initiation

13: DNA− TFAB
k13→ DNAi +mRNAi

Nucleus Lumped transcription, mRNA initiation

14: DNA− TFBB
k14→ DNAi +mRNAi

Nucleus Lumped transcription, mRNA initiation

15: DNAi
k15→ DNA Nucleus DNA site again available for binding

16: TFAA+ ub
k16→ ub Nucleus TFAA ubiquitination

17: TFAB+ ub
k17→ ub Nucleus TFAB ubiquitination

18: TFBB+ ub
k18→ ub Nucleus TFBB ubiquitination

19: DNA− TFAA+ ub
k19→ ub Nucleus TFAA ubiquitination

20: DNA− TFAB+ ub
k20→ ub Nucleus TFAB ubiquitination

21: DNA− TFBB+ ub
k21→ ub Nucleus TFBB ubiquitination

22: mRNAi
k22→ mRNAe

Nucleus mRNA elongation

23: mRNAe
k23→ mRNA Nucleus Final mRNA
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15 clusters contained 16 molecules of PRA and 150 of PRB inside each well-spaced compartment, while the 
remaining 2260 molecules of PRA and 250 of PRB were uniformly distributed throughout the nucleus. We per-
formed simulation sets with various clusters radii but, in all cases, mRNA production considering 4–6 clusters 
was found to be lower than in the uniformly distributed case, and significantly lower with 15 foci.

To assess a scenario in which focal distribution could enhance mRNA transcription, we considered a sec-
ond possibility with all reaction products from PR down to TF to be clustered. We call this the ‘spots’ scenario 
where, once TF molecules are formed, they can diffuse and bind to nearby DNA sites promoting transcription. 
For these simulations one should keep in mind that all molecules are close to one another, tightly packed, and 
therefore reactions can happen rather quickly. One interesting question for this scenario would be if and how 
transcription varies according to the distance between DNA binding sites and the cluster, keeping in mind the 
dependency on diffusion rates. For such a purpose we derived a simplified model with a single cluster, consider-
ing cluster behavior is independent of the others. For these simulations we adopted 1000 PRB, 1000 p4, and one 
DNA binding site as initial numbers of molecules, and we studied varying distances from the cluster, assuming 
two different diffusion coefficients (10–8 and 10–9 cm2/s). Strikingly, our numerical simulations returned as opti-
mal value the exact same cluster radius as experimentally observed in1. We also observed that, for a diffusion 
coefficient of 10–9 cm2/s, typical for a macromolecule inside the nucleus, the optimal distance of a DNA binding 
site to the cluster center is 0.75 μm. Considering these results, we then constructed a final simulation set with 4 
clusters and DNA binding sites localized in their boundaries, from which we observed that if all progesterone 
active forms are kept clustered, transcription is even lower than the ‘storage’ and the uniformly distributed case.

Discussion
In this work, we hypothesized that optimal progesterone transcriptional activity may require nearly equal molari-
ties of PRA and PRB inside the nucleus, optimizing the formation of the PRA-PRB heterodimer instead of 
homodimers of PRA or PRB. In the context of endometrial cancer, this is a potential ideal scenario that would 
titrate growth factor activation of MAP Kinase activity to promote phosphorylation of both PR isoforms, induc-
ing translocation of phosphorylated PRB to the nucleus and formation of ligand-bound heterodimers, without 
loss of most active dimers to ubiquitin-mediated degradation. To test this, we built data-based quantitative 
spatiotemporal mechanistic models, numerically solved deterministic parts, and simulated related stochastic 
reactions. It is worth noting one alternative to spatially resolved models is deriving time delays for transloca-
tion processes and using the delay chemical master equation to simulate the entire system (see for instance13). 
However, in doing so one cannot retain spatial resolution, which was needed in this study. We also presented a 
method we developed to assess variations in stochastic simulations over the entire simulation timespan, which 
also helps define the number of necessary stochastic simulations to guarantee accuracy at a pre-defined level 
(in our case 99%).

Overall, our simulations showed that focal distributions of receptors in conjunction with blocked EGFR activ-
ity may result in a higher production of heterodimeric transcription factors, which in turn seems responsible for 
approximately 88.5% of the total gene regulation in single cells. The numerical results support the hypothesis 
that cancerous cells have lower transcription levels based on overexpression of EGFR. These results assume PR 
to be vulnerable targets of ubiquitination as a result of phosphorylation on serine 294, while being “protected” 
from ubiquitination once the active PR dimers are formed. We do note that this may not be necessarily the case 
and, ultimately, assuming the latter can only result in any other possible scenario having lower transcriptional 
activity. It is left for biological experimentation to validate and confirm whether the observed active PR dimers 
being shuttled to a cluster are still vulnerable for ubiquitination or not.

Importantly, our simulations also showed that focal distributions of receptors result in lower transcription. 
This may seem counterintuitive at first as one would expect a higher transcription rate to be a direct consequence 
of PR proximity. PR however, cannot be activated unless binding to progesterone ligands and ERK, both of which 
are well mixed, resulting in a lower concentration of active receptors in time. In other words, faster collisions in 
clusters do not necessarily imply higher or faster transcription, e.g. when clusters are away from DNA binding 
sites and active transcription factors must travel longer than in uniformly distributed cases. On the other hand, 
and depending on rates, receptor proximity could allow for faster production of active transcription factors. 
In this case, ubiquitin could not destroy the active forms of progesterone receptor as easily, thereby promoting 
higher transcription, due to their distribution. We speculate the first two processes to be the limiting steps for 
transcriptional products, since fewer active forms of progesterone are produced and all subsequent steps depend 
on these products. The model was also extended to account for differences in the initial distribution of PR, rep-
resenting typical scenarios of normal and endometrial cancerous cells.

As a side note, unique sets of genes up or down-regulated by PRA-PRA, PRB-PRB, and PRA-PRB have been 
mapped in Hec50co endometrial cancer cells and, from these, endometrial cancer cells expressing both PR iso-
forms (where heterodimers are possible) have reportedly shown about a tenfold more robust genomic response 
to progesterone, with over 10× genes found to be regulated by PRA + PRB when compared to the number of 
genes regulated by PRB and PRA alone (communications with Dr. K. Leslie, also see12 and references therein). 
Additional transcriptional differences have been reported in the literature2 and we also refer interested readers 
to12,31,49 and citations therein. Hence, optimal progesterone transcriptional activity may require nearly equal 
molarities of PRA and PRB inside the nucleus.

Altogether, our numerical results support the hypothesis that clustered receptors, as found in cancerous 
cells, result in lower transcription rates. This is of particular interest since ubiquitination was thought to be the 
only process that limited transcription. Therefore, our simulations based on experimental measurements sup-
port a second hypothesis that may be closer to the biology. Namely, that receptor clustering itself can hinder 
transcription.
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There are some model limitations worth pointing out. First, our results are based on single-cell dynamics 
alone. Also, our model assumes dimerization based on various experimental observations and models published 
in the literature, such as50–55, but dimerization is not always essential for transcription, as noted in56. For instance, 
in human endometrial stromal cells, overexpression of PRA or PRB can mediate the transcription of thousands 
of genes when the endogenous PR is knocked down57. In mice, PR monomers have been observed to interact 
with DNA that has the half-site of progesterone response element58 while, also, in mice, it has been reported 
that the deletion of PRA but not PRB disrupts uterine functions59,60. Results from various model organisms and 
context could indicate heterodimers need not influence the most genes in general, but rather that PRA, PRB, 
homodimers and heterodimers mediate transcription in a context and model-organism dependent manner. 
Therefore, results from our systems biology model and simulations in individual Hec50co cells are subject to 
the assumptions and experimental data referenced in this study, while generalization from single cells to broad 
actions requires targeted experiments in multi-cellular contexts, tissue samples, and biochemical contexts. Lastly, 
it would also be interesting to quantify and validate levels of blocked EGFR through a tyrosine kinase inhibitor, 
which could potentially reveal if any such blockage level can achieve higher transcription than ligand-induced 
nuclear translocation of PRB alone, a matter that falls outside the scope of our presented model but that would 
be necessary for precision therapeutics.

Data availability
All data used in this work are publicly available.
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