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Abstract

Background: This study was aimed at screening out the potential key genes and pathways associated with
gestational diabetes mellitus (GDM).

Methods: The GSE70493 dataset used for this study was obtained from the Gene Expression Omnibus database.
Differentially expressed genes (DEGs) in the placental tissue of women with GDM in relation to the control tissue
samples were identified and submitted to protein-protein interaction (PPI) network analysis and subnetwork
module mining. Functional enrichment analyses of the PPI network and subnetworks were subsequently carried
out. Finally, the integrated miRNA–transcription factor (TF)–DEG regulatory network was analyzed.

Results: In total, 238 DEGs were identified, of which 162 were upregulated and 76 were downregulated. Through
PPI network construction, 108 nodes and 278 gene pairs were obtained, from which chemokine (C-X-C motif)
ligand 9 (CXCL9), CXCL10, protein tyrosine phosphatase, receptor type C (PTPRC), and human leukocyte antigen
(HLA) were screened out as hub genes. Moreover, genes associated with the immune-related pathway and immune
responses were found to be significantly enriched in the process of GDM. Finally, miRNAs and TFs that target the
DEGs were predicted.

Conclusions: Four candidate genes (viz., CXCL9, CXCL10, PTPRC, and HLA) are closely related to GDM. miR-223-3p,
miR-520, and thioredoxin-binding protein may play important roles in the pathogenesis of this disease.

Keywords: Gestational diabetes mellitus, Differentially expressed genes, Protein-protein interaction network,
Integrated regulatory network, Transcription factors

Background
Expectant mothers with gestational diabetes mellitus
(GDM), a common pregnancy complication, have an in-
creased risk of developing type 2 diabetes mellitus [1].
Over the past 20 years, the prevalence of GDM has dou-
bled, affecting approximately 10% of pregnancies in the
USA [2, 3]. Babies born to mothers with GDM are typic-
ally at a high risk for macrosomia, neonatal cardiac dys-
function, neonatal hypoglycemia, stillbirth, childhood
obesity, and type 2 diabetes mellitus [4–6]. Given the
worldwide prevalence and adverse outcomes of GDM,

there is an urgent need to grasp the pathophysiology
and pathogenesis of the disease [2].
Previous studies have suggested that GDM is caused

by enhanced insulin resistance and pancreatic beta (β)-
cell dysfunction [7], involving genes that are related to
insulin signaling, insulin secretion, maturity-onset dia-
betes of the young, and lipid and glucose metabolism, to
name a few [8, 9]. Subsequently, it was found that in-
flammatory pathways [10], metabolic disorder [11], oxi-
dative stress [12], and vitamin D concentrations [13]
were also related to GDM. Furthermore, some genetic
alterations, such as those of the genes encoding β3-
adrenergic receptor [14] and transcription factor 7-like 2
polymorphism [15], were also found to be associated
with GDM. Moreover, GDM results in major changes in
the expression profiles of placental genes, with a
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significant increase in markers and mediators of inflam-
mation [10]. Recently, several microarray studies have
verified that the cytochrome P450, family 1, subfamily A,
polypeptide 1 (CYP1A1), estrogen receptor 1 (ESR1)
[16], fibronectin 1 (FN1), and leptin (LEP) [17] genes
were essential for the pathogenesis of GDM. However,
because the genes related to GDM have not yet been
fully identified, the biological processes underlying the
pathogenesis of this disease remain unclear.
In this study, the gene expression profiles of placental

tissue from women with GDM were compared with
those of matched normal placental tissue by microarray
analysis, to screen out differentially expressed genes
(DEGs) in GDM. The identified DEGs were then sub-
mitted to Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway and Gene Ontology (GO) enrichment
analyses to explore the crucial pathways of GDM. Add-
itionally, a protein-protein interaction (PPI) network was
constructed and subnetwork module mining was per-
formed to seek out the candidate disease genes. Finally,
microRNAs (miRNAs) and transcription factors (TFs)
that target the candidate DEGs were identified and ana-
lyzed. The results from this study may lay the ground-
work for future research on the pathogenesis of GDM.

Methods
Microarray analysis
The gene expression dataset GSE70493, which is based
on the GPL17586 [HTA-2_0] Affymetrix Human Tran-
scriptome Array 2.0 [transcript (gene) version] platform,
was downloaded from the National Center for Biotech-
nology Information’s Gene Expression Omnibus data-
base (http://www.ncbi.nlm.nih.gov/geo/). This dataset
comprised 63 placental tissue specimens collected from
32 cases of GDM and 31 matched pregnancies without
maternal complications.

Data reprocessing
The probe-level data (CEL files) were converted to ex-
pression estimates by the Puma [18] and Oligo [19]
packages in R, and the original expression dataset was
processed into expression values using the robust multi-
array average algorithm [20] with the default settings im-
plemented in Bioconductor. The DEGs were identified
with the limma [21] software package according to the
expression values of the sample probes, and only those
with a p-value of less than 0.01 were selected and anno-
tated for further analysis.

GO and KEGG pathway enrichment analyses
To assess the functions and significantly enriched path-
ways of the DEGs, ClusterProfiler [22] was used to iden-
tify the overrepresented GO terms in the biological
process (BP), cellular component (CC), and molecular

function (MF) categories, as well as the KEGG pathway
categories. The hypergeometric distribution threshold
for these analyses was a p-value of < 0.05.

PPI network construction and subnetwork module mining
The Search Tool for the Retrieval of Interacting Genes
(STRING, ver. 10.0, https://string-db.org/) [23] database
was used to analyze functional interactions between the
DEGs and other genes, under a confidence score threshold
of > 0.4. The PPI network was established using Cytoscape
(ver. 3.3.0, http://www.cytoscape.org/) [24]. Then, the top-
ology of the network was analyzed, and the hub nodes in
the network were obtained by calculating the average de-
gree of each node. The average degree is the average num-
ber of edges connecting all the nodes in the network,
measured by three indexes: degree centrality [25], between-
ness centrality [26], and closeness centrality [27].
Molecular Complex Detection (MCODE) [28] is an

automated method for searching molecular complexes
with similar functions in large protein interaction net-
works. The MCODE (ver. 1.4.2, http://apps.cytoscape.
org/apps/mcode) plugin of Cytoscape was used to
analyze the subnetwork modules with similar functions
in the original PPI network. Then, GO and KEGG path-
way analyses of the subnetwork modules were per-
formed to evaluate their functions.

Prediction of miRNAs and transcription factors that
regulate the DEGs
The TFs associated with the DEGs were predicted by the
position weight matrices from TRANSFAC and JASPAR
in the Enrichr database [29], under the hypergeometric
distribution threshold of p < 0.01. miRNAs associated
with the DEGs were predicted by miRTarBase in the
Enrichr database, under the hypergeometric distribution
threshold of p < 0.01. On the basis of the miRNA–DEG
regulatory network and TF–DEG regulatory network,
the integrated DEG–miRNA–TF regulatory network was
constructed using Cytoscape.

Results
Analysis of the differentially expressed genes
After the microarray analysis, the probes that were mapped
to multiple genes were considered nonspecific and were re-
moved, and only those with unique genes were distin-
guished as DEGs. In total, 238 DEGs (comprising 162
upregulated and 76 downregulated genes) were identified
from the GDM placental tissue samples compared with the
matching normal pregnant tissue samples (Fig. 1).

Functional enrichment analyses
Through GO analysis, the top 10 overrepresented GO terms
in the BP, MF, and CC categories were identified on the
basis of the p-value (Fig. 2a). In the BP category, the
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overrepresented terms included the interferon-gamma-
mediated signaling pathway, lymphocyte chemotaxis, antigen
processing and presentation of exogenous peptide antigen,
and lymphocyte chemotaxis. In the CC category, the major
histocompatibility complex (MHC) proteins, endoplasmic
reticulum membrane, coated vesicle membrane, and endocy-
tic vesicle membrane terms were enriched. In the MF cat-
egory, the most significantly enriched terms were antigen
binding, chemokine receptor binding, and MHC protein
complex binding. The most remarkable DEGs involved in
those GO terms encoded the human leukocyte antigen
(HLA), chemokine (C-X-C motif) ligand 9 (CXCL9),
CXCL10, chemokines (CCL3, CCL4L1, CCL4, and CCL8),
and protein tyrosine phosphatase, receptor type C (PTPRC).
Through KEGG pathway enrichment analysis, the top 20

enriched pathways were identified on the basis of the p-value
(Fig. 2b). The significantly enriched categories included path-
ways for allograft rejection, graft-versus-host disease, type I
diabetes mellitus, autoimmune thyroid disease, inflammatory
bowel disease, the Toll-like receptor signaling pathway, and
Th1 and Th2 cell differentiation. The genes associated with
those pathways were HLA, CXCL9, CXCL10, and PTPRC.

PPI network and subnetwork module analyses
From the PPI network analysis, 108 nodes and 278 gene pairs
were acquired (Fig. 3) and the top 15 nodes according to the
measured scores of the three centrality indexes were screened
out (Table 1). Among these, PTPRC, CXCL9, and CXCL10 al-
ways ranked in the top 15 for each index, implying that these
genes may play important roles in the progression of GDM.
Two significant modules with scores > 5 and nodes > 5

were isolated from the PPI network (Fig. 4). HLA was found
to be spread all over module 1. Functional analysis of the
DEGs in module 1 verified that the GO terms were strongly
related to antigen processing presentation and autoimmune
thyroid disease (Fig. 5a). In module 2, CXCL9 and CXCL10
with the higher degrees were involved in lymphocyte chemo-
taxis and the chemokine signaling pathway (Fig. 5b).

Prediction of miRNAs and transcription factors that
regulate the target genes
The miRNAs and TFs that may regulate the target gene were
obtained from the Enrichr database [29] (Table 2). The
miRNA–DEG–TF regulatory network was constructed by in-
tegrating the DEGs with the DEG-related miRNAs and TFs,

Fig. 1 Volcano map of the distribution of differentially expressed genes. Each blue dot represents a differentially expressed gene
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Fig. 2 (See legend on next page.)
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as shown in Fig. 6. The integrated network comprised five
miRNAs, 73 DEGs (59 down-regulated and 14 up-regulated),
and two TFs (thioredoxin-binding protein (TBP) and POU
class 1 homeobox 1 (POU1F1)). Specifically, most of the
DEGs were regulated bymiR-223-3p,miR-520, and TBP.

Discussion
GDM describes the condition of abnormal sugar me-
tabolism or potential decreased glucose tolerance be-
fore pregnancy and is confirmed during pregnancy
[30–32]. It is a complex disease, being influenced by

(See figure on previous page.)
Fig. 2 GO and KEGG pathway enrichment analyses of the differentially expressed genes. a Gene Ontology (GO) enrichment analysis of the top 10
differentially expressed genes (DEGs) by p-value. BP: Biological process; MF: molecular function; CC: cellular component; Counts: the number of
enriched DEGs; Black trend line: -log10 (p-adjust)/2; P-adjust: rectified p-value. b Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis of the DEGs. Rich factor: the ratio of the number of enriched DEGs in the KEGG category to the total genes in that category.
The larger the Rich factor, the higher the degree of enrichment

Fig. 3 Protein-protein interaction network of the differentially expressed genes. The red square node represents upregulated genes; the blue
circular node represents downregulated genes
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many factors such as the environment, society, and
genes [33]. Moreover, genetic studies have suggested
that multiple genes are involved in the disease [8]. In
our study, DEGs in GDM and their enriched func-
tions were screened out via bioinformatic analysis,
and four key genes (viz., HLA, CXCL9, CXCL10, and
PTPRC) were identified to be crucial to the disease.
Moreover, miR-223-3p, miR-520, and TBP were found
to be strongly linked to those DEGs, indicating their
importance in GDM.

CXCL9 and CXCL10 are categorized as “inflammatory”
chemokines. Shimada and coworkers postulated that the
binding of CXCL10 to CXCR3 played a crucial role in
the suppression of pancreatic β-cell proliferation [34].
Besides this, CXCL10 could interact with Toll-like recep-
tor 4 to continuously activate c-Jun N-terminal kinases
and protein kinase B (Akt), induce the cleavage of p21-
activated protein kinase 2, and switch the Akt signal
from proliferation to apoptosis, resulting in the suppres-
sion of pancreatic β-cell proliferation [35]. The present
study demonstrated that CXCL10 was significantly
enriched in the Toll-like receptor signaling pathway,
leading us to speculate that it is a key gene that partici-
pates in the pathogenesis of GDM by regulating the pro-
gress of the Toll-like receptor signaling pathway.
Although CXCL9 has similar functional and structural
characteristics as CXCL10, it was reported that CXCL9
could not bind to Toll-like receptor 4 [36]. In this study,
CXCL9 was significantly enriched in the cytokine signal-
ing pathway and may thus play a critical role in the
pathogenesis of GDM by regulating the inflammatory
pathway.
HLA, the gene for the human MHC, plays a pivotal

role in the antigen presentation of extracellular and
intracellular peptides and the regulation of immune re-
sponses [37]. Compared with other regions of the hu-
man genome, the MHC genes on chromosome 6 are
more associated with the susceptibility to common dis-
eases like diabetes, and indeed many reports have shown
that HLA gene variants are related to the predisposition
to type 1 diabetes mellitus [38]. Additionally, although

Table 1 Node genes measured in three indexes (top 15)

Gene Degree Gene Betweenness Gene Closeness

PTPRC 22 SOD2 3911.9185 C3 0.072248

CXCL10 18 C3 3533.4678 CXCL10 0.071716

HLA-A 18 MRPS16 2901.8518 CXCL9 0.07162

HLA-DRB1 17 PTPRC 1506.8242 CXCL11 0.071096

GBP1 16 FOXO1 1442.8683 CXCL13 0.071096

CXCL9 15 DCN 1370.2727 PTPRC 0.07072

HLA-C 15 CTSK 1234.5901 MRPS16 0.070674

B2M 15 CXCL10 1129.5261 LYZ 0.070627

HLA-E 15 NDUFA1 1000.009 CD81 0.070256

HLA-DQA2 13 MGP 953.21423 GNG11 0.07021

HLA-F 13 CXCL9 760.1234 GBP1 0.070072

HLA-DRB5 13 HLA-DRB1 755.0963 CD86 0.070072

HLA-B 13 IGFBP7 708.1684 B2M 0.070026

CD86 12 RBM8A 625.97986 TAS2R3 0.06998

CXCL11 12 IGFBP1 538.0367 P2RY14 0.06998

Fig. 4 Two subnetwork modules of the differentially expressed genes. a Module 1 subnetwork diagram; b module 2 subnetwork diagram. The
red square nodes represent upregulated genes; the blue round nodes represent downregulated genes
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type 2 diabetes mellitus is not an autoimmune disease or
associated with the HLA gene, there is evidence that
genes in the HLA region might have an influence on the
genetic susceptibility to this metabolic disorder [39]. Im-
portantly, Steinborn and colleagues found that GDM
was related to an increased humoral immune response
against HLA-class II antigens [40]. Our study highlights
the importance of HLA in the progression of GDM, dur-
ing which the gene is downregulated, and emphasizes

that the autoimmune response is significantly associated
with the disease pathogenesis.
PTPRC (CD45) has an essential role in lymphocyte de-

velopment, antigen receptor signal transduction, and
modulation of the signals emanating from integrin and
cytokine receptors [41]. In diabetes mellitus, protein
tyrosine phosphatases act as negative regulators of insu-
lin signal transduction [42]. A previous study demon-
strated that the homozygous deletion of protein tyrosine

Fig. 5 GO and KEGG pathway enrichment analyses of the differentially expressed genes in two subnetwork modules. a Gene Ontology (GO)
enrichment analysis of the differentially expressed genes (DEGs) in the two subnetwork modules. GeneRatio: the ratio of the number of lncRNA
target genes in the GO category to that of the annotated genes (counts below the horizontal axis) in the GO database. The horizontal coordinate
is the lncRNA, and the ordinate is the name of the GO category. b Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis of the DEGs in the two subnetwork modules. GeneRatio: the ratio of the number of lncRNA target genes in the KEGG category to that of
the annotated genes (counts below the horizontal axis) in the KEGG database. The horizontal coordinate is the lncRNA, and the ordinate is the
name of the KEGG item

Table 2 miRNAs and transcription factors (TFs) regulating DEGs

Term Gene count P-value Genes

POU1F1 29 0.0027516 CD86;GPR65;COX17;RORB;GPR174;CCL8;ABI3BP;CCL3;
SLAMF7;OR5B12;FILIP1L;CD96;DTNA;LUM;ANKRD22;
SETDB2;BTN3A3;GNG11;DCN;CXCL10;CXCL11;ZEB1;
FAM115C;FABP4;ALDH1A2;ALDH1A1;SPATS2L;EVI2B;
CLEC4E

TBP 43 0.0072984 CD86;COX7B;CFH;CELF2;GPR65;SEMA3A;FGL2;C2ORF88;
PRSS23;EPS8;GPR174;IL1RL1;ING3;CTSK;SH3BP5;SLAMF7;
OR5B12;SLAMF6;FILIP1L;BVES;PELO;GBP1;HLA-DQA2;
HLA-DQA1;PRNP;CD96;DTNA;ANKRD22;SETDB2;IRAK3;
HLA-F;PARP9;BTBD10;DKK1;DCN;PINK1;FABP4;GPR183;
ALDH1A2;CLEC4E;IL18R1;FKBP5;DDR2

hsa-miR-223-3p 6 0.0011276 ZEB1;SEMA3A;CCL3;RRAS2;MYL9;FOXO1

hsa-miR-614 2 0.0048044 CRISPLD2;SOD2

hsa-miR-6810-5p 5 0.0087679 KLHDC3;SAMD9L;HLA-C;CIAPIN1;HLA-A

hsa-miR-520 g-3p 11 0.0093275 CXCL10;PRNP;SAMD8;CRISPLD2;PRUNE2;SH3BP5;TXNIP;
ZBED1;HIST1H2BG;B2M;FOXO1

hsa-miR-520 h 11 0.0098226 CXCL10;PRNP;SAMD8;CRISPLD2;PRUNE2;SH3BP5;TXNIP;
ZBED1;HIST1H2BG;B2M;FOXO1
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phosphatase 1B (PTP1B) in myocytes enhanced both the
insulin-dependent activation of insulin receptor autophos-
phorylation and the tyrosine phosphorylation of insulin
receptor substrates, and increased insulin sensitivity [43].
Moreover, it was shown that the expression of PTPRC
was related to residual β-cell function in type 1 diabetes
mellitus [44]. Our results reveal that PTPRC is likely to be
a key gene that impacts GDM.
Because miR-223 was found to be significantly dysregu-

lated in GDM, it was selected as a potential circulating
biomarker for this disease [45]. Additionally, as a stress-
related miRNA, miR-223 negatively regulated the
cryopyrin-encoding gene NLRP3 and subsequently
interleukin-1 beta production [46]. In our study, produc-
tion of the TFs zinc finger E-box binding homeobox 1
(ZEB1) and Forkhead box O1 (FOXO1) was regulated by
miR-223-3p. FOXO1, a target of insulin signaling, regu-
lates metabolic homeostasis in response to oxidative
stress. The interaction of FOXO1 with β-catenin could at-
tenuate the WNT signaling pathway, which is involved in
lipid metabolism and glucose homeostasis [47]. Besides
this, FOXO1 was targeted by miR-520 h and miR-520 g-
3p, which were speculated to influence insulin sensitivity

in human white adipose tissue through their predicted ef-
fects on glucose metabolism [48]. ZEB1, a zinc finger TF,
is associated with placental development. It was reported
that ZEB1 cooperated with FOXO members to suppress
B-lymphocyte proliferation [49]. TBP is a universal
eukaryotic TF. It was found that the enhancement of
TBP-2 expression caused impairment of glucose-induced
insulin secretion and insulin sensitivity [50]. In the present
study, TBP was found to regulate many HLA genes (HLA-
DQA1, HLA-F, and HLA-DQA2), implying its indispens-
able role in GDM.

Conclusions
In conclusion, four immune-related DEGs of GDM
(viz., HLA, CXCL9, CXCL10, and PRPTC) appeared to
be associated with not only the autoimmune process
but also residual β-cell function. miR-223-3p, miR-520
(i.e., miR-520 h and miR-520 g-3p), and TBP regulated
most of the DEGs, especially cellular metabolism-
related genes (FOXO1 and ZEB1). These results pro-
vide new insights into the mechanisms of GDM
pathogenesis.

Fig. 6 Constructed interaction network of the differentially expressed genes. The red square nodes are upregulated genes; the blue circle nodes
are downregulated genes; the purple v-shaped frames are transcription factors (TFs); and the purple triangles are miRNAs
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