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ABSTRACT Understanding the genomic complexity of bread wheat (Triticum aestivum L.) is a cornerstone in the quest to unravel the
processes of domestication and the following adaptation of domesticated wheat to a wide variety of environments across the globe.
Additionally, it is of importance for future improvement of the crop, particularly in the light of climate change. Focusing on the
adaptation after domestication, a nested association mapping (NAM) panel of 60 segregating biparental populations was developed,
mainly involving landrace accessions from the core set of the Watkins hexaploid wheat collection optimized for genetic diversity. A
modern spring elite variety, “Paragon,” was used as common reference parent. Genetic maps were constructed following identical
rules to make them comparable. In total, 1611 linkage groups were identified, based on recombination from an estimated 126,300
crossover events over the whole NAM panel. A consensus map, named landrace consensus map (LRC), was constructed and contained
2498 genetic loci. These newly developed genetics tools were used to investigate the rules underlying genome fluidity or rigidity, e.g.,
by comparing marker distances and marker orders. In general, marker order was highly correlated, which provides support for strong
synteny between bread wheat accessions. However, many exceptional cases of incongruent linkage groups and increased marker
distances were also found. Segregation distortion was detected for many markers, sometimes as hot spots present in different
populations. Furthermore, evidence for translocations in at least 36 of the maps was found. These translocations fell, in general, into
many different translocation classes, but a few translocation classes were found in several accessions, the most frequent one being the
well-known T5B:7B translocation. Loci involved in recombination rate, which is an interesting trait for plant breeding, were identified
by QTL analyses using the crossover counts as a trait. In total, 114 significant QTL were detected, nearly half of them with increasing
effect from the nonreference parents.
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environments (shewry 2009). The genomes of modern wheat
varieties can be thought of as mosaics of landrace cultivars,

READ (hexaploid) wheat, also called common wheat,
(Triticum aestivum L.) is oneof the “big three” cereal

crops (shewry 2009). It is unrivalled in its geographic range
of cultivation. Over 25,000 types of bread wheat have been
developed in the process of adapting it to a wide range of
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which were chosen as the starting materials for systematic
wheat breeding in the early 20th century. Much research has
focused on the specific benefits that genes and alleles confer
on the crop in attempting to explain genotypic outcomes of
selection for any particular environment. However, it should
be noted that other important factors influence the availabil-
ity of beneficial alleles and allele combinations for selection.
Chief among these are rates of recombination and segrega-
tion distortion.

Landrace collections in general show a much higher level of
genetic diversity than elite varieties. There is a widely recog-
nized imperative for breeding programs to use this genetic
diversity by incorporating landrace-derived cultivars into
these programs (moore 2015). The use is aided by the
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increased genotypic characterization of landrace collections
such as those hosted at the Leibniz-Institute of Plant Genetics
and Crop Plant Research (Huang et al. 2002), INRA
(palfourier et al. 2007), and the John Innes Centre (JIC)
(wingen et al. 2014), and also of new collections, e.g., of
Mexican creole wheat (vikram et al. 2016). To achieve the
incorporation of useful diversity, there is a need to compre-
hend the ramifications of the identified genetic variation on
meiosis, sexual reproduction, and fertility in, e.g., segregating
populations. This will help us to understand the genetic
events underpinning domestication and the geographic
spread of wheat, and inform basic strategies for future exploi-
tation of the unique characteristics of adaptation, perfor-
mance, stress tolerance, and end use quality exhibited by
landrace cultivars.

Consensus mapping is an important method in crop geno-
mic research. In bread wheat, the dense microsatellite con-
sensus map created by somers et al. (2004) was a major
achievement in defining genetic loci beyond a single biparen-
tal map. High-throughput genotyping techniques have since
then been used to overcome marker density limitations,
but still, to our knowledge, there are currently just five
high-density consensus maps publicly available. One of these
is for tetraploid wheat, constructed from 13 mapping popu-
lations (maccaferri et al. 2014). Three other consensus maps
for hexaploid wheat were either based on six biparental pop-
ulations and one multi-parent advanced generation inter-
cross (MAGIC) population (cavanagh et al. 2013), on six
biparental doubled haploid (DH) populations that included
four synthetic bread wheats among the parents (wang et al.
2014), or on three biparental DH populations (winfield et al.
2016). A further new high-density map was constructed from
an eight-parent MAGIC population (cardner et al. 2015) and
was not derived from biparental maps.

Marker distance is a measure of the number of recombi-
nations observed between two genetic markers on a chromo-
some (kearsey and pooni 1996). As such, it reflects the
physical length of that chromosomal region, as there is more
opportunity of recombination in a longer region, but it can
also reflect the recombination frequency in an organism,
which might differ depending on the chromosomal regions.
Within the same species, assuming that no major reductions
in physical length of the chromosome have taken place, indi-
viduals with a higher recombination rate should have wider
marker distances.

Marker order is reported to be highly conserved in cereals
at the recombination map level, but this collinearity is often
not observed at the level of local genome structure (Bennetzen
and ma 2003). Within one species, the marker or gene order
should be similar between individuals; however, the degree
of similarity will depend on the species (moore et al. 1995).

Segregation distortion is the deviation of the segregation
ratio from the expected Mendelian ratio observed at a locus
(xu 2008). The loci concerned are called segregation distor-
tion loci (SDL) and they tend to cluster in segregation distor-
tion regions (SDR) in the genome. It is unknown whether
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SDR are common in different segregating mapping popula-
tions (Liu et al. 2010). Different factors influencing seg-
regation distortion in plants including type of mapping
population, gametophytic competition, abortion of gametes
or zygotes, unbalanced meoitic products, and response to
environmental conditions (Liu et al. 2010, 2011). Segrega-
tion distortion can also occur as a result of conscious or un-
conscious selection during the development of mapping
populations (1i et al. 2015). Segregation distortion may be
related to the genetic background of the parents and is higher
in interspecific populations than in intraspecific populations,
e.g., in maize and related species (wang et al. 2012). In rice,
gamete transmission was found to be influenced by female,
male, and zygotic selection, which gave rise to SDL (Reflinur
et al. 2014). kumar et al. (2007) reports on three SDR on chro-
mosome 5B of tetraploid wheat due to competition among
male gametes. A study in a wheat MAGIC cross found a num-
ber of at least 39 segregation distortion blocks distributed
over the genome, with the chromosomes 1B, 6B, 3B, and
4A showing more distorted markers (cardner et al. 2015).
The importance of SDL for breeding programs has been dis-
cussed for at least three decades (zamir and Tadmor 1986).

Chromosomal rearrangements, such as inversions and
translocations, are large-scale mutational events and play a
role in evolution in intraspecific divergence and speciation
(rieseberg and willis 2007). Badaeva et al. (2007) character-
ized chromosome diversity in a broad taxonomic and geo-
graphic range of wheat using C-banding. About 30% of the
accessions screened showed rearrangements, with the nature
of translocations either being single translocations (67%),
multiple rearrangements (17%), or inversions (16%). Not
all described wheat translocations were found, e.g., T1B:2B
(previously discovered in bread wheat) (rriebe and cill
1994), was not detected; however, the most frequent trans-
location, T5B:7B (riley et al. 1967), was. Bread wheat land-
races showed a broader spectrum of translocation types than
commercial lines, most at low frequencies. The spatial reso-
lution of neighboring loci is very limited in chromosome
banding techniques. More detailed assessments of the chro-
mosomal rearrangements can be made with other techniques
like aneuploid analysis or genetic map analysis.

Genetic recombination is a central mechanism in evolu-
tionary processes and is equally central to crop breeding,
where the modification of recombination is of interest.
Recombinant inbred lines provide information to estimate
the crossover number. This allows the detection of segregating
QTL influencing recombination (pole and weber 2007). In
Arabidopsis, a study of 17 F2 populations revealed a lower
number of crossovers than found in yeast, mice, and human
(salomé et al. 2012). This study also suggested that recom-
bination hot spots are accession-specific. For wheat, a better
understanding of the recombination landscape would be im-
portant to achieve breeding targets. Additionally, to identify
useful alleles, it is also of importance to predict how much a
crossing program will be helped or hindered by recombina-
tional hot spots or blocks.



The aims of this work are to report on the diversity and
plasticity of the wheat genome by analyzing genetic maps
from a novel nested association mapping panel (NAM) for
wheat, in a similar approach as used in maize (yu et al. 2008).
The new NAM panel consists of 60 biparental populations,
most of them developed from a diverse core set of the A. E.
Watkins hexaploid wheat landrace collection. This collection,
established in the 1930s, comes from a wide geographic
spread, has been shown to have a high genetic diversity,
and reveals at least nine ancestral groups of precommercial
wheat (wingen et al. 2014). It has been extensively screened
for the presence of resistance genes (Thompson and seymour
2011; Bansal et al. 2013, 2015; Burt et al. 2014; 1i et al. 2016)
but the identification of new alleles of complex genes has, to
date, been limited (oamar et al. 2014). The collection is one
of the main resources of a UK prebreeding program (moore
2015; winfield et al. 2016). All of the biparental populations
share the reference parent “Paragon” (Par), a hexaploid UK
elite spring wheat cultivar. This line was chosen as it had been
a very successful elite line in the UK environment and was
already a key parent for existing Wheat Genetic Improvement
Programme (http://www.wgin.org.uk) resources including
EMS and y mutant populations. To best achieve the aims:
(i) genetic mapping for 60 biparental populations was con-
ducted following set rules; (ii) a consensus map was con-
structed; (iii) map length and marker distances were
compared between maps; (iv) marker orders were compared
between maps; (v) loci with segregation distortion were
identified; (vi) translocation events were detected and eval-
uated; and (vii) recombination QTL were calculated.

Materials and Methods
Plant material and growth conditions

Biparental segregating populations were developed as a NAM
panel from crosses between a reference variety, the spring
bread wheat cultivar Par (mainly as pollen recipient), and a
further bread wheat variety or cultivar. For 55 populations,
the pollen donor was a single-seed descendent (SSD) from a
landrace accession from the A. E. Watkins collection (wingen
et al. 2014); a further five populations were developed with
the varieties “Pamyati-Azieva,” “Chinese Spring,” “Garcia,”
“S§7010073,” and “Glasgow” either as pollen donor or re-
cipient (see Table 1 for details on populations, and Supple-
mental Material, Table S1 in File S1 for details on
accessions). The initial crosses were followed by either four,
five, or six rounds of self-pollination as SSDs, so individuals
were recombinant inbred lines (RILs). All plants were grown
under standard glasshouse conditions under regular mildew,
aphid, and thrips control measures applied following the
manufacturers’ recommendations. Two generations were
grown per season, during the summer season (Mar-Aug) un-
der natural conditions and during the winter season (Sept—
Feb) at 20° with supplementary light (400 W high-pressure
sodium lights, 180 — 250 pmol/m?s) to 16 hr light.

Genotyping

DNA extractions and Kompetitive Allele Specific PCR (KASP)" M
SNP genotyping were essentially carried out as in knight et al.
(2015). Primer information for the markers, developed by
the University of Bristol, and genotyping protocols can be
found at CerealsDB (http://www.cerealsdb.uk.net/cerealge-
nomics/CerealsDB/). Markers were selected from a core
set of codominant, genome-wide, reliable high-performance
markers from CerealsDB, chosen for high levels of polymor-
phism over multiple populations to produce common sets.
They were also selected to maximize the coverage of each of
the 21 chromosomes with a low marker number. However,
marker selection suffered from information on SNPs and their
chromosome locations becoming only gradually available over
the time course of the project. Additionally, information on
polymorphisms was usually restricted to a subset of parental
lines. Some addition of markers to populations that were geno-
typed early in the project was conducted to increase the
marker overlap between these and later populations, but
was limited by time and monetary constraints.

An initial set of seven biparental populations were also
genotyped with 31 SSR markers, which were selected from the
markers used in wingen et al. (2014) (see Table 1). These
seven and three additional initial maps were constructed
from an average number of 488 markers (SD 30) whereas
the following maps were constructed on average from only
195 SNP markers (SD 39), which had been selected for best
genotyping performance (see Table 1). Overall, > 2400 sin-
gle SNP markers were employed leading to > 1,613,786 ge-
notype points on the 60 populations. Unfortunately, for some
of the genotyping of the initial set of seven biparental pop-
ulations, genotype scoring recorded the heterozygote scores
as missing. Hence, markers not showing a single heterozy-
gote score in one of these seven populations were excluded
from the test of segregation distortion and detection of trans-
locations (between 169 and 279 markers per population),
which left 206-254 markers on these populations. On aver-
age, a marker was mapped on 5.6 of the 60 populations;
however, this number was higher for markers used later in
the project. A marker from the subset not employed to geno-
type the first seven populations was on average mapped on
7.8 populations.

Given that a very large population development program
was conducted, it was ensured that populations originated
from the named parents and that no mix-up of populations had
happened by genotyping the F1 plants with characteristic
markers. Genotyping results of F1 and F4 plants were com-
pared. Only populations with genotype consistency were
used.

The mean allele distribution over all loci of each population
was close to that expected with two exceptions. In those
populations, the homozygous Par allele ratios were larger
(= 0.54) than the expected ratio of 0.4375, and the ratios for
the second parent were lower (=0.37, x%>: P = 0.08 and
P =0.12 for ParW281 and ParW313, respectively). No
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explanation for these unexpected ratios has been found. As
these populations were frequently found in the outlier groups
of the applied statistics they were excluded from most of the
analyses.

Genetic map and consensus map construction

Genetic maps were constructed for 60 populations using the
software program MapDistov. 1.7.7 (Lorieux 2012). Genotype
data were presorted following the marker order seen in exist-
ing maps, before importing into MapDisto. To construct the
linkage groups (LGs), a LOD score of 3.0, a maximum re-
combination frequency of 0.3, and removal of loci with
10% missing data were set as constraints. Map distances were
calculated using the Kosambi mapping function (xosambi
1943). Loci were ordered using the Seriation II method, with
the minimum Sum of Adjacent Recombination Fractions
(SARF) criteria for ordering and progressive rippling. LGs
were further split if there was a distance = 35 cM between
two adjacent markers. For consensus mapping, map files
were split into individual LGs for each chromosome. Maps
were used without any weighting factors. Common marker
order between LGs of different maps for each chromosome
was compared by rank correlation. Those LGs that had a
mean negative correlation when compared to all other
groups had their order reversed. LGs that had no markers
in common with any other populations were discarded.

A consensus map was created for each chromosome using
LPmerge (Endelman and plomion 2014). Input parameters
specified maximum map intervals (K) of 1-3, with each LG
being equally weighted. Different consensus maps were pro-
duced for each value of K, and for each chromosome the con-
sensus map with the lowest SD and mean root mean-squared
error (RMSE) was chosen as optimal. This was in most cases
K = 3, but it was K = 2 for chromosomes 1B, 6B, and 6D.

The final consensus map, the landrace consensus (LRC)
map, was compared to two publicly available maps. The first
one, the “Avalon x Cadenza” (AvaCad) map, belongs to a
population previously developed at the JIC (criffiths et al.
2009) that is widely used by the UK research community.
The map was based on genotyping on the Illumina Infinium
iSelect 90,000 SNP array by the University of Bristol, which
consisted of 3970 polymorphic markers. Data and maps are
available from CerealsDB. The second map is the consensus
map constructed from six biparental populations described in
wang et al. (2014), here called Wang map, which consists of
40,267 markers.

The centromeric regions were estimated by annotating
LRC markers with chromosome arm information made avail-
able by the International Wheat Genome Sequencing Con-
sortium (IWGSC, www.wheatgenome.org). The region of
transition between short arm and long arm assignments was
classified as centromeric.

General statistics

Statistical analysis was conducted using the R software suite
(vs. 3.2.3) (r core Team 2015) if not stated otherwise. Box
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plots were plotted using the cars package. Correlation was
conducted as Pearson’s product-moment correlation p, for
numeric values or Spearman’s rank correlation p; where the
order or markers was compared (both using functions cor and
cor.test). The order of markers in each LG was compared to the
corresponding LG in the other biparental maps and in the LRC
map to find maps with different marker order. Linear model
analysis was conducted with function Im and mixed linear mod-
els with Imer from the Ime4 package. Adjustment of P-values for
multiple testing was done following the Benjamini-Hochberg
method using function p.adjust. Heat maps were constructed
using the heatmap.2 function in the gplots package.

Map lengths, marker distances, and marker order

The biparental linkage maps were compared with one another
and with the LRC map regarding different characteristics: the
total and chromosomal map lengths, the marker distances,
and the correlation of marker orders (see Figure 1). A marker
distance was calculated as mean centimorgan distance be-
tween adjacent markers in each biparental LG and then com-
pared to the corresponding marker distance in the LRC map
as mean marker order ratio (MOR), using a ratio of the bi-
parental or any other map mean to the LRC map mean.
Cases where LGs were of length 0 cM, usually only two or
three markers long, were not included in the analysis as they
appeared to artificially extend the MOR range to zero, which
seemed to be against the general trend. Exceptional cases of much
longer or shorter MORs are defined similar to box-plot outliers.
MOR exceptions are 1.5 times the interquartile range (IQR)
away from the bordering quartile values, either below quartile
one (Q1) or above quartile three (Q3), with IQR = Q3 — Q1.
The exceptional cases above Q3 are assumed to have
expanded marker distances. Also, the overall LG lengths of
the LRC map were compared to the lengths of respective LG in
the AvaCad and Wang maps. Moreover, the marker order of
biparental LGs were compared to the LRC map using the
Spearman’s rank correlation coefficient p,. Cases of low cor-
relation, —0.6 <p, =< 0.6, were referred to as incongruent
maps. For values between 0.6 < p, =< 0.7 the expression near
incongruent will be used. Alignments of LGs to illustrate the
differences between LG from different maps were drawn us-
ing Strudel software (vs. 1.15.08.25, https://ics.hutton.ac.
uk/strudel/). For an alignment of the LRC map and the
Chinese spring (CSp) genome, the marker sequences were
blasted against the IWGSC whole genome assembly (WGA)
v0.4 (NRGene DeNovoMAGIC) at Unité de Recherche
Génomique Info (https://urgi.versailles.inra.fr/blast_iwgsc/)
and positions with the highest or a very high BLAST score on
the most likely chromosome were selected manually from the
BLAST output. Alignments were represented as Strudel plots.

Further genetic statistics

Segregation distortion, chromosomal translocations, crossover
count, and crossover QTL were detected using the package qtl
(vs. 1.35, sroman et al. 2003) for R software. The qtl package
took the cross type and generation number of the populations
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(Table 1) into account by using in the read.cross function
options “BC.gen = 0” for all populations, and “F.gen = 4” or
“F.gen = 5” depending on the respective generation. As an
exception, CSpPar was treated as a complete RIL population
(“crosstype = riself”). Segregation distortions were calcu-
lated as separate nonindependent y? tests at each locus on
the imputed genotype probabilities generated by function fill.
geno and method maxmarginal to correct for obvious mis-
scoring. P-values were adjusted for multiple testing. Markers
with no heterozygote states in F4 and F5 populations were
excluded from the segregation distortion analysis, as a likely
explanation is an erroneous categorization of the heterozy-
gous markers with one of the homozygous groups during the
KASP marker scoring. The countXO function was used to
estimate the number of crossovers per line. These values
were used as traits for QTL analyses. QTL analyses were per-
formed in two steps: putative QTL were identified in an initial
single QTL scan and subsequently tested in a final multiple
QTL model using a significant threshold calculated from the
data distribution. Major translocations were detected in the
genetic maps where markers from different chromosomes
were found in one LG, as most SNP markers carried a chro-
mosomal assignment. Additionally, putative translocations
were identified from a linkage test using the pairwise esti-
mated recombination fractions (estRF) between markers,
calculated by function est.rf. Linked markers usually display
a high LOD score. Putative translocations were detected in
pairwise estRF comparisons as markers being strongly linked
to markers outside their LG indicated by a LOD score higher
than 10. We felt that this was a plausible approach, as
known translocations, e.g., the T5B:7B reciprocal chromo-
some translocation, present in cultivar “Avalon” inherited
from “Cappelle-Desprez” (riley et al. 1967), gives rise to
such a translocation signature in the estRF LOD scores in
the cross AvaCad (result not shown). The threshold of
LOD 7.0 was determined by comparing the number of
expected translocations for different LOD thresholds with
those translocations observed in genomic in situ hybridiza-
tion (GISH) experiments.

GISH

Multicolor GISH was performed on mitotic chromosomes of
nine selected Watkins accessions following the protocol by
zhang et al. (2013) and kato et al. (2004). The A genome was
labeled green, the B genome was labeled purple, and the D
genome was labeled red. Between two and five spreads were
analyzed for each of the accessions. A green/purple (A:B)
translocation was present in all chromosome spreads ana-
lyzed. This is an ancient wheat T4AL:5AL:7BS translocation
that can be found in both T. durum and T. aestivum (pDevos
et al. 1995). All other translocations observed were taken as
characteristic for the accessions analyzed.

Data availability

Biparental population maps and genotypes are available from
http://wisplandracepillar,jic.ac.uk. Biparental populations

are available upon request. File S1 contains all supporting
tables and figures. File S2 contains the LRC map.

Results
Populations, genotyping, and genetic map construction

This study reports on the development and characterization of
a novel bread wheat NAM panel consisting of 60 biparental
populations (55 at generation F4, 4 at F5, and 1 at F6). All
populations share Par as reference parent. The second parent
for the F4 populations was a landrace accession taken from the
119 accessions-strong core collection of the bread wheat
Watkins collection, selected to capture a maximum of the
genotypic diversity (wingen et al. 2014). The 55 accessions
cover all of the nine ancestral groups described to be a rep-
resentative subsample and come from 21 of the original
32 countries of the whole collection (Table S1 in File S1).
The average size of the populations is 92.7 individuals (range
80-95 individuals) for the landrace populations and PamPar
(details on crosses and maps in Table 1). The other SSD
populations were larger, being composed of between
163 and 374 individuals (mean 262.0). Genetic mapping
was conducted on mainly SNP genotypic information follow-
ing the same rules for all maps. As expected, the number of
markers used for genotyping was strongly correlated with the
number of linked markers (p, = 0.99). This also reflected the
strategy to use previously validated markers that resulted in a
reasonable spread along the chromosomes.

Genome coverage

The average marker number per chromosome was similar
between the A and B genome (mean 14.8, range 7.9-31.3 and
mean 13.9, range 7.7-31.5, respectively). Coverage was sat-
isfactory for these chromosomes. As expected, the number on
the D genome was lower (mean 6.2, range 1.7-13.7), as due
to a lower diversity of the D genome the number of genetic
markers available was limited. In 25% of the populations, the
constructed linkage maps lacked one chromosome or more,
in comparison with the full wheat genome of 21 chromo-
somes (Figure S1 in File S1 and Table 1).

Mainly, chromosomes of the D genome appeared to be
missing, apart from one case where chromosome 4B was
absent. It is unlikely that these chromosomes were truly
absent, and they may only have appeared to be missing due
to random markers not being polymorphic in some popula-
tions. Given the low marker density of the maps, a few markers
can define a chromosome and, with the exception of the
ParW141 map, all maps with missing chromosomes had a
low marker number. The actual presence of two seemingly
missing chromosomes (ParW722 4B and ParW141 4D) was
confirmed in these cases by targeted genotyping (data not
shown). The particularly low number of D markers would
explain the absence of predominately D chromosomes. The
low coverage of the D genomes may have had other un-
intended consequences for the statistics employed. Any
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anomalies found in the characteristics for the D genomes of the
NAM panel were, thus, considered to be caused by low marker
coverage if there was no other more likely explanation.

Consensus mapping

A consensus map for the NAM panel, here called the LRC map
as 55 landrace accessions were included as parents, was
constructed. The LRC map contains 2406 markers, all SNP
markers apart from 33 SSRs, on 2498 loci. Similar numbers of
loci fell on the A and B genomes: 951 loci and 1122 loci,
respectively. Only 425 loci fell on the D homeologous genome
(Figure S2 and Table S2 in File S1). Counting the number of
markers genotyped per single map, there were a total of
6213 markers on the A genomes, 5855 on the B genomes,
and 2575 on the D genomes. All larger LGs could be com-
bined into the LRC map; however, some conflicts of marker
order were reported, which were dealt with following the
linear programming strategy. This means that the LRC map
is a generalization of the order of the individual maps and
may, in regions where ordering conflicts were reported, rep-
resent the majority of the maps only. On average, 5.6% of the
marker order comparisons resulted in an unresolvable order-
ing constraint.

Map comparisons

The characteristics of the 60 biparental maps and the LRC map
were assessed by comparing the following properties: map or
LG lengths, marker distances, and marker order. Furthermore,
a comparison with two recent high-density maps, the AvaCad
map and the Wang map, was conducted.

Map lengths: Arange of 831-2050 cM for the map lengths of
the NAM populations was found (Table 1). There was a
positive and statistically significant correlation between
the number of linked markers and the map length
(pp = 0.58). As stated above, map length variation was
one characteristic of interest. It was noted that, with
R? = 0.34, the variation explained was only about one-third
of the total variation. Thus, we felt confident that variation
in map length was determined by more than the number of
markers used for genotyping. However, further factors
that influence the differences in map length cannot be de-
rived from this analysis. Some populations of the same size,
genotyped with a similar marker number, and having a
similar number of LGs, e.g., ParW406 and ParW475, show
differences in map length, in the example case by 12%
(1356 c¢M vs. 1190 cM). It is likely that the major factor in
the observed differences is down to random genotyping ef-
fects, e.g., where chromosomes remained undetected the
maps were shorter (Table 1). It is possible that different
recombination rates contribute to map length differences
but it is difficult to find conclusive evidence for this in the
overall comparison of map lengths. There was no significant
correlation between population size and map length. The
LRC map is 1862 cM long. This is longer than the mean map
length of the biparental set (1310 cM), but shorter than the
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Figure 1 Comparison of marker distances and marker order between the
LRC map and a biparental map. To calculate the mean MDR and marker
order correlations, the common markers between each LG are identified
first. Only one LG shown. LGs are depicted as gray vertical bars, loci are
given as short black horizontal bars, and the marker names (M1-M9) are
given next to the loci. A frame around the marker name signifies a shared
or common marker between the two maps. For MDR, the MDs, shown as
blue bars next to the LGs, are calculated for both LGs separately. In this
example, if m; is the centimorgan position of marker Mi, the two means
are MDire = (mg —m2)/5 and MDy,, = (ms —m;,)/5. MDR is calculated
from these means as: MDR = (MDyj,)/(MDyrc). To assess differences in
marker order between the two maps, the rank difference between the
common markers is used to calculate the Spearman'’s rank correlation
coefficient ps. In this example, as M5 and M8 swapped places, rank dif-
ferences are zero for these two markers only. The regions from M2 to M4
seem to be colinear, while the regions from M5 to M8 seem to be
rearranged between the two maps. bip, biparental; LG, linkage group;
LRC, landrace consensus; M, marker; MD, mean of all distances of adja-
cent common markers; MDR, marker distance ratio.

longest biparental map (2050 c¢M) included in the consen-
sus mapping (Table 1).

The LRC LGs were compared to those of two high-density
maps with respect to map length, with the aim of getting some
reference points for the LRC map (Table S2 in File S1). In
general, the LRC LGs were much shorter than those of the
other maps, reaching on average only 51% of the Wang LGs
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and 57% of AvaCad LGs. Map length seems to be strongly
determined by the number of markers used, while marker
saturation has not been reached. This explanation is sup-
ported by the LRC D LGs having a low marker coverage, with
several cases of whole chromosome arms not being detected
(Figure S2 in File S1, LGs 3D, 4D, 5D, 6D, and 7D) and being
particularly short. We conclude that the map length values of
LRC and NAM maps do not provide unique characteristics for
the used populations and their parents as the marker density
of the maps was below a level that would ensure that the
calculated map lengths are closely correlated to the true map
lengths.

Marker distances: The distances between common markers
were compared between maps to find expansion or reduction
of LG regions. Differences would be expected if recombination
rates were higher or lower than average in a map. For this, the
mean marker distance ratio (MDR) (for method see Figure 1)
between the biparental maps and the LRC map was calcu-
lated. The comparison revealed different levels of MDR,
when applied at the LG level (Figure 2), meaning that marker
distance is partly a function of the LG.

The average MDR over the A and B genome LGs is 1.22. This
means that the marker distances in the biparental maps are, in
general, larger than those in the LRC map, which is consistent
with the reported marker compression by the consensus
mapping procedure (Endelman and plomion 2014). The 6A
LGs show the highest MDR (1.65, SD = 0.69) and also the
widest IQR (extension of the boxes in Figure 2). The 5B LGs
show the next highest MDR (1.33, SD = 0.54), but the value
is not very far from the overall mean and the IQR is also much
narrower than that for the 6A LGs.

Apart from these general trends, 74 cases were detected
where LGs in individual populations showed much higher
MDRs (outliers in Figure 2). These are putative cases of a
higher recombination rate, possibly restricted to the chromo-
some level rather than the whole genome level as none of the
populations has statistically significantly more outliers. A
higher MDR can also be the result of longer physical chromo-
some in the biparental population; sequencing of regions
with unusual MDRs would help to distinguish between the
two options. To restrict a detailed analysis to robust cases,
only those LGs that exhibited expanded MDRs and consisted
of a minimum of six markers were considered, reducing the
number of outlier cases to 20 (Table S3 in File S1). Five of the
expanded MDR cases concerned the 3B LGs, three the 1D LG,
and the rest either two LGs (2B, 7B) or just one LG (2A, 2D,
5A, 5B, 5D, 6B, 6D, and 7A). Interestingly, for chromosome
6A, where the highest average MDR was found, none of the
6A LG fell into the category of expanded MDR. This is partly
explained by the 6A MDRs having a higher dispersion than
the other LGs. The higher dispersion results in a higher IQR
and, thus, leads to a higher threshold in the detection of
expanded MDR. However, no particularly extreme outliers
were observed for the 6A LGs, as there were for several of
the other LGs.
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Figure 2 Marker distance ratios per chromosome. Ratios of marker dis-
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tal populations divided by the landrace consensus (LRC map) marker
distances.

Comparing the MDR of the LRC map to the two high-
density maps in general shows that marker distances are
smaller in the LRC map (Table S2 in File S1). Due to the
differences in marker number and either the different nature
of the map (AvaCad map is biparental) or the different way of
construction (MergeMap was used for the Wang consensus
map construction) these comparisons are not very informa-
tive. However, it seems to be of interest that the 6A LG of the
Wang map shows a large MDR of 3.2 (with an average MDR
of 1.6 for the A and B genome), which points to a possible
common mechanism for the marker distance diversity found
in the biparental maps for this chromosome.

Marker order comparison

The marker order of each LG of the 60 populations was
compared to the respective chromosome of the LRC map.
In total, there were 1611 LGs to compare; the results are thus
summarized and a few extreme cases discussed in more detail.

In general, most LGs show good correlations between
biparental populations and the LRC map, and only 61 LGs
(5.7%) were incongruent with the LRC map (Table 1). The
number of incongruent LGs per chromosome varies between
zero and seven, with 6B having the highest number of in-
congruent cases (Table S4 in File S1). However, no specific
pattern seems to be present that would explain differences
between chromosomes.

As an example of a particularly congruent chromosome, LG
7A shows a nearly uniform marker order in all populations and
only one incongruent case is discovered (Figure S4 in File S1).
However, for the majority of LGs, a few incongruent cases are
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Figure 3 Alignment of 3B LGs of the biparental NAM populations and the LRC map. (A-C) Alignment between biparental LG (depicted as red vertical
bar) vs. the LRC LG (blue) as Strudel plots. Markers shared between LGs are connected. Positions of markers are given in gray boxes at the sides of the
bars. (A) ParW209 vs. LRC: the alignment seems near perfect, distances between markers show variations. (B) ParW729 vs. LRC: a putative chromosomal
translocation of the bottom part of the ParWw729 3B LG is suggested by the alignment of that part to the top short arm of the LRC LG. (C) ParWw281 vs.
LRC: the alignment seems to suggest several rearrangements, including an inversion in the lower middle part and a translocation of the bottom part of

1666 L. U. Wingen et al.



present, e.g., for LG 3B three populations showed distinct
marker order changes (Figure 3D). In contrast, LG 6B ap-
pears to have the most variation in marker order, with seven
obvious cases of incongruent LGs (Figure S5 in File S1). Two
further incongruent 6B cases have fewer than seven markers
in common with the LRC 6B LG.

We asked if the incongruent regions might all be of the
same nature and belong to a cluster of LGs with alternative
marker order. This seems to be the case for chromosome 5A,
where a common inversion was found in at least three LGs.
In other cases, e.g., chromosome 2B, the incongruent LGs
seemed to represent a number of different orders. In some
cases not enough common markers are present to decide if
LGs incongruent to LRC are aligned with each other or not.

It was interesting to see that some populations showed
more changes in marker order than others (Table 1). Nearly
half of the populations (29) had at least one LG incongruent
with the LRC map. In most of these populations, only one to
two LGs showed incongruence, but six populations had more.

The marker order of the LRC map was also compared to the
AvaCad map and the Wang map (Table S2 in File S1). In
general, LRC LGs showed good agreement in marker order
with the other two maps. Aligning the LRC map with the
CSp wheat genome assembly confirms the general good
agreement of marker orders with some local rearrangements
(Figure S3 in File S1). It also demonstrates the lower recom-
bination rate around the centromeres, as there are few
markers from the genetic LRC map lining up with those re-
gions on the physical wheat genome. The genome regions
around the centromeres are particularly sparse in this study
due to the genotyping strategy, which followed a low marker
density with a preference for markers that are spaced widely
along the chromosome.

Segregation distortion

Segregation distortion of single markers, meaning a statisti-
cally significant deviation of the expected distribution of
alleles, was found in 413 loci or 3.1% of the loci analyzed
(P < 0.05, adjusted for multiple testing). The majority of pop-
ulations (54) carried markers with segregation distortion,
however the level of distortion varied widely from an aver-
age of 0.35-15.5% of the loci in this subset (Table 1), with
56.2% of the loci having a higher proportion of the Par allele
(Figure 4).

Higher numbers of SDL were generally found in the first
seven produced populations that had been genotyped with a
higher marker number, of which some were not codominant.
Populations not in that set, but with high levels of segregation

distortion, were Parw110 (15.15%) and ParWw044 (11.6%).
These populations can be seen as outliers, showing a consid-
erably higher distortion than the majority of populations with
SDL (mean 2.9%).

The amount of segregation distortion detected increased
with map size but not with population size; however, a linear
model taking this explanatory effect into account, explains
only 12% of the observed variation. The segregation distortion
is not evenly spread over the genome. LGs from the A and B
genome show on average between 1.4 and 6.9% of their
markers distorted, with LG 7B (7.0%), 6B (6.3%), and 4B
(5.5%) having the highest number of distorted markers

Differences are also observed at the single marker level,
with hot spots for segregation distortion found for single
markers, e.g., loci BS00110651 (6B) is distorted in seven
populations and BS00084005 (5A) in six. If the distribution
of SDL is plotted along the genome, a number of putative hot
spots can be detected, some leaning toward Par, some toward
the other parent (Figure 4). The chromosomes have a varying
number of hot spots, e.g., chromosome 3A has no hot spots,
whereas 3B showed segregation distortion in at least two
markers in three or more populations (Figure S8 and Table
S5 in File S1).

Translocation detection from genotype data

The presence of a translocation was assumed if the chromo-
some assignments of a SNP marker listed on CerealsDB dis-
agreed with the majority of chromosome assignments of the
other markers in a LG. Such differences in assignments were
observed in general only in a minority of LGs. There were
92 such cases, found in 36 of the 60 maps (see Table S7 in File
S1). Two of these 92 putative translocations were found to be
reciprocal, thus there were 90 different translocation events,
which can be categorized into 38 different types according to
the chromosomes involved. Many populations (13 or 36.1%
of those assumed to have translocations) had only a single
putative translocation, while the rest had between two and
eight translocations. Additional chromosomal translocations
were predicted by analyzing the recombination fraction be-
tween markers. LOD scores above the threshold of seven,
measuring the linkage between markers in different LGs,
were interpreted as an indication of a translocation. As it
was initially not obvious which LOD score threshold would
distinguish between a true translocation and a spurious sig-
nal, several thresholds were tested. Scores below LOD 7.0
predicted many translocations that could not be confirmed
in GISH experiments (see below). Therefore, LOD 7.0
seemed to be the best threshold for this exploratory

the Parw281 3B LG, which is found in the upper middle region of the LRC LG. (D) Heatmap representing the pair-wise comparisons of the marker order
between all 3B LGs of the NAM populations and the LRC map. Names of the populations are given to the right and below. Heat map colors reflect the
Spearman’s rank correlation coefficient p, in a color gradient from red (strong negative) via yellow (close to zero) to blue (strong positive). The numbers
in the squares refer to markers in common between the LGs compared. The majority of squares show a blue color for congruence between LGs, e.g., for
most comparisons with 3B LG of ParWw209 [see also (A)]. The 3B LG of ParWW729 shows incongruence to some other LGs including the LRC LG [see also
(B)]. The 3B LG of the three populations ParW281 [see also (C)], ParW313, and ParW433 appear very incongruent to others. Gaps in the matrix are due
to not enough common markers. LG, linkage group; LRC, landrace consensus; NAM, nested association mapping.
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Figure 4 Allele ratios per locus for 54 populations plotted along the genome, highlighting those ratios that show significant segregation distortion. The
log ratios of the number of homozygous parental alleles [log(AA/BB), with AA the number of homozygous Par (Paragon) alleles and BB the number of
homozygous alleles from the second parent] are plotted along the genome axis according to the marker position on the landrace consensus (LRC) map
for each chromosome. Fifty-four populations with segregation distortion were included in the figure. The filled symbols along the map axis signify the
allele ratios, either above the axis for an excess of Par or underneath the axis for an excess of the second parent. Gray dots signify ratios that did not
show segregation distortion, colored symbols signify statistically significant distorted allele ratios. Neighboring chromosomes are shown in different
shades of gray for clarity. Each color-symbol combination stands for a different population as given in the key below the figure.

translocation analysis. With this threshold, 141 translocations
were predicted, that would be a translocation in 0.75% of all
LGs analyzed. Two populations (ParW281 and ParW313)
seemed to have many translocations (27 or 47 cases, respec-
tively). These values seem to be extremely high. Further-
more, both accessions are extreme outliers for other
statistics, and the number of translocations found with the
initial method of translocation discovery are very low. Thus,
we excluded these populations from the analysis, which re-
duced the number of predicted translocations to 17. The
overlap to the cases of putatively mapped translocations
was low (two cases). Putting together the putative cases from
mapping and from the estRF analysis, we predicted 105 trans-
location events when analyzing 58 populations (Table 1).
Translocation numbers per population ranged between one
and eight (mean 4.1, SD 2.4) for the concerned 42 popula-
tions with translocations. Of different translocation classes
(regarding chromosomal involvement), 29 occurred only
once, 37 classes occurred in either 2, 3, 4, or 5 accessions,
and 4 more common translocation classes occurred in either
6 (T1B:1D), 7 (T2A:2B), 8 (T3B:7B), or 13 (T5B:7B) acces-
sions (Table S7 in File S1). We assumed that the distribution
of the more frequent translocations could show a historic
signature, if the translocation originated once and was then
passed on. Thus, we tested the distribution of lines with and
without the translocation according to their membership
with regard to the nine ancestral groups identified by
wingen et al. (2014). This revealed that the distributions of
the accessions carrying T3B:7B or T5B:7B are significantly
different statistically from the distribution of accessions
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without the respective translocation (y? : P=0.05). Thus,
it is likely that each translocation originated from one foun-
der event. The number of accessions from groups 1.2
(China-India) and 1.3 (Central/Eastern Asia) with the re-
spective translocation was higher than expected in both
cases, which makes it likely that the origin of both translo-
cations was in those regions. For T5B:7B, the number of
accessions from group 2.2. (Northwest Europe) was also
slightly increased (4 vs. 2.5 expected). Given the geographic
distance to the other two ancestral groups and a lower de-
gree of enrichment, it seems more likely that T5B:7B did not
originate in Northwest Europe but spread there and then
became more established in the gene pool. For the other
two frequent translocations, T1B:1D and T2A:2B, no differ-
ence in distribution could be found. This may mean that
they have originated more than once.

Translocations: GISH experiments

To confirm the validity of estRF analysis to predict transloca-
tions, GISH was performed on 10 Watkins accessions, some of
which were showing high LOD scores between markers from
different chromosomes and others with lower levels of linkage
support from the estRF analysis (Figure 5 and Table S6 in File
S1). The GISH performed allowed the detection of transloca-
tions between different homeologous groups only, as the dif-
ferent genomes were labeled in different colors. The ancient
T4A:5A:7B translocation present in bread wheat was de-
tected in all lines. A further six translocations were detected
in the 10 analyzed accessions. All detected translocations
could be explained by predictions for translocations made
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by either genetic mapping or the estRF analysis. One line
without a predicted translocation was also found without
translocation in the GISH analysis. Two further lines, which
did not show a translocation in the GISH analysis, had an
estRF LOD value under 7.0. From this, we deduced that only
a higher LOD value would predict cytologically visible trans-
locations. Two further cases were predicted to have translo-
cations that we could not detect in GISH. One of those cases
was predicted from a single 5B marker in the middle of a 5A
chromosome. It is very likely that the GISH procedure was
not sensitive enough to find a short introgressed chromosome
part. The final case of a predicted T1B:1D translocation
could not be explained. However, another 1D translocation
(T1D:6A) was predicted in the same accession and detected
by GISH (A into D). A further investigation of this case could
reveal that the genetic mapping in this accession is impaired
at the 1D locus, due to the presence of the T1D:6A transloca-
tion, and that the predicted T1B:1D translocation is an artifact
of that. The production of a high-density map would possibly
be able to support this explanation (See also Figure 5).

Recombination QTL

From the genetic maps, ~126,300 crossover events were es-
timated over all populations, with a mean number of 19.9
crossovers per individual (SD = 5.7, range 12.1-37.6). The
mean number of crossovers varied between different popu-
lations, and linear model analysis was employed to identify
possible covariates that would influence this. Marker number,
map size, and population size were all found to have a sig-
nificant effect on the detected crossover number, and the
linear model including these three covariates explained
98% of the variation observed. Thus, it can be assumed that
the nonreference parents did not strongly influence the re-
combination rate. This could result from the fact that either
the frequency of recombination events was very similar for all
parents, or more likely that an effect coming from the com-
mon parent was so strong that any other effects were hidden
in this general analysis.

In spite of the absence of an obvious parental effect, in 51 of
the 58 populations, 119 significant QTL for the crossover
phenotype (LOD = 2.0) were detected (Table S8 in File
S1). For 66 QTL, the increasing effect came from Par. For
50 QTL, the increasing effect came from the nonreference
parents. The observed additive effects coming from Par were
between 0.03 and 3.00 crossover, with a mean of 1.26 cross-
over, and the effect coming from the nonreference parents
were between 0.10 and 4.63 crossover, with a mean of 0.84
crossover. Chromosomes 3B and 3A carried the highest num-
ber of QTL with effects from the nonreference parents (seven
and six QTL, respectively).

QTL were not equally distributed over the genomes. The A
genome seemed to be enriched with QTL, 64 fell on this
genome. In more detail, 12 QTL were found on chromosome
4A,11on3Aand 5A,80n 1B, 2A,3Band 7A, 7 on 6A, 6 on 1A,
4B, 5B, 6B, and 3 and under on the D chromosomes and the
other remaining chromosomes.

QTL were projected on the LRC map chromosomes to
investigate possible colocalizations. In many cases, the QTL
seemed dispersed and not localized in the same region (Figure
S10 in File S1). However, in several such cases, QTL from
different populations share some of their C.I. markers, e.g.,
the QTL on chromosome 4A carry markers highly common
between populations, with marker BS00049911 found in
eight QTL intervals. Similarly, for the QTL on 3A, the
markers BS00022862 and BS00074617 are each present
in seven QTL intervals. If one would assume that a marker
present in a QTL region in at least four different populations
would indicate a common QTL, this would define at least
10 common recombination QTL, present on chromosomes
1B, 2A, 3A, 3B, 4A, 4B, 5A, 5B, 6A, and 7A (Figure S10 and
Table S9 in File S1).

Discussion
Genetic mapping of the NAM panel

We report on a novel bread wheat NAM panel, consisting of a
set of 60 biparental hexaploid wheat populations, sharing one
reference parent. The nonreference parents were chosen
mainly from landrace accessions from the genetically diverse
core of the Watkins collection, selected from all nine ancestral
populations discovered in wingen et al. (2014) (Table S1 in
File S1).

Although many factors in the subsequent genotyping and
mapping processes were similar, and populations mainly
differed in the second parent, automatic mapping functions
produced very different outcomes for individual populations,
particularly regarding the numbers and lengths of LGs (data
not shown). Some LGs consisted of groups of markers pre-
viously assigned to different chromosomes, mostly with large
gaps between the groups. To deal with these differences in
LGs, hand-curating of initial maps was necessary. The multi-
chromosome LGs were manually split into LGs following set
rules. Furthermore, many cases were observed where markers
assumed to be on the same LG did not all link up but fell into
several small LGs. Such splits were observed in 341 cases,
resulting in two or even three LGs (34 cases) instead of the
expected equivalent of one per chromosome. In total, 27% of
the expected chromosomes were represented by more than
one LG. Splits in LGs seemed to be most frequent in the A
genome (mean 32.4%) and least frequent in the B genome
(mean 20.1%), and thus not randomly distributed. We see
some evidence in the marker order comparisons, e.g., in chro-
mosome 7A, that chromosome splits are linked to regions
with an inverse order. In the split LGs, this region will nor-
mally be present in total in one or the other part of the chro-
mosome (Figure S4 in File S1). An inversion, present in one
parental accession but not the other, will have an influence on
the observed recombination fractions between loci. As the
mapping program would not normally take this into account,
this can lead to LGs not linking up fully. Similarly, a chromo-
somal translocation present will mean that markers that are
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Figure 5 Detection of chromosomal translocations. (A) Estimated pairwise recombination fractions (estRF) plot for W308. EstRFs between markers are
plotted as a heat map, all markers against all markers. Markers are in mapping order on both axes. Areas of low estRF, signifying linkage, are
represented by yellow squares; estRF values near 0.5, signifying no linkage, are represented by blue squares. Green squares identify values between
those two extremes. The yellow diagonal from 1A:1A to 7D2:7D2, demonstrates the low estRF values within linkage groups (LGs). Yellow areas outside
LGs, as seen for 3B:5A and 4B:5B, are hypothesized to identify translocations between chromosomes. (B) Genomic in situ hybridization (GISH)
performed with accession W308, showing 42 chromosomes. Chromosomes are colored according to genome: A, green; B, purple; and D, red.
Translocations can be identified between genomes only. A reciprocal A:B translocation, involving nearly half of each chromosome, is highlighted by

white arrows pointing at translocation break points.

normally located on separate chromosomes will be linked,
and thus unusual LGs composed of markers from different
chromosomes will be observed. We conclude that the unex-
pected effects observed in the genetic mapping process, the
unexpected linkage of different LGs, and the unexpected
splits of LGs, can be possibly understood in the light of the
high number of rearrangements and translocations detected
(see below).

Consensus mapping

The 60 biparental maps were used to build the LRC map using
linear programming. This approach was chosen as the possibly
more accurate directed acyclic graphs algorithm for consensus
map formation (wu et al. 2011) could not resolve the conflicts
detected. This highlights the challenge that the analysis of
60 bread wheat genomes poses, as the complexity of a single
genome is already high and, where genomes differ, the com-
plexity increases quickly. Using six maps only, wang et al.
(2014) reported that to build the Wang map, the exclusion
of chromosome 2B from one population was necessary, as an
alien introgression on that chromosome restricted recombi-
nation and complicated map construction. Thus, it is not sur-
prising that a larger and possibly more diverse set of parental
accessions would result in considerably more conflicts for the
consensus formation.
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However, it should be highlighted that the underlying
assumption of the linear programming approach is that there
is only one correct order. This assumption is not fulfilled, as
shown by the analysis of marker order, so the LRC map is an
approximation of the majority of orders. In cases where there
are alternative map orders, e.g., due to an inversion shared
between several accessions, separate consensus maps could
be built for each of the alternative orders as this would allow
a more accurate description of a particular region. This
has successfully been demonstrated for the 5A awn inhibitor
locus. A more precise position could be found when maps
carrying an insertion in that region were excluded from anal-
ysis (S. Collier, personal communication).

Map length and marker distances

In the majority of cases, variation in map length fell within
the expected range. Thus, detailed analysis of individual bi-
parental map lengths seemed to be uninformative.

The comparison of the LRC map to two high-density maps
shows that it is significantly shorter, with only 1862 cM. We
assume that this could be due to the marker extent not being
sufficient to detect all of the recombination, and thus not
revealing the full extent of the map. However, an overestima-
tion of the recombination events in the other maps would also
be a possibility, particularly as a higher marker density would



allow for more genotyping errors, which in turn would in-
crease the map length. Additionally, the consensus mapping
program LPmerge, employed for the LRC map, is known for
collapsing rather than expanding map distances (endelman
and plomion 2014). A map of an eight-founder bread wheat
MAGIC population (cardner et al. 2015) derived a total
length of 5405 cM, with the map length being strongly asso-
ciated with the number of unique loci. This is much longer
than even the Wang map with 3800 cM. The MAGIC founder
lines are all elite lines and quite homologous to one another.
Recombination between these lines should thus be high,
hence the long map length. With the LRC map being a con-
sensus map and capturing 60 very diverse populations, we
assume that future high-density genotyping of the founder
maps will result in the detection of more recombination and
expand the map length to values near the those of the Wang
or MAGIC maps.

The comparison of MDRs between the biparental maps and
the LRC map seems to be more informative than the map
length comparison, as closer distances between common
markers are compared. The mean average MDR for each
biparental map chromosome vs. the LRC map is, in general,
near to or slightly greater than one (Figure 2, dotted line at
ratio 1:1). Due to the LRC map being slightly compressed,
values are in general not below one. The result shows that,
overall, the biparental maps are in agreement with the LRC
map. In contrast, genotyping errors in combination with the
use of MergeMap (wu et al. 2011) led to an inflation of ge-
netic distances in the Wang map, which had to been scaled
using the Synthetic DH genetic map (wang et al. 2014).

Of specific interest were cases where either complete maps
or just single LGs showed larger marker distances than the
average, indicating a globally or locally higher recombination
rate. Several cases at the chromosome level were identified
(Figure 2, disregard the D chromosomes due to insufficient
marker availability). Chromosome 6A seems to show more
general variation in marker distance than other chromo-
somes. This could hint at the presence of a genetic element
controlling recombination rate that is specific for that chro-
mosome. It was shown that recombination greatly increased
from the centromere toward the telomeres on chromosome
6A (poursarebani et al. 2014), as expected for plants with
large genomes. Moreover, it was shown that a recent trans-
location (6VS:6AL) led to a suppression of recombination
rate on 6AL (xie et al. 2012), which could be due to the
knockout of a locus involved in recombination.

Many LGs showing a larger MDR also show a poor corre-
lation with the LRC LGs, e.g., LG 3B from ParW433 (Table S3
in File S1). Thus, it can be assumed that many increased
MDRs were most likely due to chromosomal rearrangements
and not to generally higher recombination rates. However,
there are chromosomes that show much longer MDRs that do
not show a different marker order. These are putative exam-
ples of a different recombination rate e.g., ParW273 LG 1D,
ParW141 2B, and ParWw209 3B (Table S3 in File S1), and
would need to be analyzed for this in more detail. None of

these examples coincide with a crossover QTL on the same
chromosome.

None of the maps showed increased marker distances for
all their LGs. This seems to suggest that recombination rate in
wheat is not controlled at the genome level but rather at the
chromosome or subchromosome level, as increased marker
distances were found for single chromosomes.

Marker order correlation

Whereas the general trend for most maps and most chromo-
somes is a strong marker order correlation, individual chro-
mosomes in individual populations may show a different
order. The least number of such incongruent cases was found
for chromosome 7A (Figure S4 and Table S4 in File S1). The
only incongruent 7A LG came from ParW281, one of the two
populations that were excluded from most analyses as they
showed an unexpected allele ratio and were found to be
outliers in most analyses. In contrast, the highest number
of incongruent LGs (seven) were found for chromosome 6B
(Figure S5 in File S1). Chromosome 3B can be seen as an
example between these two extremes, in which there were
three obvious cases of incongruent LGs (Figure 3D). More-
over, the AvaCad map formed an additional case of different
marker order but the Wang map did not (Table S2 in File S1).
Most biparental 3B LGs align well to the LRC LG, e.g.,
ParW209 (Figure 3A). The ParW729 3B LG shows one major
rearrangement in comparison to the LRC LG (Figure 3B).
Interestingly, the diverging 3B LGs seem to share a similar
marker order, as the 3B LG of ParW729 correlates strongly
with that of ParW433 (pg = 1.0) and highly with Parw281
(pg = 0.8), but really poorly with the LRC (pg = 0.2). This
suggests that one chromosomal rearrangement event gave
rise to the marker order changes in W281, W433, and
W729. Furthermore, the AvaCad LG 3B was the LG least
congruent with the LRC map (p, = 0.66, Table S2 in File
S1). This comparison is well-supported by a large marker
number, and an alignment between LGs 3B of LRC and the
AvaCad map suggests that more than a simple inversion has
given rise to the differing marker order (data not shown). To
larger parts, the marker orders are in concordance but for
three small sections, which are located differently on the
AvaCad LG than on the LRC LG. These observations could
be explained by three independent rearrangement events. In
contrast, the correlation between LRC 3B and Wang 3B LGs
was quite good (p, = 0.83), suggesting that this anomaly is
cross-specific.

In general, to understand the rearrangements better, it
would be of interest to determine if a common rearrangement
is found in several accessions or if there were independent
events of rearrangements, one for each accession. A common
event is likely when incongruent LGs show a similar order
between them and come from the same ancestral group.
There are several cases following this pattern, one of which
is the example of the incongruent 3B LGs just mentioned.
Another case can be found in the 6B LGs, where the LGs
from ParWw219, ParW324, and ParW680 are highly correlated
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(0.94 =< p, = 1.00), but not strongly correlated with the LRC
LG. Two of the three accessions come from the same ancestral
group 1.4 from Europe-Asia (wingen et al. 2014). Further-
more, it seems curious that the landrace parents for all three
incongruent cases for LG 7D, W034, W352, and W731, also
derive from one common ancestral group (1.4). Exceptions to
the general consensus marker order might thus be related by
a common history and specific consensus maps could be con-
structed for such subsets. It seems worth mentioning that
these named examples were all connected to ancestral group
1.4, with only 20% of our accessions coming from this group.
It would be of future interest to investigate if this is due to
accessions within this group being more closely related to
each other, but less with the rest of the wheat accessions.

Segregation distortion

Levels of segregation distortion were found to be different
between populations of the NAM panel and possibly deter-
mined to a larger extent by the genotype of the noncommon
parent. The observed percentage of SDL (mean 3.2%) is
similar to but slightly lower than others have reported, e.g.,
marone et al. (2012) reported SDL frequencies between 0.6
and 11.8% (P < 0.01, no correction for multiple testing) for
six durum wheat RIL populations and 1i et al. (2015) found
frequencies of 10.4 and 18.5% (P < 0.05) in two elite or
breeding bread wheat RIL populations. The present analysis
found the highest levels of SDL for chromosome 7B (6.88%)
followed by 6B (6.47%). A comparison of the frequency of
SDL on chromosomes 6B and 7B across all 60 populations
shows strong variations in the distribution. It is more evenly
distributed for 6B (22 populations have SDL) than for 7B
(11 populations have SDL at high levels). This pattern of
large variation of SDL frequencies between populations and
chromosomes was also observed in other studies. cavanagh
et al. (2013) identified cases of severe deviation from Men-
delian segregation in wheat populations mainly on chromo-
some 2B in the region of Sr36. Other hot spots were
chromosome 1A and smaller regions on chromosomes 4B,
5A, 5B, 6A, 6B, and 7A. i et al. (2015) reported two different
sets (1B, 6B, and 7A vs. 2B and 3B) for two populations,
whereas marone et al. (2012) named 7B and 6B as the two
chromosomes with the highest proportions of skewed
markers. Thus, it seems that the distribution and frequencies
of SDL are dependent on the specific population analyzed. It
would be of interest to test the assumption that the genetic
relatedness of the parents may play a role in the amount of
SDL detected in a future analysis. High-density genotyping of
our NAM panel would provide sufficient statistical power for
this. The frequency of SDL per genome was found not to be
very different between the homeologous genomes; for the D
genome it was lowest with 1.9%, followed by the A genome
with 2.6%, and highest for the B genome with 4.2%. This
finding agrees with other studies, in that the B genome has
the highest number of SDL. Differences are more pronounced
at the single marker level where there seem to be hot spots for
segregation distortion around some markers (Table S5 in File
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S1). In general, the direction of significant distortions over
several populations is either leaning toward the Par allele or
toward the nonreference parents at a single locus, presum-
ably driven by the Par allele being more or less favorable over
all other alleles at that locus (Figure 4). Due to different
polymorphisms being available in the populations, marker
sets on maps only partly overlap. Therefore, it is difficult to
verify any similarities in patterns of distortion between maps.
However, the detection of marker hot spots supports the as-
sumption that there is a certain degree of similarity. A future
high-density genotyping approach may reveal details on how
unique or how common SDL are in the NAM panel.

The causative effects of the observed SDL are of importance
when planning germplasm improvement by breeders. Seven
populations were developed from landrace accessions with
winter growth habits. These populations have a slightly higher
average percentage of SDL (3.69%) than those developed
from spring-type landrace accessions (2.95%). The difference
is not significant as numbers are low; however, the two
chromosomes with the most differences are 5D and 5B, which
carry the vernalization genes Vrn-DI and Vrn-BI1. It seems
extremely likely that a selection for spring growth habit in
the progenies could have led to an increased ratio of Par
alleles at the Vrn-1 loci and led to segregation distortion at
these loci.

Moreover, chromosome 5B has also been shown to contain
elements associated with segregation distortion in a targeted
analysis of that chromosome (xumar et al. 2007). Particular
preferential male gamete transfer was the mechanism lead-
ing to SDRs. We find for chromosomes 5B and 7B, where the
highest numbers of similar translocation types are observed,
that the same chromosomal regions seem to be part of the
translocation and carry SDL (Figure S8 in File S1). Thus, we
hypothesize, that these two effects could be causally linked.

In other cases where no such correlation can be found, e.g.,
for chromosome 4B where hardly any translocations are pre-
sent, SDL will be possibly caused by markers linked to a
deleterious locus involved in gamete transfer preferences.
Even a bias in selection, as found in a large study of Arabi-
dopsis F2 populations (salomé et al. 2012), could underlie
some of the SDL. In the Arabidopsis study, an inadvertent
selection against late-germinating genotypes in the popula-
tion development is discussed as the likely cause for SDL in
DELAY OF GERMINATION-1.

Segregation distortion could also stem from genomic re-
gions where parents have been heterozygous. In the most
extreme case, this could have been as much as 50%, if the
landrace seed used was a complete hybrid. However, this
extreme is not very likely. Furthermore, regions where there
are segregation hot spots in several varieties will most likely be
due to either shared history, e.g., a common translocation, or
the presence of genes promoting segregation distortion like
embryo lethal or gametocidal genes.

No large overrepresentation of heterozygotes was ob-
served in the F4 RIL populations, reported by Truong et al.
(2014) as being common for RIL populations from some
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plant species such as pea and maize. In this large study of
wheat, only 15% of the markers showed slightly more het-
erozygotes than expected. This gives confidence that the pro-
duced genetic maps, unlike in pea and maize, are not inflated
due to a large overestimation of recombination frequencies.

Translocation

Reports of chromosomal rearrangements in wheat date back
some time and evidence of the abundance of such events is
accumulating fast, with increasing gains of genotyping and
sequence data on bread wheat and related species. Luo et al.
(2009) reports on the detection of 50 inversions and trans-
location events between rice, sorghum, and Aegilops tauschii,
the wheat D genome progenitor, concluding that chromo-
somal rearrangements were very much part of the formation
of the Triticeae family and thus have also played a major role
in the history of bread wheat. More signs of chromosomal
rearrangements in bread wheat were found by comparing
homoeoloci between the CSp genotype shotgun sequence
and the genome sequences of Brachypodium distachyon,
T. uratum, and A. tauschii. At least 10 wheat chromosomes
revealed pericentric inversions (Ma et al. 2014) and 42 events
of interchromosomal rearrangement were found on 18 wheat
chromosomes (Ma et al. 2015), rather scattered across the
genome. Additionally, rucas et al. (2014) found groups of
genes on chromosome 5D that were absent in the syntenic
regions of rice or Brachypodium, but that were present as a
group elsewhere in the genomes of those two species. This
supports a large-scale conservation of Triticeae chromo-
somes, but also suggests that some regions are evolving rap-
idly through chromosomal rearrangements.

In the report presented here, we detect signs of at least
105 translocations in 42 of the analyzed 60 Watkins landrace
accessions, falling into > 60 different translocation classes.
This number seems high, given that these are accessions of a
domesticated species and that rearrangements must either
have happened in the evolutionarily short time of ~10,000
years since the domestication of bread wheat, or must have
introgressed from wild species after domestication, as some
gene flow between wild progenitors and domesticated crops
seems to be the rule rather than the exception (pbvorak 2006).

There is good agreement between the cytological trans-
location survey (Badaeva et al. 2007), which found that 30%
of analyzed wheat accessions carried visible translocations,
and the current report in finding no pattern of class of trans-
location that would be more likely than others. It seems that
chance is a major element in the translocation process. Sim-
ilarly, ma et al. (2015) reports that the diversity of predicted
translocation events between CSp bread wheat and other
related species seems to point at a basic mechanism that is
at least partly random. The present study predicts that an
even larger diversity of chromosomal rearrangements will
be found as soon as more sequence information on different
wheat varieties is available.

chaffin et al. (2016) reported on a consensus map for
hexaploid oat from 12 biparental populations, from a total

of 19 different parental lines. They detected a number of chro-
mosomal rearrangements and speculated that allo-hexaploid
plants have mechanisms for “a very high amount of genetic
buffering” and can, thus, accommodate wild introgression,
duplications, and deficiencies arising from reciprocal and non-
reciprocal chromosomal rearrangements. Given the large
number of rearrangements and translocations found in this
study;, it provides further support for the buffering capacity of
hexaploid genomes.

For hexaploid wheat, the accessions from Central Asia
showed the highest frequency of translocations (43%), also
characterized by a broad diversity of translocation types
(Badaeva et al. 2007), coinciding with the center of diversity
for bread wheat (vavilov 1992). In accordance with this,
we found that accessions coming from ancestral group 1.3
(Central/Eastern Asia) have a very high percentage of trans-
locations (82%), but that the ancestral group 1.4 (Europe—
Asia) has the highest percentage (90%).

Supplementary to the enrichment of translocations due to
the ancestry of accessions, we found that the chromosomes of
the B genome showed a higher number of translocations than
those of the A genome (Table S7 in File S1). This could
possibly mean that the B chromosomes had more time to
accumulate translocations and would thus be older, but it
could also mean that the B chromosomes are less stable than
the A chromosomes.

Recombination QTL

Crossover frequency is important for the patterns of genetic
variation and relative crossover rates vary between plant
genomes as, e.g., increased genome size is associated with
reduced crossover frequency (Henderson 2012). Little is
known about the variation of the genome-wide recombina-
tion rates within plant species (Bauer et al. 2013).

From the genetic maps of the NAM panel, ~126,300 cross-
over events were estimated and used as a trait for a crossover
or recombination QTL analysis. One hundred and sixteen
QTL were found, which could be loci controlling recombina-
tion frequencies or hot spots where crossovers are more
likely. For 50 QTL, the positive effect came from the nonre-
ference parents. At least on 10 chromosomes, QTL seem to
cluster to the same regions. However, the overlap of the C.I. is
not always obvious. This might reflect the low statistical power
of a QTL analysis of a trait that is established during the pro-
cess of population development, and will thus have less statis-
tical power than a trait that was measured in the final
population (gsch et al. 2007). To try to increase recombination
rates by using alleles from landrace accessions, QTL regions on
2D, 3B, 5A, and 7A seem to be good candidate regions to be
evaluated in a near isogenic line crossing program. In support
of one of these regions, a recombination QTL was also detected
in population “W7984 X Opata 85” on chromosome 3B (Esch
etal. 2007). The region between markers Xtam61 and Xpsr689
spans over the centromere (cM 42.8-107.0 on the “W7984 X
Opata 85” map), a broad region but, in line with the location of
several QTL in our study, quite close to the centromere.
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Better understanding of recombination rate variation will
have practical applications by facilitating the construction of
particularly stable varieties on the one hand and lines with
higher recombination rates on the other. Favorable linkage
blocks will be more stable in the former lines with low re-
combination rates, which would be the aim for commercial
varieties. Lines with high recombination rates could be used to
break unfavorable linkage blocks during the breeding process.
The control of recombination rate changes would be even
more valuable if it they could be targeted to specific genomic
regions. Interestingly, population ParW044, which showed
the highest number of crossover QTL, was also reported as
flowering very late, much later than most of the other pop-
ulations. It would be interesting to find out if being late could
give more opportunity for the plants to have crossovers, and
thus a higher number of overall crossovers. On the other hand,
a higher recombination rate could result in meiosis being
slowed down, thus, it would take the plants longer to get
to the point of flowering.

General thoughts

Conducting a large study on 60 populations with big genomes
was bound to bring up some unexpected genomic events, if the
assumption that the wheat genome shows a high fluidity is
correct. As expected, such singular events were observed, and
these did not immediately have conclusive explanations. The
strange allele distributions in populations ParWw281 and
ParW313, different from the expected F4 ratios, are part of
these observations. Although the higher rate of Par alleles
seemed to hint toward a backcross, this would not really
explain the allele numbers observed. Another deviation from
the expected was observed in the ParSyn (Syn = SS7010073)
population. Here, chromosomes 1A and 1B predominantly
carried alleles from Par only in a cohort of that large pop-
ulation. The predicted translocation T1A:1B possibly explains
low levels of recombination on both chromosomes. Further-
more, one could speculate that the Par 1A and 1B chromo-
somes were more advantageous than the respective Syn
chromosomes and would thus be more successfully trans-
ferred to the next generation, but the genomic mechanism
of how this would happen to a cohort of the population is not
clear. In another population, ParW698, which was for this
reason excluded from the analysis, the whole 7B chromosome
was completely inherited from W698 only, whereas other
chromosomes had the normal mixtures. In the future, more
detailed genotypic analyses may reveal more unexpected
genomic events and possibly help to find explanations for
the mechanisms underlying this fluidity.

An alignment of the LRC map along the CSp genome
assembly reveals good overall agreement of marker order
(Figure S3 in File S1). It is also obvious that there is low
genetic diversity on the D genome, and that the alignments
are very sparse in spite of efforts to specifically choose poly-
morphic D genome markers when available. Interestingly,
there seem to be regions of higher diversity and lower di-
versity along the D chromosomes. Checking if the regions
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of higher diversity came from specific populations only, it
seemed that a large number of populations carried these re-
gions, e.g., 22 populations had four or more markers mapping
to the region on LRC chromosome 1D ~44 cM. This suggests
that these regions of higher diversity are quite old and stem
either from the origin of wheat or before, rather than stem-
ming from a recent alien introgression. The genetic hetero-
geneity found also agrees with the uneven distribution of
nucleotide diversity per chromosome in the D genome reported
by akhunov et al. (2010).

Many useful genetic resources have been developed as one
outcome of this study. Biparental SSD populations with land-
race parents from the Watkins collection together with genetic
maps are available to the research and breeding community
to mine for genetic diversity in the collection. The populations
can be put together and used as a NAM panel if more re-
combination to identify specific genomic loci is needed. The
study has also identified genomic regions in specific popula-
tions that might form a barrier for recombination, like SDL
and translocations. This information could be consulted in the
selection of crossing parents for breeding programs. More-
over, the study has also revealed QTL that influence crossover
number and has identified chromosomes in specific popula-
tions that seem to have a higher recombination rate. This
information can hopefully be used to develop wheat varieties
with higher recombination rates, which could help to achieve
breeding targets more easily.
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