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Abstract

Brain injury from trauma, cardiac arrest or stroke is the most important cause of death and acquired disability in the
paediatric population. Due to the lifetime impact of brain injury, there is a need for methods to stratify patient risk and
ultimately predict outcome. Early prognosis is fundamental to the implementation of interventions to improve recovery, but
no clinical model as yet exists. Healthy physiology is associated with a relative high variability of physiologic signals in organ
systems. This was first evaluated in heart rate variability research. Brain variability can be quantified through
electroencephalographic (EEG) phase synchrony. We hypothesised that variability in brain signals from EEG recordings
would correlate with patient outcome after brain injury. Lower variability in EEG phase synchronization, would be associated
with poor patient prognosis. A retrospective study, spanning 10 years (2000–2010) analysed the scalp EEGs of children aged
1 month to 17 years in coma (Glasgow Coma Scale, GCS, ,8) admitted to the paediatric critical care unit (PCCU) following
brain injury from TBI, cardiac arrest or stroke. Phase synchrony of the EEGs was evaluated using the Hilbert transform and
the variability of the phase synchrony calculated. Outcome was evaluated using the 6 point Paediatric Performance
Category Score (PCPC) based on chart review at the time of hospital discharge. Outcome was dichotomized to good
outcome (PCPC score 1 to 3) and poor outcome (PCPC score 4 to 6). Children who had a poor outcome following brain
injury secondary to cardiac arrest, TBI or stroke, had a higher magnitude of synchrony (R index), a lower spatial complexity
of the synchrony patterns and a lower temporal variability of the synchrony index values at 15 Hz when compared to those
patients with a good outcome.
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Introduction

Brain injury is the most important cause of death and acquired

disability in the paediatric population [1]. Traumatic injury is the

most common, followed by ischemic injury from cardiac arrest

and stroke [1–3]. The neurological sequelae of brain injury have

implications for the child’s cognitive and social development [4],

[5]. Traumatic brain injury and ischemic brain injury are not

discrete events but disease processes that evolve over time and the

outcome of which can be improved with accurate and early

diagnosis [6]. Thus there is a need for methods to stratify patient

risk and ultimately predict outcome [7]. The ideal method for

monitoring brain function and predicting outcome would be non-

invasive, portable and accurate. To reflect changing brain

dynamics it would be performed in real-time. This could improve

the type of treatment and its timeliness, as well as the

prognostication of outcome [8]. The latter would help mitigate

the distress, anxiety and the post-traumatic stress that can be

experienced by families of patients as they wait and see what will

happen to their child [9].

Admission to PCCU is required for severe brain injury when life

support is required [10]. Clinicians in the paediatric critical care

unit (PCCU) frequently manage children in coma following severe

brain injury. Coma is defined as absence of awareness of self and

the external environment and measured by a Glasgow Coma

Score (GCS) ,8. It can result from brain injury from a variety of

aetiologies including cardiac arrest, trauma, stroke and infection

[11]. Assessing brain function in comatose patients in the critical

care unit is difficult due to the nature of coma and medical

intervention such as sedation and the use of paralytic agents [12].

In brain injury, the Glasgow Coma Scale (GCS) has been the gold

standard for evaluating coma in both children and adults [13],

[14]. However, assessing brain function in comatose patients in the

critical care unit is difficult [12]. Clinical neurological examination

provides limited information in the comatose, muscle-relaxed,

intubated patient [12], [15].

Without accurate monitoring and assessment of brain function

early prognostication of outcome is extremely difficult [16].

However, clinicians still rely on combinations of neuroimaging,

clinical scores, clinical experience, neuroelectrophysiology and

biomarkers for estimating prognosis for the purposes of: directing

treatment, allocating resources and informing parents and

caregivers of potential outcomes [17–20]. Noninvasive brain

monitoring in PCCU consists of many modalities utilized alone
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or in combination, but except for electroencephalography (EEG),

they are all static providing information at one time point [7].

Brain activity is dynamic.

Neuroimaging is commonly performed: magnetic resonance

imaging (MRI), computed tomography (CT), and ultrasound (in

infants with an open fontanelle). MRI requires transport from the

relative stability of the PCCU to the imaging suite, as does CT for

those facilities without portable CT [21]. Moreover, the CT scan

exposes the patient to radiation and this has recently become a

concern due to the associated increase risk of cancer in children

[22]. Functional MRI (fMRI) is a useful tool in the cooperative

subject who can perform the task required. Apart from a few adult

studies of patients in a minimally conscious state (not coma) fMRI

is generally not possible in a comatose patient, the very young or in

any patient who could not cooperate with demands [23].

Electrophysiological studies provide a noninvasive, bedside

modality for evaluating neurological function. Initial and serial

evoked potentials (somatosensory, visual and auditory) have been

used for both monitoring and prognostication in traumatic brain

injury and hypoxic-ischemic encephalopathy [24–26]. To date,

the somatosensory evoked potentials have had consistent prog-

nostic utility in anoxic brain injury, but not in trauma. In many

studies the evoked potentials have been used in conjunction with

electroencephalography (EEG) to assess brain function and predict

outcome [27–29].

Electroencephalography (EEG) has been used with some success

as a prognostic tool, with researchers developing scores based on

the raw recordings [30]. All of these studies show some utility of

neuroelectrophysiology in monitoring brain function and predict-

ing outcome, but again, none have been universally adopted. This

is due to the heterogeneity of presenting pathology and the

changing anatomic and synaptic configuration of the developing

brain in children [31], [32]. Electroencephalography can assess

the brain’s dynamic activity. It is resource intense, requiring

specialist interpretation of the waveforms [12]. Information on

brain function changes is often not immediate as the neurologist

reading the recordings may be doing so remotely without direct

access to the patient and may be reviewing changes retrospec-

tively.

Accurately predicting outcome would enable clinicians in

paediatric critical care to anticipate consequences, thereby

focusing treatment and rehabilitation and potentially improving

long-term outcome. Early prognosis is fundamental to the

implementation of interventions to improve recovery and there

is an increasing interest in detecting ‘‘biomarkers’’ for brain injury

[8], [17]. Most of these are sought at the molecular level, but the

complexity of the brain likely precludes a simple model or a single

diagnostic tool for accurate prediction. Since prediction models

have been examined in children utilizing combinations of clinical

parameters, electrophysiology and neuroimaging, and still no

practical model exists, there is an opportunity for a new biomarker

to be evaluated [18], [33].

In our previous work in critically ill children post traumatic

brain injury (TBI), we discovered a promising biomarker that

focused on one aspect of the property of brain complexity. We

evaluated the correlation between brain variability using electro-

encephalographic (EEG) recordings and outcome [34]. As our

initial study focused solely on coma in TBI, for our biomarker to

be of clinical value in the PCCU setting, we chose to validate it in

other aetiologies of brain injury leading to coma.

Healthy physiology is associated with a relative high variability

in physiologic signals [35–37]. This phenomenon is well known in

the study of heart rate variability. Heart rate variability has been

studied since the 1970’s as a biomarker and has been used to both

assess cardiac function and as an early predictor of neonatal sepsis

[38–40]. Variability in physiological signals provides information

than is available on visible inspection of the raw signal [41], [42].

The EEG is another noninvasively acquired physiological signal

whose variability can be quantified. In this study we build on our

initial study in TBI to evaluate brain variability in brain injury of

different aetiologies using EEG.

Basic neurophysiological activity is altered following brain

injury. In the initial phases post-injury, cell hyperexcitability

occurs [43]. The EEG recordings reveal a generalized slowing of

brain frequencies to the delta and theta ranges [43], [44]. Time

dependent alterations in synaptic function following cortical injury

and structural damage with subsequent cell reorganization have

been well described in the 1990s [45], [46]. Electrophysiological

analysis of patients with cerebral trauma and concussion was first

reported in the 1970’s [44], [47]. The coherence of electroen-

cephalogram signals was evaluated a decade later in a few studies

and thought to reflect neuroanatomical damage [48]. This method

was used to extract information on cortico-cortical associations

and functional connectivity that were not otherwise visible on the

raw EEG recording-[48–50].

Recently, EEG phase synchrony, a method related to coher-

ence, has been used for the first time to evaluate brain function

after traumatic brain injury (TBI) in adults and in children [34],

[51]. Both studies showed changes in EEG phase synchrony in the

days following trauma. Our study in addition to the phase

synchrony changes, showed that the variability of the EEG phase

synchrony increased as children emerged from coma, despite the

absence of visible improvement in the EEG recording. The EEG

phase synchrony and variability measures provided information on

brain function that was not available by other means such as visual

inspection [34], [52], [53]. In our study these measures were able

to differentiate between patients with good outcome versus poor

neurological outcome, the latter having higher magnitudes of EEG

phase synchrony and lower variability values [34].

In our current study, we validated those findings in a fully

powered retrospective study of children in coma due to brain

injury from traumatic and hypoxic (cardiac arrest) or ischemic

events (stroke). We hypothesised that variability in brain signals

could serve in the prognostication of patients after brain injury.

Lower fluctuations in brain synchronization, derived from EEG

recordings, will be associated with poor patient prognosis. We thus

presented evidence for lower spatio-temporal variability associated

with poor outcome in children after acute brain injury, and

proposed that the evaluation of variability in brain signals can

have a valuable impact in the prognosis of brain injury in the acute

phase. We also evaluated the phase synchrony and spatio-

temporal variability of specific EEG electrodes. In the resource

and time constrained critical care environment we were looking

for an abbreviated montage of EEG electrodes that could yield

prognostic information.

Materials and Methods

We performed a retrospective study, spanning 10 years (2000–

2010) of children aged 1 month to 17 years who met the following

inclusion criteria: were in coma (Glasgow Coma Scale, GCS, ,8);

had been admitted to the critical care unit following brain injury

from TBI, cardiac arrest or stroke and had had an EEG recording.

The REB (Research Ethics Board) at the Hospital for Sick

Children approved our application for waived consent as our study

was a retrospective chart review and our findings would not

impact patient outcome (REB File #1000004603).

EEG Phase Synchrony Predicts Coma Outcome
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Outcome Measure
The outcome measure used was the Paediatric Cerebral

Performance Category score (PCPC score). This is a validated

six point outcome measure for critically ill children [54–56]. A

PCPC score of 1 indicates normal function for age, 2 is mild

disability, 3 is moderate disability, 4 is severe disability, 5 is

persistent vegetative state and 6 is death. The outcome was

dichotomized into 2 categories: good outcome (PCPC score 1–3)

and bad outcome (PCPC score 4–6). As this was a retrospective

study, outcome at the time of hospital discharge was assessed

through retrospective chart review. The patient assessment

information contained in the physiotherapy and occupational

therapy notes closest to the time of discharge was used to calculate

the PCPC score. If that note was not available, the physician

discharge summary note was used. The outcome measure was

evaluated while the EEG variables were calculated by the Matlab

programs so as not to bias the chart review.

EEG Acquisition
Scalp EEGs for patients were acquired by accredited EEG

technologists, using the international 10–20 montage system. The

recordings consisted of 19 channels, referenced to an electrode

adjacent to the midline parietal (PZ) channel which was labelled

PZ’ (PZ prime). The EEGs were 30 minutes in length. All EEGs

acquired with either the XLTek (sampling rate 250 Hz) or Stellate

Harmonie (sampling rate 500 Hz) systems as the hospital changed

the EEG recording equipment in the ten year interval of this

retrospective study. All recordings had a bandpass of 1 to 70 Hz

with a 60 Hz notch filter. Acceptable impedances in the intensive

care setting were 100 to 5000 Ohms. All patients had electro-

myographic (EMG) electrodes to record muscle movement, and

electrocardiogram (EKG) leads. As all patients were comatose and

intubated, the EEGs were acquired with the child in a recumbent

position with the head in a midline position. Whenever possible no

nursing interventions occurred during the 30 minute acquisition

time. When patient intervention was required, this was docu-

mented by the EEG technologist and those epochs were not

extracted for analysis.

Frequency and Epoch Selection
In the paediatric critical care environment there are multiple

variables that impact EEG frequency. Many medications that

affect electroencephalography recordings are commonly used in

the treatment of critically ill children. Phenytoin is frequently used

post traumatic brain injury as seizure prophylaxis [57]. The

background alpha frequency (8 to 12 Hz) is slowed by phenytoin

[58]. Benzodiazepines such as lorazepam and midazolam are used

to treat seizures and also to provide patient sedation. An increase

in the higher beta frequencies (18 to 25 Hz) is seen in

electroencephalography recordings with use of benzodiazepines

[40].

Electroencephalographic recordings change with respect to the

background frequency as children mature, increasing from the

theta (4 to 7 Hz) to the alpha (8 to 12 Hz) bandwidth [40]. Patient

ages in our PCCU range from newborn to 17 years old,

representing a wide range of EEG developmental characteristics.

Inotrope infusions such as dopamine and norepinephrine used for

many of the cardiac arrest patients have also been shown to

increase EEG activity in animal models [59], [60].

The heterogeneity of the medications used within each of the

diagnostic groups and the number of patients that fit inclusion

criteria were such that there would not be sufficient power to

stratify either by medication class (eg. Benzodiazepines, opioids,

phenytoin) or combination of medications. The medication

confounder was addressed by the choice of bandwidths after

review of the literature and consultation with 3 paediatric

neurology colleagues with experience in neurocritical care. For

the EEG phase synchrony and spatio-temporal variability to be of

practical use in the critical care setting, it would have to be

applicable across diagnostic categories and medications. The

chosen bandwidths: the delta (3 Hz) and lower beta (15 Hz) are

the least affected by most of the medications used in paediatric

critical care, however not completely unaffected. The Matlab

program for the Hilbert transform requires a62 Hz bandwidth

around each central frequency (3 Hz62 Hz; 15 Hz62 Hz).

The EEGs were read by the first author and then verified by an

EEG certified paediatric neurologist. The EEGs were read for the

purposes of identifying encephalopathic waves, for the presence of

seizures, for any sleep features and for the presence of artefact.

Four 10 second epochs were selected from each recording. The

epochs selected were artefact free and represented the general

EEG background activity. Selected epochs did not include seizure

activity or sleep features, as these phenomena could increase the

overall phase synchrony. Care was taken to obtain artefact-free

epochs because the ICU is an environment with multiple sources

of electrical interference and potential artefact sources in the form

of IV infusions, ventilators, air mattress inflation and deflation and

patient and care provider movement at the bedside. The epochs

were exported as text files for analysis with Matlab.

EEG Phase Synchrony Calculation
After selecting artefact-free epochs, the first processing of the

EEG signals was to remove the common reference electrode used

in scalp EEG that significantly alters measures of coherence [61].

For this purpose, a Laplacian derivation was performed. In

addition to the removal of the common reference, the Laplacian

derivation, which approximates a reference-free signal, has the

advantage of attenuating volume conduction effects [62–65].

Next, signals were band-passed with an order 100 Constrained

Least Square Finite Impulse Response filter (FIRCLS) (f62Hz)

prior to the extraction of the instantaneous phases using the

Hilbert Transform. The Hilbert Transform is particularly useful

for analyzing the electroencephalogram whose waveforms are

nonstationary and have multiple frequencies that change over time

by extracting the instantaneous phase of the signal [66], [67].

Phase synchronization is then calculated as the degree of phase

locking between two channels using the circular variance of the

phase difference distribution R~ 1
N

PN

j~1

eiDa jDtð Þ where |.|

denotes the vector magnitude and N is the number of data points

that are being considered, and an tð Þdenotes the instantaneous

phase of signal n so that the phase difference is computed as:

Da tð Þ~an tð Þ{am tð Þ. The resulting index R, computed in this

manner, quantifies the degree of 1:1 phase locking in a specific

time window [68]. A time window of 1 second was used in our

study. The results can be represented as an R value for each of the

171 non-repeating combinations of channel pairs among the 19

electrodes. As an example, the R value for electrode 1 (F7-left

frontal region) with electrode 2 (T3-left temporal region) is the

same as that computed for electrode 2 with electrode 1, therefore

the total number of non-repeating channel pair combinations is:
19!

2!17!ð Þ The R values can then be averaged for each of the

channels. For example, the average of the 18 R values of electrode

1, F7, with the remaining 18 electrodes, becomes the R value for

electrode F7. The 19 values of the synchrony index R can be

mapped on a head plot as was shown in figure 1, panel B.

EEG Phase Synchrony Predicts Coma Outcome
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Spatial Variability of the Synchronization Pattern
Our method that we termed spatial complexity (SC) measures

how tightly the phase synchronization (R) values cluster around a

single mean value [69]. The algorithm for calculating SC produces

an output, Ej that is dependent on the phase synchrony index, R,

as denoted by: Ej~SC Rjð Þ. It measures how predictable the

synchrony indices are for each channel using the spatial

information from the neighbouring values. The R index is first

computed as described above from the instantaneous phase

differences for each of the 171 pair of channels and an average

for each channel is computed. Since there are 19 of such maps

each one can be identified as Mj (j = 1,…,19). On each map Mj we

compute a spatial complexity index and assign it to the respective j

channel.

As previously described in the original article by Garcia

Dominguez et al., 2007, an iterative process is used [49]. The R

index is calculated for each pivot channel, the pivot channel is then

removed and the estimated R index for that channel is calculated

from the remaining channels. The SC is the sum of the difference

between the estimated and actual values.

SC : SC~
XN

m~1
m=j

Rjm-Restj j

Homogeneous patterns of phase synchrony will have little error

with the estimated value and actual being similar, resulting in a

lower SC value. In contrast, heterogeneous patterns with variable

R values at each channel will result in a higher error and a higher

SC value.

Temporal Variability
The spatial complexity evaluates the variability or fluctuations

in the EEG phase synchrony across brain regions at one time

point; another measure of the variability of the EEG phase

synchrony evaluates fluctuations over the length of the specified

time epoch. The temporal variability of the EEG phase

synchronization is the variance of the time series of R values. It

was calculated as the mean value of the square of the derivative of

the time series. Temporal variability was calculated for each epoch

for each EEG for each patient. The four epochs were then

averaged resulting in a global temporal variability measure for

each patient or subject.

Statistical Analysis
Sample size was calculated based on our study of the temporal

variability of the EEG phase synchrony in critically ill children

post TBI [35]. The means and standard deviations of the two

outcome groups (good outcome = PCPC score 1 to 3; poor

outcome = PCPC score 4 to 6) were used with an alpha set at 0.05

and power = 0.80. This power calculation resulted in a minimum

sample of 24 patients per outcome group.

Statistical analyses began with descriptive statistics: means,

standard deviations and ranges for diagnostic and outcome groups.

As the outcome groups were unbalanced, the Welch-Satterthwaite

t-test, which does not assume equal variances was used to evaluate

the difference between them. The Chi square was first employed

to characterize the patients by diagnostic category. Logistic

regression was used to evaluate the effect of the variables: age,

gender, diagnostic category, R index, spatial complexity and

temporal variability at both 3 and 15 Hz on outcome. Statistical

significance was set at p = 0.05. Analysis of Variance (ANOVA)

was used to evaluate the EEG phase synchrony, spatial complexity

and temporal variability of the EEG electrodes with respect to

outcome. The Bonferroni correction was used for multiple

comparisons. The effect size of statistically significant variables

was calculated as Cohen’s d coefficient [70]. All statistical analyses

were performed using SAS.

Results

Group Demographics
There were 84 children who met the criteria for inclusion,

having had a brain injury from cardiac arrest, traumatic brain

injury or stroke and having had a 19 channel EEG. They were

grouped as follows: Cardiac arrest, n = 30; TBI, n = 35 and stroke,

n = 19. Of the total patients (n = 84) the majority, 51/84 (60.7%),

had a poor outcome. In contrast only 33/84 (39.3%) had a good

outcome. Of the 51 patients who had a poor outcome, 30 of these

(58.8%) died, therefore they had a PCPC score = 6. There was

Figure 1. EEG signal analysis. Figure 1 demonstrates the conversion
from the raw EEG signal to phase synchrony. Panel A shows the
placement of the 19 scalp electrodes, with Pz’ (Pz prime) as the
reference electrode. Panel C, below it, shows a typical, slow EEG
recording (,1 Hz) of a patient in coma. The green vertical lines
represent 1 second. Panel B shows one method of representing phase
synchrony values. The headplot corresponds to the electrode place-
ment in panel A, where each black dot represents one of the 19
electrodes (the reference electrode is not shown). The phase synchrony
values from 0 to 1 are the average value for the 10 second recording.
The values at each electrode are colour coded with an R value = 0 for
the 10 seconds represented as blue to a maximal synchrony, R = 1,
represented as red. Panel D corresponds to an excerpt of the 10 second
recording in panel C. Panel C is a 5 second excerpt of the digital EEG
recording, where the rows from top to bottom represent the 19
electrodes, and the time in seconds is on the x axis. The phase
synchrony values (0, blue to 1, red) are calculated for each second of the
recording and are mapped over the 8 second time epoch.
doi:10.1371/journal.pone.0094942.g001

EEG Phase Synchrony Predicts Coma Outcome
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only 1 patient of the 51 patients with poor outcome in a persistent

vegetative state at the time of hospital discharge (PCPC score = 5).

The groups were analyzed with respect to age, gender and

outcome. The age demographics are summarized in Table 1. The

cardiac arrest and stroke groups had more patients who

experienced a poor outcome (PCPC score 4 to 6) compared to

those patients in the TBI group. Chi square analysis showed that

this was statistically significant (p = 0.002). Despite the wide age

ranges, logistic regression found that age was not a statistically

significant variable with respect to outcome for any of the

diagnostic groups. There were more males than females in each

diagnostic category [59 (70.2%), male; 25 (29.8%), female], but

this was not statistically significant between groups.

EEG Phase Synchrony and Spatio-temporal Variability
Measures

Patients with poor outcome (PCPC score 4–6) had higher EEG

phase synchrony than those with good outcome (PCPC score 1–3)

at both bandwidths. This difference was statistically significant

only in the 15 Hz bandwidth. These results are summarized in

Table 2. Patients with poor outcome also had lower spatio-

temporal variability compared to patients with good outcome.

Again this was statistically significant in the 15 Hz bandwidth.

Logistic regression demonstrated that the differences in the

measures were not a function of the diagnostic category.

The effect size, d coefficient, of the statistically significant

variables: phase synchrony (R), spatial complexity and temporal

variability at 15 Hz was calculated. The temporal variability had

the least overlap (d = 2.8, 8% overlap) compared to that of the

phase synchrony (d = 0.5, 66% overlap) and the spatial complexity

(d = 0.63, 62% overlap).

Analysis by EEG Electrodes
Analysis of the data with respect to outcome and EEG

electrodes demonstrated that some electrodes showed statistically

significant differences in the EEG synchrony, spatial complexity

and temporal variability values of patients with poor outcome,

compared to those with good outcome. Post hoc analysis revealed

that spatial complexity of phase synchrony (R index) associated

with the parietal electrodes at 15 Hz, was significantly higher in

patients with good outcome. The frontal electrodes also showed

consistently higher values of spatial complexity for patients with

good outcome, though of the 6 frontal electrodes, only 2 had

statistically significant differences at the 15 Hz bandwidth. A

summary of the significant differences associated with the parietal

and frontal electrodes demonstrated that the mean spatial

complexity is higher in the frontal and parietal electrodes in

patients with good outcome measured by PCPC = 1–3. These

results are presented in Table 3. When all EEG electrodes were

examined and the Bonferroni correction for multiple comparisons

was used, only those electrodes with a p value of ,0.003 were

statistically significant.

Discussion

The results of our analysis indicate that children admitted to the

PCCU in coma with brain injury secondary to cardiac arrest, TBI

or stroke who had a poor outcome (PCPC score 4 to 6) had a

higher magnitude of phase synchrony (R index), lower spatial

complexity of the synchrony patterns and lower temporal

variability of the R index values at 15 Hz when compared to

those patients with a good outcome (PCPC score 1 to 3). Thus,

these results indicate that there is an association between the

severity of the brain injury and the spatio-temporal variability of

the synchronization patterns. The mean global R indices were

significantly higher and the spatial complexity and temporal

variability values were significantly lower at the beta frequency in

patients with poor outcome. We also showed that patients with

poor outcome had lower spatial complexity of EEG synchrony at

15 Hz in the frontal and parietal EEG electrodes as compared to

those patients with a good outcome.

Based on the known neurophysiological activity following TBI,

it is conceivable that there will be fundamental alterations in the

brain coordination dynamics, reflected as synchronization pat-

terns. For instance, neuronal hyper-excitability in early post-

traumatic periods has been demonstrated both in vitro and in vivo

[31]. Following cortical injury there are time dependent alterations

in synaptic function and cell reorganization and damage [32], [8].

Electrophysiological analysis of cerebral concussion has had a long

history [43]. Earlier studies evaluated EEG coherence in children

and alterations in the coherence patterns were thought to reflect

neuroanatomical inhomogeneities corresponding to features of

neocortical cytoarchitecture and axonal fibre systems [46], [47].

Thatcher et al. (1989) proposed that the analysis of coherence in

post-traumatic EEG activity can detect and quantify diffuse axonal

injury [48], [49]. However, very few studies have addressed this

line of research in post-traumatic brain injury, but it has been

investigated in depth in other pathologies.

The use of EEG phase synchrony in brain injury is more recent.

The study by Shields et al. (2007) done in adults, reported a global

decrease in synchrony as patients emerged from coma, which

correlated with the Glasgow Coma Scores for the individual

subjects [51]. Their findings supported those of our initial paper,

where children emerging from coma had increased variability and

decreased prolonged EEG phase synchronization.

Recently EEG phase synchrony has been used to evaluate brain

function of adults following stroke and cardiac arrest [71–73]. Wu

et al., (2011) found that focal injury following stroke in elderly

patients resulted in breakdown of cortical synchrony networks,

Table 1. Patient demographics.

Diagnosis N % Mean Age (Years) Standard Deviation (Years) Range (Years)

Cardiac arrest 30 35.7 5.7 6.1 0.02–17

TBI 35 41.7 7.3 5.3 0.75–17

Stroke 19 22.6 7.8 6.2 0.75–17

Total 84 100.0 6.8 5.8 0.02–17

Table 1 shows the number, mean age, standard deviation and age range for each of the 3 diagnostic categories and the total sample. The patients who had suffered
cardiac arrest were the youngest of the three diagnostic categories. However analysis of variance (ANOVA) showed that there is no statistically significant difference
between the groups with respect to age: F = 0.95, p = 0.39.
doi:10.1371/journal.pone.0094942.t001

EEG Phase Synchrony Predicts Coma Outcome
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interrupting large scale communication [71]. Functional brain

networks are altered in adult stroke patients [72]. Cimponeriu et

al., (2002) found changes to phase synchronization in the theta

range in the first hour post cardiac arrest [73]. We cannot directly

compare EEG findings between adults and children. However the

alterations in brain networks are seen in children post brain injury

[34]. The findings in the adult studies could reflect our finding of

significant phase synchrony and variability changes post injury in

the 15 Hz beta bandwidth. The EEG phase synchrony in the beta

range is associated with long range connectivity among brain

regions beyond that of local neighbouring neuronal networks [74].

As brain injury often involves white matter damage, the structural

pathway between neurons would be disrupted. This in turn would

change the EEG phase synchronization in the beta range. The

beta frequency has also been associated with normal functioning in

the motor and somatosensory cortices and represents the intrinsic

oscillations in the thalamocortical circuits in these two brain

regions [75], [76]. The thalamocortical circuitry is disrupted in the

comatose patient [77].

In general, the analysis of synchrony has potentially more

information than other more classical studies, such as power

spectra determination, as the latter does not inform on coordi-

nated brain activity [34], [67]. Phase synchrony provides the

added information of connectivity among EEG electrodes, as

electrodes that are highly phase-locked are connected for that time

epoch [67]. In this regard, Davey et al. (2000) demonstrated that,

while power spectra did not differ from the two brain hemispheres

of a patient with asymmetric brain damage (one hemisphere was

damaged whereas the other was not), the coherence of the

recorded signals was markedly different between the two

hemispheres, thus stressing the importance to assess not only

whether the brain rhythms have been normalised after brain

damage (which is analysed using power spectra), but also to study

the coordinated activity between distant brain areas using

coherence of phase synchrony methods[78].

Analytical methods that evaluate neuronal synchronization

among brain areas provide more information than visual

evaluation of the electroencephalogram alone, and thus could be

of importance in clinical settings. In particular, phase synchrony

analysis based on the analytic signal approach has been used to

assess aspects of brain coordination dynamics [74], [79]. Normal

brain function is thought to result from fluctuating patterns of

synchronization and desynchronization between cell networks.

These fluctuations are a reflection of the information processing

occurring in the brain networks [74], [80]. Hence, it is not

surprising that less variability in brain signals is associated with

unconscious states or pathologies in general [81], [82]. As

presented in the introduction, physiological variability is associated

with healthy conditions, as it is very well-known in the cardiac

field, for example, where lower variability in heart activity is

associated with cardiac injury [83], [84]. We and others, (Garrett

et al., 2011, 2013) propose that a similar trend occurs in brain

function: less variability in the fluctuating patterns of brain activity

will be associated with brain dysfunction [85], [86]. While the

patterns of phase synchronization changes may be different based

on the causative factor (TBI, stroke or cardiac arrest), injury will

result in less variability of EEG phase synchronization. Our

previous pilot study on synchronization of EEG signals after TBI

used a few patients and control participants, and the results

indicated that patients had lower spatio-temporal variability in the

synchrony patterns than age-matched control subjects [34]. In this

study, we have obtained a larger set of patients and correlated the

Table 2. Mean R indices, spatio-temporal variability and outcome.

Measure (Mean Values) PCPC 1–3 Good Outcome PCPC 4–6 Poor Outcome T-Test P value

R value–3 Hz 0.59160.082 0.61360.098 0.5

R value–15Hz 0.41260.152 0.49160.217 0.03

Spatial Complexity–3 Hz 0.16360.042 0.15760.048 0.64

Spatial Complexity–15 Hz 0.17560.019 0.15860.032 0.02

Temporal Variability–3 Hz 0.0019860.0004 0.0019960.0004 0.78

Temporal Variability–15 Hz 0.0022060.0005 0.0019660.0007 0.03

Table 2 presents the mean R indices and spatio-temporal variability measures for the 2 outcome groups. The values in the table are the means and standard deviations
for each of the 3 parameters: the R index, the spatial complexity and temporal variability values for the 2 outcome groups, good and poor, at both frequencies (3 and
15 Hz). The p value of the Student t-test is provided for each comparison.
doi:10.1371/journal.pone.0094942.t002

Table 3. Spatial complexity by EEG electrodes.

EEG Channel Good Outcome PCPC 1–3 Poor Outcome PCPC 4–6 T-test p value

F3–15 Hz 0.20060.03 0.18160.05 0.02

F4–15 Hz 0.19260.03 0.17360.05 0.001

PZ–15 Hz 0.20360.03 0.17460.04 0.001

P3–15 Hz 0.21060.03 0.18460.05 0.005

P4–15 Hz 0.19960.03 0.17160.04 0.001

Table 3 shows the mean spatial complexity 6 standard deviation and associated p values for those EEG electrodes that were statistically significant between outcome
groups, using the Bonferroni correction for multiple comparisons (p value of ,0.003 were statistically significant). Patients with good outcome had higher spatial
complexity in the frontal – parietal electrodes compared to those with poor outcome.
doi:10.1371/journal.pone.0094942.t003
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variability of the EEG synchrony to the clinical outcome. Using

other variability measures (multiscale entropy) Raja Beharelle et

al. (2012) reported lower variability derived from magnetoence-

phalographic (MEG) recordings in TBI patients performing an

attention task, observations that indicate that the tendency towards

lower fluctuation in brain signals may be a general phenomenon

after brain injury, and not only occurring in the acute post-

traumatic phase we studied here [87]. Recently a complexity

analysis of resting state MEG activity in adult soldiers who had

suffered mild TBI found that patients had lower variability

compared to control subjects [88]. Further, those patients who had

higher variability recovered the most cognitive ability.

While global measures of EEG phase synchrony and spatio-

temporal variability show promise as markers of brain function, we

were also interested in which electrodes were individually

significant. If the EEG synchrony and variability are to be used

broadly for patient monitoring, we have to consider common

hospital constraints. For instances when, availability of nursing

staff, availability of EEG technologists, or presence of patient

instrumentation (drains, monitors) precluded the application of the

10–20 montage, we were interested in evaluating which electrodes

may yield the best discrimination.

We found that the spatial complexity of fronto-parietal and

midline parietal electrodes were significantly higher in those

patients with a good outcome. Interpretation of this finding is

difficult as there are no comparable EEG phase synchrony studies.

We looked for comparisons by extrapolating from neuroimaging

studies. Positron Emission Tomography (PET) scans evaluating

cerebral glucose metabolism have shown that fronto-parietal

connectivity is important for awareness and that decreased

connectivity in these regions is associated with coma and

anaesthesia [89–90]. Functional MRI (fMRI) has also been used

to show that in coma and minimally conscious states there is

impaired connectivity among fronto-parietal regions of the default

network of the brain [91], [92]. This finding warrants further

study. In future we would evaluate an abbreviated montage for

monitoring patients by utilizing frontal and parietal electrodes.

All of these findings, both global and electrode specific must be

considered within the limitations of a retrospective study. Timing

of the EEGs in relation to the event varied as there was no

protocol for when to order EEGs in any of the diagnostic

categories. The EEGs were ordered when clinicians’ observations

indicated that the patient may be having clinical seizures or when

subclinical seizures were thought to be the cause of the coma.

Thus the EEG and its phase synchrony and spatio-temporal

variability would reflect the child’s brain function at the time of

recording. If the brain injury was severe enough to lead to poor

outcome, this should be reflected in high R index values and low

spatio-temporal variability. The long term goal is to make these

indices derived from continuous EEG available for real-time brain

monitoring as opposed to one point in time, enabling clinicians to

trend R index changes over time.

The same is true of the other challenge of this retrospective

study: the heterogeneity of medications used in treating the

patients. Again for our proposed biomarker of brain synchrony

and variability to be clinically useful, it must reflect the patient’s

brain activity as it is affected by both injury and medication.

Prolonged sedation adversely affects patient outcome [93].

Whether the need for prolonged sedation reflects the patient’s

overall condition that negatively impacts the brain leading to poor

outcome or whether sedation has augmenting adverse effects on

the injured brain, the R index and its variability should reflect this.

As our findings warrant further study, the effects of medication will

be evaluated when these indices can be monitored by clinicians in

real-time. Not only will the effect of the addition or titration of

medication on the R index be able to be evaluated, but changes in

ventilator settings, arterial pressure and intracranial pressure will

be tracked.

Conclusion

The results of this study supported our hypothesis that comatose

paediatric patients who had a good outcome would have lower

EEG phase synchrony and higher spatio-temporal variability than

those patients with poor outcome. Our methodology could be very

useful in the prediction of outcome in paediatric patients with

brain injury during the acute phase post-injury. We propose that

variability of EEG phase synchrony will become a tool that

provides brain function monitoring and can correlate with

outcomein critically ill comatose patients.
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