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LSD1/KDM1A inhibitors in clinical trials:

advances and prospects
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Abstract

Histone demethylase LSD1 plays key roles during carcinogenesis, targeting LSD1 is becoming an emerging option
for the treatment of cancers. Numerous LSD1 inhibitors have been reported to date, some of them such as TCP,
ORY-1001, GSK-2879552, IMG-7289, INCB059872, CC-90011, and ORY-2001 currently undergo clinical assessment for
cancer therapy, particularly for small lung cancer cells (SCLC) and acute myeloid leukemia (AML). This review is to
provide a comprehensive overview of LSD1 inhibitors in clinical trials including molecular mechanistic studies,
clinical efficacy, adverse drug reactions, and PD/PK studies and offer prospects in this field.
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Introduction
Lysine methyltransferases and demethylases have been re-
ported to be able to catalyze the process of N-methylation
and N-demethylation of histone lysines, respectively [1, 2].
Based on the catalytic mechanisms, the demethylases are
divided into two subgroups: the flavin adenine dinucleo-
tide (FAD)-dependent LSD1 and LSD2 and JMJD family
containing JmjC domain [3]. Prior to the discovery of the
first demethylase LSD1 (also named KDM1A, KIAA0601,
BHC110, and AOF2) in 2004 [4], the process of histone
methylation is considered to be irreversible. LSD1 specific-
ally demethylates histone lysine residues H3K4me1/2 and
H3K9 me1/2 (Fig. 1a). LSD2 (also known as KDM1B or
AOF1), a well-known histone H3K4me1/2 demethylase, is
the only homolog of LSD1 in human genome and exhibits
an overall sequence identity of < 31% with LSD1 [5]. Dif-
ferently, LSD1 binds at promoter regions, while LSD2 is
mainly enriched at the body regions of actively transcribed
genes [5]. Therefore, LSD2 is also important in epigenetic
regulation but has different structural organization and
functions relative to LSD1 [6, 7]. The JMJD family oxida-
tively removes the trimethyl group of histone lysine
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residues preferably in a Fe2+ and 2-oxoglutarate (2-OG)
dependent manner (Fig. 1b) and have key roles in cell dif-
ferentiation, proliferation, and stem cell self-renewal [8, 9].
LSD1 regulates some non-histone substrates including

DNMT1, p53, STAT3, and E2F1 [10], which play vital
functions during gene expression [11–15]. These studies
indicate LSD1, as an H3K4/9me eraser, could genome-
wildly regulated gene expression during carcinogenesis.
LSD1 suppresses gene transcription by binding to the
CoREST or nucleosome remodeling and deacetylase re-
pressive complex and also promotes transcriptional activa-
tion upon binding to androgen receptor (AR) or estrogen
receptor (ER) [16], thus regulating numerous fundamental
cellular processes [17]. For example, the histone 3 (H3)
binding and gene expression of LSD1 is affected by the
HDAC1-mediated deacetylation of LSD1. The crosstalk
between HDAC1 and LSD1 suggests that the activity of
LSD1 may be influenced by HDAC inhibitors [18]. Huang
et al. reported that the antitumor activity of HDAC inhibi-
tors against human breast cancer cells was mediated by
the crosstalk between LSD1 and histone deacetylases [19].
Elevated levels of LSD1 has been found in diverse can-

cers and shows close relationship with many cellular ef-
fects such as epithelial-mesenchymal transition (EMT),
cell proliferation and differentiation, stem cell biology,
and malignant transformation [20]. LSD1 inactivation
also enhances anti-tumor immunity and inhibits check-
point [21]. LSD1 dysfunction is also associated with the
development of ALL (acute lymphoblastic leukemia) and
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Fig. 1 a, b Histone demethylase enzymes LSD1 and JmjC domain-containing family and their mechanisms of demethylation. Amino acid unit is
represented in colored dot
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AML (acute myeloid leukemia) [22–24]. Preclinical stud-
ies have revealed that LSD1 inhibition could suppress
tumor growth of lung adenocarcinoma independent on
driver mutations [25]. Expression profiling reveals that
LSD1 inhibition mainly affects replication machinery
and cell cycle, and interrupts downstream signaling of
EGFR (epidermal growth factor receptor). Pharmaco-
logical inhibition of LSD1 leads to inhibition of prolifera-
tion, differentiation, invasion, and migration in vitro and
in vivo [26]. The combinatory analysis of chromatin im-
munoprecipitation (ChIP)-Seq and microarray revealed
the genes affected by LSD1 inhibition in esophageal
squamous cell carcinoma (ESCC) cells [27], in which 17
genes were upregulated and 16 genes were downregu-
lated. In addition to the demethylase activity of LSD1, its
demethylase-independent activity is also implicated dur-
ing carcinogenesis [28–31], this finding may explain the
ineffectiveness of catalytic inhibition of LSD1 in some
cancers [32, 33]. Targeting the demethylase-independent
activity of LSD1 is an emerging strategy for the treat-
ment of cancers. Sehrawat et al. demonstrated that
LSD1 promoted AR-independent survival in LSD1 highly
expressed castration-resistant prostate cancer (CRPC)
cells independent of its demethylase function [31]. Sun
and co-authors recently reported that the LSD1/FBXW7
interaction could disrupt FBXW7 dimerization and pro-
mote FBXW7 degradation independent of its demethylase
activity of LSD1 [29]. Very recently, Vinyard et al. revealed
a non-enzymatic role of LSD1 in AML through the
CRISPR-suppressor scanning and elucidated that the en-
zymatic activity of LSD1 was not required for AML sur-
vival [28]. Furthermore, LSD1 inhibition can block viral
genome transcription and replication of DNA viruses,
showing therapeutic potential for the treatment of viral in-
fections [34]. These results highlight the biological import-
ance of LSD1 as an emerging therapeutic target for
disease treatment [35]. Currently, numerous natural and
synthetic LSD1 inhibitors have been identified in the last
decades [36–48], some of which currently undergo clinical
assessment for the treatment of AML, SCLC, etc.

LSD1/KDM1A inhibitors in clinical trials
The MAO inhibitor tranylcypromine (TCP) was initially
approved by the US Food and Drug Administration (FDA)
to treat mood and anxiety disorders in 1961 [49] and subse-
quently was found to be able to moderately inhibit its
homolog LSD1 by forming a covalent adduct with the flavin
ring [50, 51]. The identification of TCP as an LSD1 inhibi-
tor has inspired further extensive medicinal chemistry ef-
forts for designing TCP-based irreversible LSD1 inhibitors.
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Mechanistically, TCP-based LSD1 inhibitors inactivate
LSD1 via the single electron reduction mechanism, further
homolytic cleavage of the cyclopropyl ring gives different
TCP-FAD adducts through distinct pathways (Fig. 2) [50,
52]. As shown in Figs. 2A and B, the phenyl ring of the
FAD−PCPA adduct forms weak van der Waals interactions
with T335 and T810 but does not form extensive interac-
tions with nearby hydrophobic residues (e.g., Y761, V333,
and H564). The structural features suggest that incorpor-
ation of hydrophobic substitutions into the phenyl ring
would be a viable strategy to design new PCPA-based
LSD1 inhibitors with higher potency by forming more
interactions with surrounding hydrophobic residues
[50]. The covalent modification is also confirmed by
the high-resolution co-crystal structure of FAD-
GSK2699537 adduct (Fig. 2C) [52].
To date, many irreversible LSD1 inhibitors have been dis-

covered [26, 42], of which TCP, ORY-1001 [54], GSK-
2879552 [52, 55], IMG-7289, INCB059872 [56, 57], and
ORY-2001 (Vafidemstat) (Fig. 3) presently undergo clinical
Fig. 2 Catalytic mechanisms for LSD1 inhibition with PCPA (fragment deriv
binding model of the FAD−PCPA adduct with surrounding residues in LSD
(PDB code: 2UXX), the positive electrostatic potentials are colored in blue, t
structure of GSK2699537 (gold)-FAD (green) adduct in LSD1/CoREST compl
[50, 52]. Note: The authors claimed they obtained a high-resolution X-ray c
[52], but only the related crystallography data were provided in the suppor
Bank (PDB). Recently, a co-crystal structure of human LSD1 in complex with
GSK2699537, has been reported [53] and could be for reference
assessment for cancer therapy. Besides, combined treat-
ment with ATRA (all-trans retinoic acid) and Azacitidine
are also undergoing clinical investigation for cancer ther-
apy, such as AML, ALL, and SCLC (Table 1). Besides, CC-
90011 (Fig. 3), a reversible LSD1 inhibitor, is also being
evaluated in clinical trials. Of note, the clinical trials of
GSK-2879552 for AML and relapsed/refractory SCLC, re-
spectively, have been terminated because of the risk in re-
lapsed refractory AML and SCLC. Apart from applications
in the field of oncology, LSD1 inhibitors ORY-1001, GSK-
2879552, IMG-7289, ORY-2001 (dual LSD1/MAO-B in-
hibitor) also show therapeutic potentials in clinical investi-
gation to treat MDS, myelofibrosis, multiple sclerosis (MS),
and Alzheimer’s disease (AD) (Table 1).

TCP (tranylcypromine)
The tranylcypromine (abbreviated as TCP or PCPA), an
inhibitor of monoamine oxidase (MAO) used in clinic for
the treatment of depression [59, 60], was identified as an
irreversible and weak LSD1 inhibitor [51, 61]. Currently,
ed from PCPA is highlighted in bold). (A) Three dimensional (3D)
1 (PDB code: 2UXX); (B) surface map of the FAD−PCPA adduct in LSD1
he negative electrostatic potentials colored in blue red; (C) co-crystal
ex. Figure 2 A–C are excerpted from the references with permissions
o-crystal structure of GSK2699537-FAD adduct in their original work
ting information, the PDB code is unavailable in RCSB Protein Data
GSK2879552 (PDB code: 6NQU), a structurally close analog of



Fig. 3 LSD1 inhibitors in clinical trials. The picture showing 3D structure of LSD1 is excerpted from the reference [58]
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26 studies have been registered in clinicaltrials.gov website
under the term “tranylcypromine,” three of them are
undergoing for evaluating the therapeutic efficacy against
AML and MDS. A phase I/II study was initiated on Octo-
ber 10, 2014, to analyze feasibility, safety, pharmaco-
dynamics, and effectivity of ATRA/TCP treatment in
patients with relapsed or refractory AML or in patients
with AML who are not eligible for intensive treatment
(ClinicalTrials.gov Identifier: NCT02261779). On October
23, 2014, a phase 1 study, sponsored by University of
Miami, was also initiated to evaluate the safety and toler-
ability of TCP/ATRA combination therapy for adult pa-
tients with AML and high-grade MDS (ClinicalTrials.gov
Identifier: NCT02273102). On March 24, 2016, Michael
Luebbert initiated a phase I/II study of sensitization of
Non-M3 AML blasts to ATRA by TCP treatment, aiming
to determinate the maximum tolerated dose (MTD) of
TCP/ATRA and TCP/cytarabine treatment (fixed dose
used for ATRA and cytarabine in this study, Clinical-
Trials.gov Identifier: NCT02717884).
TCP poorly inhibited LSD1 (Ki = 243 μM) by forming

covalent TCP-FAD adducts [62]. TCP increased methyla-
tion levels of global H3K4, suppressed cell growth of blad-
der cancer and neuroblastoma, and also showed potency
in mouse models [63, 64]. Majello et al. first reported that
LSD1, by binding to the promoter region of Sestrin2
(SESN2), regulated autophagy in neuroblastoma (NB) cells,
LSD1 inhibition by TCP-induced SESN2 expression that
hampered the activity of mTORC1, leading to enhanced
autophagy of NB cells [65]. In non-APL AML, TCP
unlocked therapeutic response driven by ATRA. LSD1 in-
hibition increased H3K4me2 and expression of myeloid-
differentiation-associated genes, not a genome-wide in-
crease in H3K4me2. In primary human AML cells in vivo
in NOD-SCID mice, combined treatment with ATRA and
TCP significantly reduced the engraftment [66], suggesting
that this combination therapy may target leukemia-
initiating cells (LIC). Furthermore, ATRA/TCP combin-
ation also had a superior anti-leukemic effect to ATRA or
TCP alone in human AML cells in NOD-SCID γ mic.
These data strongly suggest that the ATRA/TCP combin-
ation therapy may pave a new way for AML.
In the phase 1 study of ATRA/TCP combination (Clini-

calTrials.gov Identifier: NCT02273102) [67], all 15 pa-
tients received continuous daily dosing of both ATRA (45
mg/m2 in divided doses) and TCP (3 escalating dose
levels, 10/20/30 mg BID), with a 3-day lead-in of TCP only
during cycle 1 (21 days). The results showed that the com-
bination was well tolerated with an acceptable safety pro-
file in patients with R/R AML and MDS, TCP 20 mg BID
was selected as the MTD and the recommended phase 2
dose (RP2D). The most common grade 1/2 treatment
emergent adverse effects (TEAEs) were dry mouth (33%),
febrile neutropenia (27%), dry skin (27%), fatigue (27%),
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Table 1 Overview of LSD1/KDM1A inhibitors in clinical trials

Drugs Phase Trial number Diseases Status

ORY-1001 Phase I/II NA* AML Unknown

Phase I NCT02913443 SCLC Completed

Preclinical NA* AML, solid tumors Unknown

TCP Phase I NCT02273102 AML; MDS Active, not recruiting

Phase I/II NCT02261779 Relapsed/refractory AML Unknown

Phase I/II NCT02717884 Non-M3 AML blasts Recruiting

GSK2879552 Phase I NCT02034123 Relapsed/refractory SCLC Terminated

NCT02177812 AML Terminated

Phase II NCT02929498 High-risk MDS Terminated

INCB059872 Phase I/II NCT02712905 Solid tumors and hematologic malignancy Recruiting

Phase I NCT03514407 Relapsed Ewing sarcoma Recruiting

Phase I/II NCT02959437 Solid tumors
Advanced malignancies
Metastatic cancer

Active, not recruiting

Phase I NCT03132324 Sickle cell disease Terminated

Phase I/II NCT04061421 MDS/MPN Not yet recruiting

IMG-7289 Phase II NCT03136185 Myelofibrosis Recruiting

Phase II NCT04081220 Essential thrombocythemia Not yet recruiting

Phase I NCT02842827 AML and MDS Completed

CC-90011 Phase I NCT02875223 Relapsed/refractory solid tumors and
non-Hodgkin’s lymphomas

Recruiting

Phase I/II NCT03850067 SCLC Recruiting

ORY-2001 Phase I NA* Multiple sclerosis Recruiting

Phase IIa NCT03867253 Mild to moderate Alzheimer’s disease Recruiting

*NA means the related data are not available on the ClinicalTrials.gov website and excerpted from the Oryzon Genomics website. Updated on October 1, 2019
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dizziness (27%), rash (27%), headache (27%), increase in
creatinine (27%), and infection (20%), diarrhea (20%),
nausea (20%), urinary frequency (20%), vomiting (20%), and
thrombocytopenia (20%). Febrile neutropenia (27%) was
the most common grade 3/4 TEAE, followed by
thrombocytopenia (20%), sepsis (13%), anemia (13%), and
lung infection (13%). For the phase 2 study, an intermittent
ATRA schedule may be pursued because of the skin tox-
icity observed in responders receiving continuous exposure
to ATRA in current study.

ORY-1001/iadademstat
ORY-1001 (also named iadademstat, RG6016 and RO70
51790) developed by Oryzon Genomics is being investi-
gated in clinical trials for the treatment of AML and solid
tumors. The phase 1 clinical trial for relapsed, extensive-
stage disease SCLC treatment has been done (Clinical-
Trials.gov Identifier: NCT02913443). ORY-1001 potently
inactivates LSD1 (IC50 < 20 nM) and is highly selective over
other FAD-dependent aminoxidases (IL4I1, MAO-A/B,
LSD2 > 100 μM, SMOX 7 μM) [68]. ORY-1001 time-/
dose-dependently induces accumulation of H3K4me2 at
LSD1 target genes and causes concomitant induction of
differentiation markers (H3K4me2 and FACS CD11b EC50

< 1 nM) in THP-1 (MLL-AF9) cells. ORY-1001 induces cell
apoptosis of THP-1 cells, inhibits colony formation and cell
proliferation of MV(4;11) (MLL-AF4) cells (EC50 < 1 nM)
and significantly reduces tumor growth in MV(4;11) xeno-
grafts after oral administration of < 0.020 mg/kg daily.
ORY-1001 is stable in hepatocytes with the Clint less than
0.6 mL/min/g at 1 μM without inhibition of CYP (IC50 >
100 μM) and hERG (< 2% inhibitory rate at 10 μM) and
shows excellent oral bioavailability, activity, and target ex-
posure in vivo. A multicenter, first-in-human phase 1 study
for evaluating the safety, pharmacodynamics (PD), and
pharmacokinetics (PK) studies of ORY-1001 in acute
leukemia (EUDRACT 2013-002447-29) shows that ORY-
1001 at the recommended dose is well tolerated and pro-
motes differentiation of blast cells in 64% of patients [69].
ORY-1001 plasma concentration increased with dose across
cohorts. At 140 μg/m2/day (recommended dose) on day 1
(d1), Cmax is 13.1 ± 7.2 and AUC(0-24h) is 181.7 ± 61.3
pg.hr/mL. On d5, Cmax is 42.2 ± 27 and AUC(0-24h) is 723.3
± 341.5 pg.hr/mL. For 27 subjects in the dose escalation
phase, the most frequent adverse drug reaction (ADR) is
thrombocytopenia (7 events, 5 subjects). At the end of the

http://clinicaltrials.gov
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dose escalation phase, the most frequent ADRs are asthenia
(16 events, 12 subjects), febrile neutropenia (15 events, 13
subjects), constipation (12 events, 9 subjects), and periph-
eral edema (11 events, 8 subjects).
A recent study showed that co-treatment with ORY-1001

and BET protein inhibitor OTX015 showed synergistic le-
thality against human AML blast progenitor cells (BPCs)
[70]. ORY-1001 is synergistic with standard-of-care drugs
(e.g., ATRA, cytosine arabinoside, and quizartinib), selective
epigenetic and targeted inhibitors (e.g., EPZ5676, SGC-
0946, decitabine, azacitidine, SAHA, and ABT-737) in
MV(4;11), MOLM13, and MOLT4 cell lines, suppresses
growth of an AML xenograft model, and prolongs survival
of a mouse patient-derived xenograft (PDX) model of T cell
acute leukemia [71, 72]. Additionally, ORY-1001 shows bet-
ter growth inhibition against a panel of classic SCLC cell
lines compared to variant ones with the IC50 values ranging
from sub-nanomolar to nanomolar [73]. ORY-1001 treat-
ment inhibits xenograft growth of response signature posi-
tive cell line NCI-H510A, but is less sensitive to the NCI-
H526 xenografts. More recently, Shan et al. revealed that
ORY-1001 inhibited growth and induced apoptosis of lung
cancer cells through triggering HK2-mediated Warburg ef-
fect [74]. Augert et al. reported that ORY-1001 treatment
activated the NOTCH signaling and suppressed ASCL1 ex-
pression and SCLC tumorigenesis. In a chemo-resistant
PDX model, ORY-1001 treatment-induced NOTCH activa-
tion and caused complete and durable tumor suppression
[75]. Previous studies have shown that growth factor–inde-
pendent family (GFI1 and GFI1B) is prevalent oncogenes of
group 3 and group 4 medulloblastoma (MB) [76].
Wechsler-Reya et al. recently reported that LSD1 played es-
sential roles in GFI1-mediated transformation of MB by
binding to GFI1, pharmacological inhibition of LSD1 with
ORY-1001 effectively inhibited growth of GFI1-driven tu-
mors, suggesting therapeutic potentials of LSD1 inhibitors
in GFI1-driven MB [77]. Maes et al. highlighted therapeutic
potential of ORY-1001 and checkpoint inhibitors for the
treatment of melanoma [78]. After co-treatment with ORY-
1001 and the anti-PD1 antibody for 22 days, significant
tumor growth inhibition (TGI) was achieved, 54% higher
than that of the anti-PD1 antibody-treated group. However,
a recent study by Shipley et al. revealed that catalytic inhib-
ition of LSD1 with ORY-1001 was ineffective in cell viability
and invasion of Ewing sarcoma and desmoplastic small
round cell tumors (DSRCT) in 2D and/or 3D assays [32].
The findings suggest that catalytic inhibition of the LSD1
demethylase activity is insufficient in Ewing sarcoma or
DSRCT. The demethylase-independent activity of LSD1
should be considered for Ewing sarcoma.

GSK2879552
Two clinical phase 1 trials investigating the safety, pharma-
cokinetics, pharmacodynamics, and clinical activity of
GSK2879552 in patients with relapsed/refractory SCLC
(ClinicalTrials.gov Identifier: NCT02034123) and AML
(ClinicalTrials.gov Identifier: NCT02177812) have been ter-
minated. Besides, a phase I/II, open-label study evaluating
the safety and clinical activity of GSK2879552 alone, or in
combination with azacitidine in subjects with MDS, has
also been terminated (ClinicalTrials.gov Identifier: NCT02
929498). As shown in the website of clinicaltrials.gov, the
risk benefit does not favor continuation of these three
studies.
GSK2879552 was initially identified from a chemical col-

lection containing 2.5 million compounds [52]. Compared
to closely related enzymes including LSD2 and MAO-A/B,
ion channels, G protein coupling receptors (GPCR), nuclear
receptors, transporters, GSK2879552 showed high selectiv-
ity to FAD utilizing proteins including LSD1. GSK2879552
treatment led to complete inactivation of LSD1 over time
(LSD1 KI

app = 1.7 ± 0.5 μM, kinact = 0.11 ± 0.01min−1,
kinact/ KI

app = 6.47 × 10−2 ± 3.07 × 10−3 min−1 μM−1).
GSK2879552 did not modify the protein backbone of
LSD1, loss of the characteristic UV absorbance of LSD1-
bound FAD suggested covalent modification of LSD1,
which was further confirmed by the co-crystal structure of
the GSK2879552-FAD adduct (PDB code: 6NQU). In con-
trast, the free FAD was unaffected, indicating that the de-
methylation of LSD1 was an enzyme-mediated process.
Taken together, the results demonstrate that GSK2879552
is a mechanism-based irreversible LSD1 inhibitor depend-
ing on the catalytic activity of the enzyme.
The antitumor screening of GSK2879552 against a panel

of cell lines showed that the antitumor activity is mainly
restricted to SCLC and AML. GSK2879552 treatment
causes local changes near transcriptional start sites of
genes whose expression increases with LSD1 inhibition
without effects on the global levels of H3K4me1/2 and in-
creased cell surface expression of CD11b and CD86 in
AML cell lines. GSK2879552 treatment shows potent
anti-proliferative effects in some AML cell lines and also
inhibits colony formation of AML blast in primary AML
patient-derived marrow samples [52, 79, 80]. Smitheman
et al. recently reported that LSD1 inhibitor GSK2879552
is synergistic with ATRA in cell proliferation, markers of
differentiation, and cytotoxicity of acute myeloid leukemia
across subtypes [81]. Additionally, the SCLC cell lines and
primary samples with DNA hypomethylation is sensitive
to GSK2879552 treatment, over 80% of tumor growth in-
hibition (TGI) is observed in mice engrafted with SCLC
lines after GSK2879552 treatment [82].
Upon oral administration, GSK2879552 was well toler-

ated at 1.5 mg/kg in SCLC xenograft bearing mice without
loss of body weight or disruption of normal grooming be-
havior. GSK2879552 showed acceptable PK properties
(F% = 59.2%, T1/2 = 1.9 h, Cmax = 720 ng/mL) when 5 mg/
kg of GSK2879552 was orally administered [52], allowing
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for further in vivo studies. Detailed PK data are shown in
Table 2. 28-day toxicology studies in rats and dogs showed
that GSK2879552 treatment caused severe but reversible
toxicities including thrombocytopenia, neutropenia, mye-
lofibrosis, and congestion with and without lymphoid ne-
crosis in lymphoid organs.

INCB059872
INCB059872 developed by Imago BioSciences currently
undergoes four clinical trials for cancer therapy (Table 1).
An open-label phase 1b study of the safety, tolerability,
and preliminary antitumor activity of INCB059872 is cur-
rently under clinical assessment in participants with re-
lapsed or refractory Ewing sarcoma (Trial Identifier:
NCT03514407 and EudraCT 2018-000062-11). A phase
1/2, open-label, dose-escalation/dose-expansion, safety,
and tolerability study of INCB059872 in subjects with ad-
vanced malignancies has been initiated since May 2016
(ClinicalTrials.gov Identifier: NCT02712905). This studies
include four parts: (A) to determine the recommended
dose(s) of INCB059872; (B) to determine the safety, toler-
ability, efficacy, PK, and PD of the selected monotherapy
dose(s) in different types of tumors such as AML/MDS,
SCLC, myelofibrosis, Ewing sarcoma, and poorly differen-
tiated neuroendocrine tumors; (C) to determine the rec-
ommended dose(s) of INCB059872 in combination with
azacitidine and ATRA in AML and in combination with
nivolumab in SCLC; (D) to further determine the safety,
tolerability, efficacy, PK, and PD of the selected combin-
ation dose(s). The open-label, phase 1/2 study in subjects
with advanced or metastatic solid tumors (ClinicalTrials.
gov Identifier: NCT02959437) aims to evaluate the safety
and tolerability of the combination therapies of INCB05
9872 with pembrolizumab and epacadostat. Aster Phar-
maceuticals, Theradex, and Incyte Corporation plan the
phase I/II ABNL-MARRO trial for myelodysplastic syn-
dromes or myeloproliferative disorders in USA in October
2019 (ClinicalTrials.gov Identifier: NCT04061421). How-
ever, a phase 1 study evaluating the safety, pharmacoki-
netic, and biological activity of INCB059872 in subjects
with sickle cell disease has been terminated on March 1,
2019, due to a business decision not to pursue INCB0
59782 in sickle cell disease indication (ClinicalTrials.gov
Identifier: NCT03132324).
In AACR Annual Meeting 2016, Lee et al. reported

that INCB059872, a new FAD-directed LSD1 inhibitor,
inactivated LSD1 by forming covalent FAD-adducts,
Table 2 Pharmacokinetics of LSD1 inhibitor GSK2879552 in mice

Cmax (ng/mL) Tmax (h) AUC(0-last) (ng*h/mL
or ng*h/g)

AUC(0-inf)
or hr*ng/g

Blood 720 0.25 852.7 903.2

Tumor 354.7 0.5 2321.6 2693.0
potently and selectively inhibited cell proliferation
against SCLC cells (EC50: 47~377 nM) [57]. In contrast,
non-tumorigenic IL-2 stimulated T cells from normal
donors were less sensitive to INCB059872 (IC50 >
10 μM). Oral administration of INCB059872 inhibited
tumor growth of SCLC xenograft models bearing NCI-
H526 and NCI-H1417, induced FEZ1 and UMODL1
genes in these models, and significantly reduced serum
levels of the neuroendocrine marker pro-GRP in the
NCI-H1417 human SCLC xenograft model. Preclinical
studies evaluating the antitumor efficacy of combined
treatment of INCB059872 with standard of care therap-
ies for SCLC are also under evaluation. Meanwhile, Lee
et al. also reported the antitumor efficacy of INCB0
59872 in preclinical models of human and murine AML
[56]. INCB059872 induced growth inhibition and differ-
entiation, induction of myeloid differentiation markers
CD86 and CD11b was observed in various human AML
cell lines and also in human AML xenograft models
(confirmed by PD studies). INCB059872 significantly
inhibited tumor growth of human AML xenograft
models and prolonged the median survival of MLL-AF9
expressing leukemic mice. Mechanistic studies demon-
strated that INCB059872 induced cell differentiation of
murine blast cells, reduced blast colonies, and normal-
ized clinical hematological parameters to those of non-
leukemic mice. Notably, in both murine MLL-AF9
leukemic model and the human AML xenografts, INCB0
59872 achieved maximal antitumor efficacy with both
dosing regimens of daily (QD) and alternative-day
(QoD). In AACR Annual Meeting 2018, Chadderton
et al. further reported their findings that INCB059872
could increase myeloid differentiation in human AML
PDX (patient-derived xenografts) models and primary
AML samples, accompanied by increasing populations
of CD14+ and CD15+ [83]. Furthermore, INCB059872
induced the differentiation of CD34+/CD38- to CD34+/
CD38+, which in turn gave rise to lineage-specific pro-
genitors in the human AML PDX models. Both studies
support that INCB059872 is a promising epigenetic
agent for AML therapy.
LSD1 controls the fate of pluripotent cancer stem-like

cells (CSCs), its amplification has been associated to
tumorigenic and CSC-like features [84, 85]. In AACR An-
nual Meeting 2018, Civenni et al. reported the antitumor
efficacy of INCB059872 against prostate CSCs, mainly fo-
cusing on its effects on the growth properties, self-
(hr*ng/mL
)

DNAUC(0-last)
(ng*h/mL/mg/k g)

T1/2 (h) AUC_%Extrap_pred (%)

171 1.9 5.6

464 8.4 13.8
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renewal, and tumorigenic capability [86]. In ex vivo
tumor-sphere assays, INCB059872 strongly inhibited
growth of tumor-initiating stem-like cells isolated from
prostatic tumors and also suppressed formation of tumor
sphere and colony by human prostate cancer cells. How-
ever, the effects of INCB059872 on cell proliferation and
viability of bulk tumor cells were limited, long-term ex-
posure was required for effectiveness. These effects were
also observed in several prostate cancer cells, independent
on the status of androgen receptor (AR) and genetic fea-
tures. Importantly, LSD1 knockdown had similar effects of
INCB059872. These data confirmed the essential role of
LSD1 in maintaining the stem-like and tumorigenic sub-
population of prostate tumors, and pharmacological inhib-
ition of LSD1 by INCB059872 could reduce self-renewal
and survival capability of prostate CSCs. The results sug-
gest that LSD1 inactivation by INCB059872 could offer a
new strategy for treating prostate cancer.

IMG-7289/Bomedemstat
IMG-7289, an investigational small-molecule therapeutic
agent developed by Imago BioSciences, is currently under-
going phase 1 clinical assessment at multiple locations in
Australia for myelofibrosis (MF) treatment (ClinicalTrials.
gov Identifier: NCT03136185). IMG-7289 alone or com-
bined treatment with ATRA has also entered phase IIa
clinical trial for treating high-risk AML and MDS (Clini-
calTrials.gov Identifier: NCT02842827). In 2018, the IND
application of IMG-7289 has been accepted by FDA to
carry out the clinical development for myelofibrosis
(please refer to IMG-7289 at AdisInsight website, https://
adisinsight.springer.com/drugs/800048131). Very recently,
a single-center, open-label phase 2 clinical trial (Clinical-
Trials.gov Identifier: NCT04081220) sponsored by the
University of Texas Health Science Center at San Antonio
was initiated, aiming to evaluate the effects of IMG-7289
administered orally once daily in patients with essential
thrombocythemia (ET).
IMG-7289 irreversibly inhibits LSD1, increases H3K4

and H3K9 methylation, and then alters gene expression
(for details, please refer to LSD1 inhibitor IMG-7289 at
National Cancer Institute, NIH). IMG-7289 inhibits the
production of inflammatory cytokines, impairs self-
renewal and proliferation of neoplastic stem cells, and
shows significant disease-modifying activities in multiple
non-clinical models of myelofibrosis. In non-clinical
models, LSD1 inhibition could suppress self-renewal of
neoplastic stem cells such as those in AML and MF.
Across a range of myeloid malignancy models, IMG-7289
alone or in combination with other anti-neoplastic agents,
demonstrated robust strong in vivo activity (please see
IMG-7289 at Imago BioSciences website for details). Jonas
Samuel Jutzi et al. reported that IMG-7289 treated mice
showed drastic decreases in platelet count, reticulocytes,
monocytes and neutrophils as well as increased global
H3K9me2 levels in the bone marrow compared to control
mice. IMG-7289 normalized or stabilized elevated
complete blood counts (CBCs) in a JAK2V617F mouse
model of myeloproliferative neoplasms (MPNs), decreased
JAK2 mutant allele burden, pro-inflammatory cytokine
levels, and conferred a clear survival advantage [87]. The
combination of IMG-7289 with JAK1/2 inhibitors might
accelerate treatment effects. The PD/PK and adverse side
reactions have not been released currently.
ORY-2001/Vafidemstat
ORY-2001 (Vafidemstat), a dual LSD1/MAO-B inhibitor
developed by Oryzon Genomics, has recently been ap-
proved to enter IIa clinical trial to evaluate the safety, tol-
erability, and preliminary efficacy of ORY-2001 in patients
with mild to moderate Alzheimer’s disease (ClinicalTrials.
gov Identifier: NCT03867253). ORY-2001 is also clinically
tested at IIAa Phase for the treatment of RRMS (relaps-
ing-remitting multiple sclerosis) or SPMS (secondary pro-
gressive multiple sclerosis) (https://www.oryzon.com/
sites/default/files/PRESS_RELEASE_03-2018.pdf). It is the
first epigenetic approach in multiple sclerosis (MS), repre-
senting a new avenue for clinical development of ORY-
2001 in different neurological indications.
ORY-2001 is an orally active and blood-brain barrier

(BBB)–permeable therapeutic agent that shows excellent
selectivity to LSD1 and its homology MAO-B over chro-
matin modulators, other amine oxidases containing
FAD, and 100 targets from the CEREP diversity panel.
For Huntington’s disease, ORY-2001 is effective in pre-
venting development of cognitive impairment in the R6/
1 model and the SAMP-8 mice [88]. ORY-2001 restores
behavioral deficits and UCHL1 (ubiquitin carboxyl-
terminal esterase L1) and Notch1 levels in SAMP8 mice,
a model for aging and AD [89]. Buesa and colleagues re-
ported that ORY-2001 treatment could downregulate
S100A9, which is overexpressed in patients with postop-
erative cognitive dysfunction, AD, and traumatic brain
injury. Compared to the MAO-B inhibitor rasagiline (3
mg/kg), ORY-2001 could significantly prevent the pro-
gression of memory deficit completely in SAMP-8 mice
at doses ranging from 0.3 to 3 mg/kg [90]. Besides,
ORY-2001 was more effective than fingolimod in redu-
cing the clinical score in the EAE (experimental auto-
immune encephalomyelitis) mouse model. Both
compounds induced IL2, increased IL-4, IL-10, IP-10,
and MCP1, and enhanced cellularity in lymph nodes. In
contrast, ORY-2001 increased cellularity in the spleen
and modulated compartment of B cells. Gene expression
profiling showed that ORY-2001 reduced S100a9 expres-
sion in the spinal cord, induced transthyretin, and re-
duced the demyelination marker cystatin F [91].

http://clinicaltrials.gov
http://clinicaltrials.gov
http://clinicaltrials.gov
http://clinicaltrials.gov
https://adisinsight.springer.com/drugs/800048131
https://adisinsight.springer.com/drugs/800048131
http://clinicaltrials.gov
http://clinicaltrials.gov
http://clinicaltrials.gov
http://clinicaltrials.gov
https://www.oryzon.com/sites/default/files/PRESS_RELEASE_03-2018.pdf
https://www.oryzon.com/sites/default/files/PRESS_RELEASE_03-2018.pdf
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In the first-in-human clinical trial of healthy individuals
(over 100) and AD patients, ORY-2001 was well tolerated
and no clinically significant changes, physical findings,
ECGs (electrocardiogram), and vital signs were observed
up to 4 mg in SAD (a single ascending dose) and up to 2.5
mg in MAD (multiple ascending dose) subgroups [92]. Of
particular interest was the hematological safety of ORY-
2001, no hematological side effects were observed in the
SAD subgroup; reversible platelet reduction in the MAD
subgroup was observed at the dose of 2.5 mg in two out of
eight patients. However, ORY-2001 treatment at 4 mg
caused transient thrombocytopenia, headache episodes,
and a platelet rebound. ORY-2001 exhibited good PK/PD
profiles with fast oral absorption, a long T1/2 (22 h), mod-
erate systemic accumulation (mean AUC ratio < 2) after 5
days of administration. In PD tests, ORY-2001 showed the
dose-dependent target engagement (T1/2~84 h) in periph-
eral blood mononuclear cells (PBMCs).

CC-90011
CC-90011 developed by Celgene is the first reversible LSD1
inhibitor in clinical trials and has proven to be effective in
advanced solid tumors and R/R NHL (relapsed/refractory
non-Hodgkin’s lymphoma), particularly in patients with
neuroendocrine tumors (NETs) [93, 94]. CC-90011 cur-
rently undergoes phase 1 clinical trial for safety and efficacy
evaluation in patients with relapsed/refractory solid tumors
and NHLs (non-Hodgkin’s lymphomas) (Clinical trial identi-
fication: NCT02875223 and EUDRACT 2015-005243-13).
Recently, the Celgene initiated a phase 1/2 studies to evalu-
ate the safety, tolerability, and preliminary efficacy of com-
bined treatment of CC-90011 with cisplatin or etoposide in
patients with first line, extensive stage small cell lung cancer
(ClinicalTrials.gov Identifier: NCT03850067). CC-90011 has
dose-proportional pharmacokinetics and no dose-limiting
toxicities are reported. In phase I study of CC-90011 [93,
94], 50 patients (pts) were enrolled. Forty percent of patients
suffered from serious adverse events (AEs) and 6% were
treatment-related; the most common grade 3/4 treatment-
related AEs were thrombocytopenia (16%) and neutropenia
(8%). Peak plasma concentrations were 2–4 h post-dose and
average terminal half-life was approximately 60 h. Prelimin-
ary pharmacodynamics (PD) studies showed decreased
chromogranin A (CgA) levels and MTD in response to CC-
90011, correlating with clinical benefit. Blood biomarker
analyses showed that higher CC-90011 doses, to a larger ex-
tent, suppressed expression of MMD and MYL9, suggesting
target engagement to LSD1 at doses ≥ 40 mg. The structure
of CC-90011 also complies with our previously proposed “2
+ 1”model for LSD1 inhibitor design [35, 95].

Conclusions and outlooks
In 2004, LSD1 was first identified by Prof. Yang Shi and
subsequently found to have important biological roles in
diverse biological processes and diseases including can-
cers and virus infections. Elevated levels of LSD1 have
been found during carcinogenesis, in AML and SCLC.
Pharmacological inhibition of LSD1 with small mole-
cules has proven to suppress cancer cell differentiation,
proliferation, invasion, migration, etc. Therefore, LSD1 is
becoming an emerging therapeutical target for antican-
cer treatment [96]. In light of its biological importance
of LSD1, numerous LSD1 inhibitors have been reported,
including natural products, peptides, and synthetic com-
pounds. TCP has been recognized as a privileged scaf-
fold for designing new irreversible LSD1 inhibitors [26,
42]. To date, some TCP-based irreversible LSD1 inhibi-
tors alone or combination therapy with other thera-
peutic agents (Table 1) are presently being investigated
in clinical trials for disease treatment. As shown in Fig. 3
and associated with our previous review focusing on the
TCP analogs as LSD1 inhibitors [26], we can see that
relative to TCP, other LSD1 inhibitors including ORY-
1001, GSK2879552, IMG-7289, and ORY-2001 exhibit
significantly improved potency and selectivity, suggesting
that modifications on the phenyl ring and the amine
group of the TCP scaffold are crucial for the potency.
Here, we also would like to highlight the importance of
the TCP scaffold for the anti-LSD1 activity, which forms
covalent adduct with FAD (Fig. 2). An additional amine
group linked to the NH2 group of TCP is beneficial for
the activity by forming electrostatic interactions with the
negatively charged residues at the entrance of the sub-
strate cleft [97]. Please refer to our previous review for
comprehensive structure-activity relationship (SAR) ana-
lysis on TCP-based LSD1 inhibitors [26].
Generally, covalent inhibitors have long-lasting effects

on the target of interest but may also have promiscuous ef-
fects for non-specific irreversible inhibitors, thus leading to
adverse drug reactions [16]. As stated in the “LSD1/
KDM1A inhibitors in clinical trials” section of this manu-
script, the toxicities or side effects of LSD1 inhibitors in
clinical trials have been observed in patients. To achieve
appreciated clinical outcomes of LSD1 inhibitors, em-
phasis should be placed at least on the following aspects:
(A) Design of appropriate dosing regimens in clinical trials;
(B) in-depth mechanistic studies in vitro and in vivo of
LSD1 inhibitors, which in turn provide guidance on the
design of dosing schedules; (C) development of highly po-
tent and selective reversible LSD1 inhibitors, which may
offer safer profiles. Notably, CC-90011 is the only revers-
ible LSD1 inhibitor in clinical trials for cancer therapy,
shedding light on the therapeutic potential of reversible
LSD1 inhibitors. In structure, CC-90011 complies with
our previously proposed “2 + 1” model for designing LSD1
inhibitors [35, 95]. This model could be used for designing
new reversible LSD1 inhibitors. Apart from LSD1 inhibi-
tors depicted in Fig. 3, some other LSD1 inhibitors also

http://clinicaltrials.gov
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show promise for cancer therapy. For example, SP-2509,
identified by Sharma et al. through the high-throughput
virtual screening, is a highly potent, reversible, and non-
competitive LSD1 inhibitor (Ki = 31 nM, IC50 = 13 nM),
shows high selectivity over MAO-A/B (IC50 > 300 μM),
and strongly inhibits proliferation against a panel of cancer
cell lines [98]. Subsequently, Sonnemann et al. reported
that the cellular response of SP-2509 in AML cells was
dominated by the off-target effects of SP-2509 [33]. Sehra-
wat et al. demonstrated that SP-2509 acted as an allosteric
LSD1 inhibitor by targeting a H3 pocket within LSD1 and
suppressed tumor growth in castration-resistant prostate
cancer (CRPC) preclinical models independent of its
demethylase function [31]. Organometallic complexes pos-
sess great structural diversity of geometrical shapes and
thus have emerged as promising scaffolds for antitumor
leads [99]. Yang et al. reported the first rhodium (III)-
based LSD1 inhibitor (IC50 = 40 nM, Ki = 0.57 μM), which
showed selectivity over other related enzymes, including
KDM2b, KDM7, and MAO. In human prostate cancer
cells, this metal complex disrupted the LSD1-H3K4me2
interaction and enhanced the amplification of p21,
FOXA2, and BMP2 gene promoters [100]. Natural prod-
ucts are rich sources for identifying bioactive compounds,
some natural products have been found to be able to in-
hibit histone demethylases [39, 101–104]. Representative
examples are polymyxins B and E, which inhibit LSD1-
CoREST (Ki ~ 157 to 193 nM) by binding to the negatively
charged residues at the entrance of the H3 tail-binding
cleft [97]. Other privileged scaffolds with promising anti-
LSD1 activity include 3-(piperidin-4-ylmethoxy)pyridine
[105], thieno[3,2-b]pyrrole-5-carboxamide [106, 107], aryl
thiourea [41, 43, 108], triazole-fused pyridine [38, 45–47],
and dithiocarbamate [40, 109], xanthine [110, 111], etc.
Clearly, more reversible LSD1 inhibitors will be developed
to evaluate their therapeutic potential in the near future.
LSD1 is involved in many signaling pathways and acts

together with other proteins. Therefore, combined treat-
ment of LSD1 inhibitors and other therapeutic targets or
dual inhibition of LSD1 and other disease-related proteins
may have synergistic effects. Currently, combination ther-
apy of TCP/ATRA, TCP/cytarabine, INCB059872/azaciti-
dine, INCB059872/ATRA, INCB059872/pembrolizumab,
INCB059872/epacadostat, IMG-7289/ATRA, CC-90011/
cisplatin, and CC-90011/etoposide are under investigation
for cancer therapy (Table 1). Besides, the dual LSD1/
MAO-B inhibitor ORY-2001 is also under assessment for
the treatment of AD, RRMS, and SPMS. These ongoing
clinical studies may provide a new direction for epigenetic
treatment. Evidently, deep understandings of molecular
mechanisms will definitely help us design more appropri-
ate combined therapy. LSD1 forms a complex with
HDAC1/2 and CoREST, which stimulates the activity of
LSD1 toward nucleosomes. Fiskus et al. reported that co-
treatment with SP-2509 and the pan-HDAC inhibitor
(HDI) panobinostat (PS) significantly inhibited viability of
primary AML BPCs and improved survival of NOD-
SCID-γIL-2 receptor-deficient (NSG) mice with estab-
lished human AML [112]. Furthermore, combined treat-
ment with PS and SP-2509 significantly improved the
survival of the mice engrafted with the human AML cells,
no any toxicity was observed for this combined therapy
[113]. These findings show promise on the combination
therapy of LSD1 inhibitor and pan-HDI for AML. Re-
cently, some novel LSD1-HDAC dual inhibitors have been
reported, these dual inhibitors, relative to LSD1 or HDAC
inhibitor alone, could have superior clinical outcomes and
offer unique therapeutic opportunities for cancer treat-
ment [114–117]. Ishikawa et al. reported that the LSD1 in-
hibitor T-3775440 and the NEDD8-activating enzyme
(NAE) inhibitor pevonedistat had synergistic anti-AML ef-
fects via transdifferentiation and DNA re-replication
in vitro and in vivo, suggesting that dual inhibition of
LSD1/NAE represents a novel therapeutic strategy for
AML [24]. Domatinostat (4SC-202), a class I histone dea-
cetylase/LSD1 dual inhibitor, is currently under assess-
ment in phase I trial in patients with advanced
hematological malignancies [118]. Wobser et al. recently
reported that 4SC-202 directly inhibited microtubule for-
mation and effectively suppressed growth of cutaneous T
cell lymphoma (CTCL) cells [119]. Studies have showed
that LSD1 mediates epidermal growth factor (EGF) signal-
ing, LSD1 knockdown or inhibition suppressed both in-
trinsic and EGF-induced cell migration in SKOV3 and
HO8910 cells [120]. Very recently, we first reported that
osimertinib (AZD9291), a third-generation EGFR inhibitor
used in clinic, was able to inhibit LSD1 (IC50 = 3.98 μM)
and showed anti-LSD1 activity at cellular levels [48].
These findings suggest that osimertinib could serve as a
hit compound for designing LSD1 and EGFR dual inhibi-
tors for anti-NSCLC drug discovery.
Apart from the demethylase activity of LSD1, its

demethylase-independent activity has been found to play
important roles during carcinogenesis [28–31], this find-
ing may be responsible for insufficiency of catalytic inhib-
ition of LSD1 in some cancers [32, 33]. Development of
small molecules regulating the demethylase-independent
activity of LSD1 may provide novel approaches for cancer
therapy.
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