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Abstract

The strategies of crossing B. napus with parental species play important role in broadening

and improving the genetic basis of B. napus by the introgression of genetic resources from

parental species. With these strategies, it is easy to select new types of B. napus, but diffi-

cult to select new types of B. rapa or B. oleracea by self-pollination. This characteristic may

be a consequence of high competition with B. napus gametes. To verify the role of gamete

viability in producing new B. napus individuals, the meiotic chromosome behavior of the

interspecific hybrid between B. napus (Zhongshuang 9) and B. oleracea (6m08) was stud-

ied, and microspore-derived (MD) individuals were analyzed. The highest fitness of the 9:19

(1.10%) pattern was observed with a 5.49-fold higher than theoretical expectation among

the six chromosome segregation patterns in the hybrid. A total of 43 MD lines with more

than 14 chromosomes were developed from the hybrid, and 8 (18.6%) of them were B.

napus-like (n = 19) type gametes, having the potential to broaden the genetic basis of natu-

ral B. napus (GD = 0.43 ± 0.04). It is easy to produce B. napus-like gametes with 19 chromo-

somes, and these gametes showed high fitness and competition in the microspore-derived

lines, suggesting it might be easy to select new types of B. napus from the interspecific

hybrid between B. napus and B. oleracea.

Introduction

Brassica oleracea is an important vegetable crop and is genetically diverse, having various sub-

species, such as cabbage, cauliflower, broccoli, kale and wild-type, and having many known

useful traits, such as its strong resistance against Sclerotinia incorporated from wild subspecies

of B. incana [1, 2]. B. napus is an important oilseed crop in the world, originating from a natu-

ral interspecific hybridization between B. rapa and B. oleracea ~6000 years ago [3, 4]. This

crop’s genetic basis was narrower than the parental species due to its short history and domes-

tication through modern breeding methods [5]. Introgression of genetic resources from paren-

tal species into B. napus is necessary to broaden and improve its genetic basis [6–9].
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To utilize the genetic resources of parental species, the strategy of crossing B. napus and its

parental species is commonly used. In the strategy, it is easy to select new types of B. napus,
either gaining useful traits from parental species [10, 11] or having the potential to broaden the

genetic basis of natural B. napus [8, 12, 13]. However, it is difficult to select new types of B. oler-
acea/B. rapa individuals, which might due to higher competition of B. napus gametes than B.

oleracea/B. rapa gametes. To verify this hypothesis, the meiotic behavior of interspecific hybrid

between B. napus and B. oleracea and its microspore-derived (MD) individuals were analyzed.

Microspore culture is widely applied in Brassica species to produce double haploid (DH)

individuals in germplasm collection, QTL mapping, genetic engineering and crop improve-

ment [14–17]. This method is less commonly used in interspecific hybrids between Brassica
species due to the difficulty in obtaining embryoids [18–20]. However, scientists have used the

technique in interspecific hybrids to induce microspore-derived lines, aiming to study male

meiotic behavior, since there is no selection pressure from females compared with self-pollina-

tion and backcrossing [21, 22]. In the present study, an interspecific hybrid between B. napus
and B. oleracea was developed, and its meiotic behavior and gamete behavior in microspore-

derived individuals were analyzed, showing that the B. napus-like gamete had high fitness and

competition in the hybrid. This suggested that high viability of B. napus-like gametes might

make it easy to select new types of B. napus from the interspecific hybrid between B. napus and

its parental species by self-pollination.

Materials and methods

Plant materials

The interspecific hybrid ACC was developed from hybridization between B. napus ‘Zhong-

shuang 9’ and B. oleracea ‘6m08’ via embryo rescue and propagated on MS regeneration medium

(MS + 3 mg/L 6-BA + 0.02 mg/L NAA) via tissue culture for microspore culture [23]. Morphol-

ogy, fertility, chromosome number and genetic components of MD lines were evaluated, and

their genetic diversity was compared with 34 natural B. napus and 42 B. oleracea (S1 Table).

Cytological observations

Chromosome number at mitotic metaphase. To check the chromosome numbers of the

ACC hybrid and MD progenies, the young ovaries were collected and pretreated with 2 mmol/

L 8-hydroxyquinoline for three to four hours at room temperature and later fixed in Carnoy’s

solution (Vethanol: Vacetic acid = 3:1) and stored at 4 ˚C. Mitotic observations were made accord-

ing to the methods as described by Li et al. [24]. The ovaries at mitosis were hydrolyzed in 1 M

HCl at 60 ˚C for 8 min and stained with 10% modified carbol fuchsin and observed under

microscope.

Chromosome pairing and segregation at meiosis. For meiotic analysis, buds were fixed

in Carnoy’s solution for 24 h and then transferred into fresh mixture and stored at –20 ˚C for

future use. Meiotic observations of pollen mother cells (PMCs) were made according to the

methods of Li et al. [24]. The anthers at meiosis stage were hydrolyzed in 1 M HCl at 60 ˚C for

2 min, stained with 10% modified carbol fuchsin and observed under microscope. The chro-

mosome pairing at metaphase I and chromosome segregation at anaphase I in PMCs were

recorded.

Pollen fertility

Pollen fertility was determined by the percentage of pollen grains stained with 1% acetocar-

mine according to the method of Li [24]. Three flowers were counted from ACC hybrid and
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MD lines. More than 300 pollen grains were recorded for each line. Grains that were round

and stained red were considered normal, whereas small and non-stained ones were considered

dead pollen.

Microspore isolation

Microspore culture was performed by the method described by Lichter [25], with minor modi-

fications. A total of 30 flower buds ranging in length from 2.5 to 3.5 mm from the ACC hybrid

were selected and sterilized in 10% sodium hypochlorite solution for 15 min. The sterilized

buds were then released with B5-13 medium. The solution along with the microspores were fil-

tered through a 48-μm filter and transferred into a sterile 10 mL centrifuge tube, and the vol-

ume was adjusted to 8 mL with B5-13 media. The microspores were then centrifuged for 3

min at 1200 rpm, and the supernatant was discarded. B5-13 media was added to mix the

microspores, and then they were centrifuged for 3 min at 1200 rpm again. The supernatant

was discarded and microspores were re-suspended in 8 mL NLN-13 solution (NLN medium

plus 13% sucrose in Millipore water, pH to 5.8).

The microspore suspension was divided into 4 Petri dishes with diameter of 70 mm, and 4

mL NLN-13 and 1 mL 10% activated charcoal were added into each Petri dish, which were

later sealed with parafilm. The isolated microspores were incubated at 32 ˚C for 48 hours and

then transferred into a 24 ˚C incubator for 20 days [26]. The plates were then put on a shaker

(60 rpm) for embryo development. Three weeks later, young embryos were transferred into ½
MS medium for plant induction.

SSR marker analysis

Genomic DNA was isolated from young leaves using the CTAB method [27]. 30 MD lines ran-

domly selected were genotyped with 34 natural B. napus and 42 B. oleracea using 35 sets of

SSR primers (S2 Table). The SSR results were described by the absence (0) or presence (1) of a

band.

The genetic distance (GD) between accessions X and Y was calculated using the formula,

GDxy = 1 –Nxy / (Nx + Ny), where Nxy is the number of common bands shared by accession

X and Y, and Nx and Ny are the total number of bands in accession X and Y, respectively [28].

The phylogenetic tree was constructed using the neighbor-joining method implemented by

MEGA version 6 [29].

Statistical analysis

Analysis of variance (ANOVA), Pearson’s simple correlation coefficient and X2 test were cal-

culated using the statistical package SAS version 8.0 [30].

Results

Development of interspecific hybrid between B. napus and B. oleracea
Immature embryos 7~10 days after pollinating with B. oleracea (6m08) pollen on the stigma of

B. napus (Zhongshuang 9) were cultured on ½ MS medium via embryo rescue. Three weeks

later, an interspecific hybrid was developed, sharing intermediate morphology between two

parents and having lighter green leaf color than both parents (Fig 1A–1C). Its pollen fertility

was 34.82%, which was lower than the parental species (Zhongshuang 9: 99.5%, 6m08: 96.4%),

and its chromosome number was 28 in meiotic and mitotic cells (Fig 2A).
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Meiotic behavior of an interspecific hybrid between B. napus and B.

oleracea
Different chromosome conformations, such as univalents, bivalents, trivalents and quatriva-

lents, were observed in pollen mother cells (PMCs) at metaphase I (MI) of the hybrid. The

average chromosome association was 9.66I + 9.12II + 0.01III + 0.02IV in 170 PMCs at MI. In

certain cases, the frequency of the pattern of 9II + 10I (84.71%) was higher than the pattern of

10II + 8I (12.84%) (Fig 2B and 2C). Despite the high frequency of chromosome segregations of

13:15 (36.81%), 12:16 (30.77%) and 14:14 (15.93%) patterns were observed in 182 PMCs at

anaphase I (AI), the fitness of the 9:19 (1.10%) pattern was the highest among the 6 patterns

observed with a 5.49-fold higher fitness than the theoretical expectation (Fig 2D and 2E). This

finding suggested that there would be a high probability of producing B. oleracea/B. napus-like

gametes (C/AC = 9:19). In certain cases, meiotic irregularities, such as chromosome bridges

and lagging chromosomes, were observed during the first and second divisions in the hybrid

(Fig 2F).

Development of microspore derived plants

In total, 115 embryoids (18.55%) were induced from 620 flower buds between late uninucleate

stage and early binucleate stage (2.5~3.5mm flower bud) of the hybrid via microspore culture.

Only 43 MD lines were obtained after transplanting these embryoids on ½ MS medium for

plant-induction. All of these lines shared light green leaf color with the hybrid but had

Fig 1. Morphology of the ACC interspecific hybrid between B. napus and B. oleracea and its microspore-derived

lines. (A) Zhongshuang 9 seedling; (B) 6m06 seedling; (C) hybrid ACC seedling; (D-I) Seedling of microspore-derived

lines from the hybrid between Zhongshuang 9 and 6m08.

https://doi.org/10.1371/journal.pone.0193548.g001
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different number of leaf auricles, for example, the number of the leaf auricles ranged from 0 to

5 (Fig 1D–1I).

Pollen fertility and chromosome number of microspore-derived plants

Pollen fertility of the MD lines ranged from 0 to 98.89%, with an average of 49.42%. Fertility

was significantly positively correlated with chromosome number (P = 0.0027, r = 0.70; S3

Table), suggesting that lines with more chromosomes had higher pollen fertility.

In the 43 MD individuals, diverse chromosome numbers were observed. With the exception

of one individual having 66 chromosomes and one having more than 80 chromosomes, the

chromosome number of the other 41 individuals ranged from 15 to 56. Of these individuals,

Fig 2. Cytology of the ACC hybrid and its microspore-derived lines from B. napus and B. oleracea. (A) One cell of ACC with

chromosome number 28; (B) One PMC of ACC with 9II + 10I; (C) One PMC of ACC with 10II + 8I; (D) One PMC of ACC with

9:19; (E) One PMC of ACC with 10:18; (F) One PMC of ACC with chromosome bridge; (G) One microspore-derived line with 18

chromosomes; (H) One microspore-derived line with 38 chromosomes; (I) One microspore-derived line with 52 chromosomes.

Those marked with stars were bivalent.

https://doi.org/10.1371/journal.pone.0193548.g002
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14 were haploid, and 29 were polyploid by natural chromosome doubling. In detail, five of

them had 17 chromosomes, five had 38 chromosomes, four had 30 chromosomes, four had 56

chromosomes and three lines had 19 chromosomes. Overall, twelve patterns of gametes were

found. The frequency of actual gametes was significantly different from the theoretical gametes

via X2 test (P< 0.0001). This analysis showed that all the individuals had more than 14 chro-

mosomes, suggesting that gametes having more chromosomes might survive, whereas the ones

with less might die during the meiosis stage in the interspecific hybrid between B. napus and B.

oleracea.

Although 27 (65.85%) individuals were aneuploid (n 6¼ 19), five (12.20%) individuals were

unreduced gametes (n = 28), individuals having gametes with 19 chromosomes (19.51%, 8/41)

were the most common of all the patterns (Fig 2G–2I). This indicated that B. napus-like indi-

viduals having gametes with 19 chromsomes were more competitive than others in the hybrid

between B. napus and B. oleracea.

Genetic diversity of microspore derived plants

To verify the genetic diversity of the MD population, 115 polymorphic loci were amplified

by genotyping 30 MD individuals with 35 combinations of SSR primers. Compared to the

parental species (Zhongshuang 9 and 6m08), the MD population shared on average ~53 loci

(45.71 ± 1.11%) with both parental species, ~37 loci (32.26 ± 1.60%) with the single parent B.

napus (Zhongshuang 9) and ~14 (12.09 ± 1.60%) with the single parent B. oleracea (6m08).

However, these plants also had ~11 unique loci (9.94 ± 1.11%) distinct from both parents. The

average genetic distance between the MD population and the B. oleracea parent (0.91 ± 0.07)

was significantly farther than the B. napus parent (0.34 ± 0.05, P< 0.0001). Compared to

Zhongshuang 9, the genetic distance of B. napus-like individuals (0.39 ± 0.07, P = 0.046) was

significantly more distant than aneuploid (0.33 ± 0.04) and unreduced gametes (0.32 ± 0.02).

This finding was similar to the distance between MD lines and 6m08 (B. napus-like individu-

als: 0.94 ± 0.09; aneuploid: 0.91 ± 0.07; unreduced gamete: 0.88 ± 0.05; Table 1), suggesting

more genetic components from the B. napus parent than the B. oleracea parent were inherited

by the MD individuals.

This finding was in accordance with the distance among MD population, natural B. napus
and B. oleracea. In comparison with 34 B. napus and 42 B. oleracea subspecies, the average

genetic distance between MD population and B. oleracea population (0.97 ± 0.37) was similar

to that between B. napus and B. oleracea population (0.97 ± 0.33), but it was further than that

between MD population and B. napus population (0.42 ± 0.17), suggesting the MD population

is different from natural B. napus and B. oleracea, but close to B. napus. The obvious genetic

differences among MD lines, B. napus population and B. oleracea population were also sup-

ported by the phylogenetic tree (Fig 3). Although the average genetic distance among B.

napus-like individuals, aneuploid and unreduced gametes were similar, the genetic distance of

Table 1. Comparing the genetic distance of B. napus-like individuals, aneuploid and unreduced gametes of microspore-derived lines to the parental species, natural

B. napus and B. oleracea.

B. napus-like� Aneuploid Unreduced gamete

Zhongshuang 9 0.39 ± 0.07 0.33 ± 0.04 0.32 ± 0.02

6m08 0.94 ± 0.09 0.91 ± 0.07 0.88 ± 0.05

AACC group 0.43 ± 0.04 0.39 ± 0.03 0.38 ± 0.02

CC group 0.94 ± 0.05 0.94 ± 0.04 0.93 ± 0.04

�: B. napus-like individuals with n = 19 chromosomes.

https://doi.org/10.1371/journal.pone.0193548.t001
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B. napus-like individuals to the natural B. napus group (0.43 ± 0.04, P = 0.0091) was farther

than that of aneuploid (0.39 ± 0.03) and unreduced gametes (0.38 ± 0.02; Table 1). This finding

indicated that these B. napus-like individuals, having gametes with 19 chromosomes, had the

potential to widen the genetic basis of B. napus.

Discussion

Meiotic behavior of Brassica interspecific hybrid revealed by microspore

culture

Interspecific hybridization plays an important role in exchanging genetic components, widen-

ing and improving genetic resources in Brassica species. Although high frequency of euploids

(new type B. napus) was observed in the interspecific hybrid between B. napus and parental

species [8, 9, 20, 31, 32], aneuploid and unreduced gametes occurred frequently due to abnor-

mal meiosis of interspecific hybrids [33–36]. In the present study, only 43 individuals were

developed from the interspecific hybrid between B. napus and B. oleracea due to the difficulty

in generating a large number of microspore-derived lines, and these individuals exhibited

19.51% euploid, 65.85% aneuploid and 12.20% unreduced gametes.

The frequency of aneuploid, euploid and unreduced gametes in the interspecific hybrid

might be attributable to genotype-specific effects, such as sharing a common subgenome,

or environmental factors, such as cold or fluctuating temperatures, plant nutrition, water

stress and disease [37–42]. In the present study, the interspecific hybrid sharing a common

Fig 3. Phylogenetic trees showing the relationships between 30 MD progeny (red lines) and 42 B. oleracea (blue

lines), 34 B. napus (green lines).

https://doi.org/10.1371/journal.pone.0193548.g003
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C-subgenome from B. napus and B. oleracea, and produced high frequency of euploid (19.51%

B. napus-like gametes), which was similar to the interspecific hybrid between B. napus and B.

rapa sharing an A-subgenome [20]. It is necessary to investigate the genetic or developmental

factors that may give rise to this apparent selection for the variation of gametes in the interspe-

cific hybrid between B. napus and B. oleracea in the future.

Genetic variance of microspore derived lines

In interspecific hybridization, chromosomes of related species recombine and interact regu-

larly, causing homoeolog expression bias, genomic dominance and genomic imprinting [43–

45]. In the MD lines, the genetic distance was closer to the B. napus parent (0.34 ± 0.05) than

the B. oleracea parent (0.91 ± 0.07), suggesting more genetic components of B. napus than B.

oleracea were inherited into the MD population. This might be due to genomic dominance

and genomic imprinting of the B. napus parent in the MD lines. Subgenome dominance is an

important phenomenon in allopolyploids, it was also observed in the interspecific hybrids. For

example, in the interspecific hybrids (wheat × Aegilops), C-subgenome nucleolar organizing

regions loci are dominant [46]. In addition, the subgenome dominance occurred instantly fol-

lowing the hybridization [47]. This bias in gene expression must be investigated in exploring

the mechanism of B. napus genomic dominance.

In the present study, all of the MD lines were different from the parental species, especially

the B. napus-like individuals, which has the potential to broaden the genetic basis of natural B.

napus. The other lines might be used to produce monosomic alien addition lines and nulliso-

mic lines, which can be used as bridge to transfer desired genes from wild B. oleracea species

into B. napus [48, 49]. The role of these novel MD plants in Brassica species improvement

needs to be evaluated in the future.
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