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Abstract
Feature coding and pooling as a key component of image retrieval have been widely stud-

ied over the past several years. Recently sparse coding with max-pooling is regarded as the

state-of-the-art for image classification. However there is no comprehensive study concern-

ing the application of sparse coding for image retrieval. In this paper, we first analyze the

effects of different sampling strategies for image retrieval, then we discuss feature pooling

strategies on image retrieval performance with a probabilistic explanation in the context

of sparse coding framework, and propose a modified sum pooling procedure which can

improve the retrieval accuracy significantly. Further we apply sparse coding method to

aggregate multiple types of features for large-scale image retrieval. Extensive experiments

on commonly-used evaluation datasets demonstrate that our final compact image repre-

sentation improves the retrieval accuracy significantly.

Introduction
Most state-of-the-art image retrieval approaches rely on bag-of-words (BoW) framework and
its variants [1–3] based on local descriptors. Although the BoWmodel makes it possible to be
used for image quantization and the TF-IDF inverted indexing structure originated from web
text search are applied to find the closest image in the database, followed by a re-ranking of the
result list based on geometric considerations. However it suffers from visual word ambiguity,
feature quantization error and memory constraints.

Another promising image retrieval approach is proposed by aggregating local descriptors
on one image into a compact vector using fisher vector (FV) [4] or Vector of Local Aggregated
Descriptor (VLAD) [5,6]. Compared with BoWmodel, FV and VLAD vector is formed from
visual words residuals while not the frequency of words. Fisher vector and VLAD are memory-
demanding, which need to use compression methods to make them tractable for large-scale
applications. But the need for decompression before retrieval reduces the efficiency. Further-
more, large-scale feature k-means clustering is still necessary to generate a compact codebook,
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this clustering process will be time-consuming, which will take several hours even only a few
database images are updated or added additionally.

Recently sparse coding has been widely used in object recognition [7], image classification
[8], image denoising [9] and image inpainting [10]. By using sparse coding instead of vector
quantization, each feature extracted from one image can be represented by a high dimensional
but sparse and fixed length vector. Therefore sparse coding has been suggested as a promising
method for approximate nearest neighbor (ANN) in the recent past [11–14]. The work in [8]
indicates that sparse coding with max-pooling that chooses the largest coefficient for a visual
word can outperform the performance of the state-of-the-art image retrieval. While promising,
a major difficulty affecting the performance of these methods is that the sparse codes generated
by learned dictionaries are often found to be seriously affected by many factors, such as spar-
sity, feature sampling and pooling strategies, which are still poorly understood. In view of the
above problems, we make three contributions in this research. Our first contribution is that we
give a probabilistic interpretation to the max or sum pooling operation in the context of sparse
coding framework. Motivated by this probabilistic interpretation, we explain the relationship
of feature extraction and pooling strategies. Second, we propose a modified sum pooling proce-
dure which can improve the retrieval accuracy significantly, especially for smaller visual vocab-
ularies. Finally our third contribution is that we exploit sparse coding method to aggregate
multiple types of features for large-scale image retrieval. Extensive tests with several state-of-
the-art descriptors have been performed and gained excellent results.

The rest of this paper is organized as the following: Section 2 gives the related work and the
background of aggregating local features. Section 3 we analyze the effects of pooling strategies
with a probabilistic explanation in the context of sparse coding framework and propose a new
modified sum pooling method. Aggregating multiple features in using sparse coding frame-
work with our pooling method is described in Section 4. Finally the experimental results and
conclusion are given in Section 5 and 6.

RelatedWork

Sampling Schemes
Feature sampling is the first step of many vision applications, such as image classification and
image retrieval. A great deal of work has focused on feature sampling schemes [15, 16]. Sparse
sampling and dense sampling are two popular feature sampling strategies. Dense sampling is
commonly used in image classification while sparse sampling is usually adopted for image
retrieval applications.

Dense sampling scheme can obtain a large number of patches uniformly sampled with a
fixed step. In the reference [17], the authors are the first to verify the effectiveness of dense
sampling for image classification. However, those dense patches not only provide a better cov-
erage of interesting objects but also a lot of redundant information such as the blue sky and the
clean ground. Information contained in these patches maybe greatly repeated and can be
regarded as the burstness phenomenon [18]. The burstness has a greater impact on sum pool-
ing operation compared with max pooling.

Key-point based sparse sampling aims at extracting distinctive and repeatable features in an
image. SIFT [19], SURF [20] and Hessian-Affine detector [21] are traditional sparse feature
sampling methods. These sampled patches are not uniformly distributed and may be crowded
in some background regions. The scattered clutters in the background may affect a lot for the
max pooling operation. We will give the theoretical and experimental explanation for the selec-
tion of sampling schemes in section 3 and 5.

Feature Pooling in Sparse Coding for Image Retrieval
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Coding Schemes
Bag of Words. Traditionally, in the BoWmodel, the vector quantization (VQ) is applied

to encode the local descriptors into discrete visual words, which has been proved to be simple
and efficient in dealing with the problem of large-scale image retrieval. To reduce the visual
word ambiguity, Hamming embedding, weak geometry consistence [22] and soft assignment
[23] are proposed to improve the discriminative power of local features in a bag of words
framework. Meanwhile, codebook compression method [24] is proposed to deal with the high-
dimensional bag of words histogram while maintaining its visual discriminability. The authors
in [25] designed the Spatial-Bag-of-Features by projecting the image features to different direc-
tions or points to generate a series of ordered BOF, then selecting the most representative fea-
tures to generate a new BOF-like vector representation of an image. In [26], the authors
proposed to use bag of hash bits instead of bag of words to do mobile visual search. Each local
feature is encoded to bag of hash bits by using similarity preserved hashing functions such as
PCA hashing or SPICA hashing [27]. In order to improve retrieval efficiency, the authors in
[28] used heading information from digital compass to facilitate the BOF descriptors genera-
tion process.

Residual Vector Quantization. Another more scalable vector quantization method
applied for image retrieval was achieved with the compressed Fisher vector [4] and VLAD [5].
Database image representations are also generated from local descriptors like SIFT or SURF,
yet they utilized an alternative aggregation stage to replace bag-of-words histograms. For com-
pressed fisher vector method mentioned in reference [4], the codebook is generated by using a
Gaussian mixture model with K components {(ωi,ui,Si),i = 1,2,. . .k}, where ωi,ui,Si are the
weight, mean and covariance of the i-th Gaussian model learned on offline stage using Maxi-
mum Likelihood method. The gradient vector for a local descriptor xi is represented as:

vðxiÞ ¼ ½x1; x2; . . .; xN �; xi ¼
1ffiffiffiffi
o

p gðiÞs�1
i ðx � uiÞ ð1Þ

Here gðiÞ ¼ oipi=
XN

j¼1

oipj is the probability of descriptor belonging to the i-th Gaussian

model. As the authors mentioned in their work [5], VLAD is a simplified non-probabilistic ver-
sion of the fisher vector. For VLAD, each descriptor xi is associated to its nearest visual word
δ(ck = NN(xi)) to generate the vector v(xi) = [0,. . .,xi − ck,. . .,0]. Then the image representation
vector V can be obtained by concatenating the aggregated residual vector v(xi).

Based on VLAD approach, the Residual Enhanced Visual Vector (REVV) [29] is developed
to further reduce the database’s memory usage. Besides, LDA is employed for dimension
reduction and several features like SURF and CHoG [30] are used together to improve the
retrieval accuracy. Considering the projection errors generated in the dimension reduction
process, which may inevitably decrease the search accuracy, the authors in [31] proposed a
method of projected residual vector quantization.

Sparse Coding. Given an input signal x, the sparse coding seeks to reconstruct x using a
linear combination of an over-complete dictionary C with a sparse coefficient vector v. The
generative model for representing an input signal x can be written as:

min
V

kx � Cvk22 þ lkvk1; s:t:v > 0 ð2Þ

Where λ is the parameter to control the sparsity of v. Amount of research have been done to
solve the Eq (2) with the L1-norm, such as Lasso [32] and feature-sign search algorithm [33].
As we can see from Eq (2), for bag of words approach the vector not only need to satisfy v> 0,
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but also is restricted by card(d) = 1 and |v|0 = 1. The constraint |v|0 = 1 is relaxed to |v|0 = n for
soft assignment. While for sparse coding, these constraints are relaxed by putting L1 norm reg-
ularization on which can give a more accurate reconstruction of x. Therefore to some extent,
the BoW frequency histogram is an approximation of sparse coding.

In sparse coding framework, several factors affect the retrieval accuracy, for example, feature
extraction, dictionary learning, and feature pooling. In [11], the authors proposed a novel
scheme of dictionary learning for sparse coding. In reference [34], the authors decomposed
sparse coding problem into smaller subproblems, the codebook is a Cartesian product of two
subcodebooks, which improved the retrieval speed significantly. In [35], the authors theoreti-
cally analyzed the max/sum pooling scheme and the effects of pooling cardinality for image
classification. We extend the work in reference [35] to analyze several other factors that affect
pooling performances and apply it to retrieval works. Furthermore, we propose a modified
pooling strategy.

Pooling Schemes
Given the sparse coefficients of all descriptors in an image, a pooling operation is often used to
obtain an image level representation vector. Sum-pooling, average-pooling and max pooling
are the popular pooling methods used for image retrievals. On pooling stage, BoW, FV and
VLAD calculate the sum of the vector v(xi) to aggregate all encoded vector into a single vector.
While for REVV, median pooling scheme is used to aggregate local features. However, sparse
coding with max-pooling has demonstrated its higher classification performance than sum-
pooling and average-pooling with dense sampling strategies [36–38]. Furthermore, a new mix-
order max-pooling operation, which incorporates the probability and the frequency of the
presence of a visual word in an image, is proposed to obtain a more informative image-level
representation further [39]. Thus, some experimental results show that sparse coding with max
pooling can achieve better performance for large scale image retrieval [14].

Aggregating of multiple features is often another way to be used to improve the retrieval
performance, as single feature may miss some information of original image. In [40–42], the
authors proposed that commonly used features for each image can be divided into three differ-
ent levels, which are low-level, mid-level and high-level features. These features can be mutual
complementation for image retrieval if well combined. Low-level features are those features
directly extracted from the original images, such as SIFT, SURF, color and many other pixel
level features. Recently, many successful researches for image retrieval transform multiple low-
level features into a global image representation. The authors in [43] combined SIFT and GIST
by graph fusion and maximizing weighted density for accurate image retrieval. The authors in
[44] proposed a coupled Multi-Index framework to perform feature fusion for image retrieval,
in which SIFT and color features are combined. Furthermore, based on the research of aggre-
gating multiple low-level features, the authors in [40] proposed multi-graph learning method
to explore the complementation of different level features, which can be used for specific field,
such as social image retrieval.

Sampling and Pooling Strategies under a Sparse Coding framework
Obviously, sparse coding with different sampling and pooling schemes can dramatically affect
the classification and retrieval performance. However, the reasons to select dense or sparse
sampling for image retrieval and the mechanism of max and sum pooling schemes under a
sparse coding framework for image retrieval have not been deeply understood yet. Therefore in
this paper, we first give a theoretical analysis of which sampling strategy to select, and then we
provide some probabilistic explanations to the max or average pooling operation. Based on the
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probabilistic explanations we propose a modified pooling strategy applied for image retrieval
in the context of sparse coding framework.

Selection of Sampling Strategies
In this paper, our work is focused on the sparse coding for image retrieval. Although dense
sampling scheme is widely used in classification works, it is not deemed to work so well in
image retrieval. As image retrieval is an unsupervised learning processing in most cases, which
we cannot exclude the repeated and redundant information as the learned classifier does in
image classification. However, we found that it is not always true. Dense sampling outperforms
sparse sampling in some cases.

Dense sampling extracts the patches uniformly which may contain lots of repeated and
redundant information on the clean background. The repeated patches can be divided into two
categories: 1) distinctive patches are denoted as those repeated patches which are present in a
little part of train images and 2) frequent patches are denoted as those repeated patches which
are present in most of the training images. Fig 1 illustrates the feature coding step of dataset
images. Dense patches of training images are extracted and a codebook with five visual codes is
trained. The sum pooling results of images on the codebook generate a histogram. The repeated

Fig 1. Histogram of sum pooling results. (a) Visual codes C3, C4 generated by distinctive patches on the background. (b) Visual codes C4 generated by
frequent patches on the background.

doi:10.1371/journal.pone.0131721.g001
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patches on the left images fall into various bins. The visual code C3 and C4 have a strong dis-
crimination. However, the repeated patches on the right images fall into the same bin. The
code C4 has low discrimination. It is obviously to be seen that the distinctive patches on the
background can contribute to improving the retrieval performance while frequent patches will
not. It is similar to some extent with thought of IDF in BOWmodel, which is not included in
sparse coding framework.

Sparse sampling can be regarded as a special case of dense sampling which excludes some
repeated features in some clean regions. It is a subset of dense sampling. From above analysis,
we can easily get that the selection of sampling method is greatly affected by the dataset we
choose. Dense sampling may work well with distinctive patches for image retrieval, and some-
times outperform sparse sampling. While, dense sampling will achieve bad retrieval perfor-
mance with frequent patches, especially when sum pooling is used. It is also indicated in
Section 5.1.

Probabilistic Interpretation of Sum and Max Pooling Operations
In sparse coding representation, sparse coefficients often follow exponential distributions as
mentioned in [35, 37,39, 45–47]. The coding of a single feature can be regard as a random
experiment χi on code words. Assume the sparse coefficient of feature xi on a visual word j is
αi,j, N features coded on the visual word j can generate a series of independent random vari-
ables. Suppose α1,j,α2,j, . . ., αN,j are Nmutually independent random variables having exponen-
tial distribution with the parameter λ, and they are assumed to be independent identically
distributed (IID) random samples with density f(α) = λexp−λα and cumulative distribution
function F(α) = 1 − exp−λα. The expectation of sparse coefficients α are m ¼ 1

l and s ¼ 1
l2
are

the variance. Pooling steps of N features can be modeled as a combination of such random var-
iables. Although the probabilistic interpretation described here is similar with the work in ref-
erence [35], we supply the derivation process of probability distribution for max/sum pooling
and extend the probabilistic explanations. Furthermore, we introduce more factors which may
affect image retrieval performance, such as the number of code words.

Max pooling. Max pooling selects the maximum value of N random experiments on a
visual word j as the pooling result.

amax;j ¼ maxða1;j; a2;j; . . . ; aN;jÞ ð3Þ

The corresponding joint probability distribution function of max pooling can be written as:

FmaxðaÞ ¼ Pða1;j < a; a2;j < a; . . . ; aN;j < aÞ ¼
YN

i¼1

Pðai;j < aÞ ¼ ð1� exp�laÞN ð4Þ

The expectation of joint probability distribution is:

Emaxðmaxða1;j; a2;j; . . . ; aN;jÞÞ ¼ m
XN

i¼1

1

i
� mð‘þ logNÞ ð5Þ

Here ‘ is Euler's constant. And the variance of joint probability distribution is:

Dmaxðmaxða1;j; a2;j; . . . ; aN;jÞÞ ¼ s2
XN

i¼1

1

i2
< 2s2 ð6Þ
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Sum/Average pooling. Sum/average pooling selects the sum or average value of N random
experiments on a visual word j as the pooling result, which can be represented as:

asum;j ¼
XN

i¼1

ai;j; aavg;j ¼
1

N

XN

i¼1

ai;j ð7Þ

The probability density function of sum pooling and average pooling will be as following:

fsumðaÞ ¼
lNaN�1expð�laÞ

ðN � 1Þ! ð8Þ

favgðaÞ ¼
lNaN�1expð�la

N
Þ

NN�1ðN � 1Þ! ð9Þ

According to Lindburg-Levy central limit theorem, the corresponding joint probability dis-
tribution function of average pooling is approximate to Gaussian distribution when N is very
big. Here N is the number of features which participate in the pooling. That means the Eq (9)
can be rewritten as:

FavgðaÞ �
1

s
ffiffiffiffiffiffi
2p

p R a

�1 expð� ðt�uÞ2
2s2 Þdt ð10Þ

The expectation of joint probability distribution can be written as:

Eavgð
1

N

XN

i¼1

ai;jÞ ¼
1

N

XN

i¼1

Eðai;jÞ ¼ m ð11Þ

The variance of joint probability distribution will be:

Davgð
1

N

XN

i¼1

ai;jÞ ¼
1

N2

XN

i¼1

Dðai;jÞ ¼
1

N
s2 ð12Þ

The similarity between query image and train images is commonly measured by the pooling
vectors of encoded features. With good pooling strategy, we can easily separate similar images

from dissimilar images. We employ L1 norm of pooling vectors
Xk

i¼1

kaqi � atraini k as the distance

metric between query image and train images. As is well-known, the expectation of statistics
can reflect the distribution information of them, so the expectation E of the sparse coefficients
α can be used for the analysis of similarity measurement. According to the derived Eqs (5) and

(11), the L1 norm of expectation
Xk

i¼1

kEq
i � Etrain

i k between query image and train images is

Xk

i¼1

ðmq
i � mtrain

i Þð‘þ logNÞ for max pooling and
Xk

i¼1

ðmq
i � mtrain

i Þ for average pooling, here N is

the pooling cardinality and k is the number of codewords.
As we can see from the L1 norm of expectation, max pooling tends to increase the discrimi-

nation of the similarity measurement than sum pooling, especially with the increasing of pool-
ing cardinality N. Therefore similar and dissimilar images can be more easily separated with
max pooling than sum pooling with the growth of pooling cardinality N. In order to proof this,

we experimentally calculate the L1 norm distance
Xk

i¼1

kaqi � atrain
i k of similar and dissimilar
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images. Fig 2 shows the statistical frequency of the L1 norm distance with max and sum pooling
schemes. The solid histogram stands for the probability density of L1 norm distance between
similar images, while dashed histogram stands for dissimilar images. As shown in the statistical
histogram in Fig 2, max pooling can easily separate similar images from dissimilar images with
the increasing of pooling cardinality N. On the other hand, we can easily get that the retrieval
performance of sum pooling and max pooling will both benefit from the growth of k
codewords.

A NewModified Sum Pooling Method
However, retrieval performance can be influenced by a number of other factors, such as the
burstness of features [18]. For sum pooling method, large amount of similar bursting features

may have similar parameters on the same code word, which have a greater impact on Xavg ¼

1
N

XN

i¼1

Xi than on Xmax = max(X1,X2,. . .,XN). Visual bursts would lead to some disruptive peak

for average pooling, while max pooling is smoother. Fig 3 describes different pooling results of
an image descriptor vector with a 2K dimensional codebook. Clearly, it can be observed that
the value of a coding vector is strongly concentrated around only a few components with sum
pooling (Fig 3A). These few components are responsible for a significant amount of energy and
strongly influence the final query similarity scores, which lead to the contribution of other
important dimensions decreased hugely. While with max pooling scheme this problem dose is
alleviated, the large value is lower compared with sum pooling method. Obviously, max

Fig 2. Distance between similar and dissimilar images on UKB dataset. (a) The probability density of L1 norm distance with sum pooling. (b) The
probability density of L1 norm distance with max pooling.

doi:10.1371/journal.pone.0131721.g002
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pooling strategy is prone to alleviate the higher weights of some visual words, which most prob-
ably are the bursty visual features.

Motivated by this observation, we propose a modified sum pooling method. In our pool-
ing approach, each component of an image descriptor vector vi, i = 1,2,. . .,k is modified as
vi = |vi|

β×sign(vi), β2[0,1] to alleviate the strong influence caused by few components. Further-
more as shown in Fig 3A, there are some sparse coefficients which only have been assigned to a
visual word once and the sparse coefficient is very small. Those small sparse coefficients are
trivial and may be caused by computational errors.

Therefore in our pooling method we delimitate those sparse coefficients with Eq (13):

ai ¼ 0; if ai < RanknðaÞ; ai ¼ fa1; a2; . . .aNgT : ð13Þ

Here Rankn(α) stands for the n-th largest sparse coefficients pooled in one code word. The top
n scheme has better performance which has shown in reference [48]. Fig 3C shows a sparse
coded vector pooled with our modified sum method.

Sparse Coding with Multiple Features Using our Modified Pooling
Method
Since sparse coding framework allows aggregating multiple types of features in a compact way,
in this section we propose to apply sparse coding approach to combine multiple features to
improve the retrieval performance further. We choose the popular SURF descriptor rather
than SIFT, as consideration of memory and speed. SURF descriptor is a better choice than
SIFT, especially for mobile landmark recognition [49–52]. Color information is a good comple-
mentary feature to SURF features. Because SURF features are extracted from the grey level
images which do not contain any color information. We employ opponent color descriptor,
which is more robust to illumination, scale and viewpoint change as mentioned in [53].
Around each key-point based detected SURF feature, we utilize a local patch with an area pro-
portional to the scale of the key-point. Then a 36 dimension vector of this area is calculated as
a color descriptor. For SURF and opponent color descriptors, codebooks are trained using con-
ventional k-means method with independent SURF and color descriptors extracted from a set
of real images. Every type of descriptors is quantized to the corresponding code words by fea-
ture-sign search algorithm [33] method to generate sparse coding signatures α. The final image
representation vector will be the pooling results of those sparse coding signatures.

After sparse coding and feature pooling, all sparse coded multiple feature vectors are
concatenated into a single one with different weights, which is different from [14], the

Fig 3. Impact on sparsity coefficient with different pooling schemes. (a) Sum pooling; (b) Max pooling; (c)Modified pooling.

doi:10.1371/journal.pone.0131721.g003
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combination is represented as following:

F ¼ ½ b1Vsift b2Vcolor � ð14Þ

The following Fig 4 illustrates the flowchart of our multiple feature sparse coding method. The
final coding vector is then obtained by applying L2-normalization. PCA, LDA or product quan-
tization [54] can further compress the aggregated image descriptor vector into a more compact
one. The similarity measure between two images can be obtained by computing the cosine dis-
tances of image representation between the query image and train images.

Experiments
In this section, first we experimentally analyze the effects of different sampling strategies and
pooling methods on image retrieval performances. Then we compare the sparse coded image
retrieval method with the state-of-the-art methods, which include BoW, Fisher and VLAD. In
our experiments, we set sparsity parameter λ = 0.15.

Evaluation Datasets
Three common databases are used to evaluate our method. For codebook training, classical k-
means method is used to cluster heterogeneous local features respectively sampled in corre-
sponding datasets.

• University of Kentucky Benchmark dataset (UKB) [55]: UKB dataset contains 10200
images, which have been divided into 2550 groups. For UKB dataset, the common perfor-
mance metric is defined as the average number of relevant images in the top 4 retrieval
images. The images in UKB dataset are the original images with resolution of 640×480.

• Zurich building dataset [56]: Zurich dataset is composed of 1005 Zurich city building
images and 115 query images. Similar to UKB dataset, the average number of relevant images

Fig 4. Flowchart of our multiple feature sparse codingmethod.

doi:10.1371/journal.pone.0131721.g004
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in the top 5 retrieval images is employed as the accuracy measurement. In our experiments,
each Zurich image is down sampled to 320×240.
INRIA Holidays dataset [57]: The INRIA Holidays dataset consists of 1491 holiday images
from personal holiday photos and 500 query images. We resize the Holidays dataset images
to a maximum of 786432 pixels. In this dataset, the mean Average Precision (mAP) is used to
measure the retrieval accuracy.

Different Sampling Results with Experiment Verification
We utilize Zurich and UKB datasets to evaluate the effects of sampling strategies. On each
image, SURF features with a threshold 0.0001 are sparse extracted as keypoints and 16×16
image patches with 6-pixel grid spacing are used as the basic dense features. Spatial pyramid
pooling (SPM) [58] is not used. After extracting those features, feature-sign method are used
for encoding.

Table 1 and Table 2 demonstrate the image retrieval accuracy with different sampling strate-
gies on both Zurich and UKB datasets respectively. As shown in Table 1, sparse sampling strat-
egy outperforms dense sampling strategy on Zurich dataset. And the max pooling method
performs significantly better than sum pooling no matter which sampling strategy is employed,
especially with the increasing of vocabulary dimension. While on UKB dataset, Table 2 shows
us that dense feature with max pooling strategy has the best performance. With 4K encoding
dimension, the average recall of the top 4 ranked images is 3.3.

As mentioned in Section 3.1, patches on the background can be divided into distinctive
patches and frequent patches. From the experimental results shown in Table 1 and Table 2, we
can learn that for a image dataset which includes plenty of frequent patches on the background
(see Fig 5A), the key-point based sampling approach can achieve better performance. When a
dataset includes many distinctive patches on the background, (see Fig 5B), dense sampling
strategy may provide more discriminative power.

Table 1. Retrieval results with different sampling strategies on Zurich dataset.

Vocabulary dimension Dense sampling(level = 1×1) Sparse sampling

Sum max sum max

512 2.2350 3.8600 3.8085 3.5740

1K 2.2720 3.9915 3.9650 3.9925

2K 2.2785 4.0350 4.0785 4.1915

3K 2.3650 4.0260 4.1130 4.2600

4K 2.3915 4.0260 4.2000 4.3785

doi:10.1371/journal.pone.0131721.t001

Table 2. Retrieval results with different sampling strategies on UKB dataset.

Vocabulary dimension Dense sampling(level = 1×1) Sparse sampling

Sum max sum Max

512 2.2510 2.7565 2.6868 2.8107

1K 2.3169 2.8504 2.7073 2.9163

2K 2.3767 3.0990 2.7830 3.0427

3K 2.4085 3.2045 2.8013 3.1102

4K 2.5178 3.3157 2.8501 3.1956

doi:10.1371/journal.pone.0131721.t002
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Fig 5. Frequent patches and distinctive patches. (a) Example images which include frequent patches on the background. (b) Example images which
include distinctive patches on the background.

doi:10.1371/journal.pone.0131721.g005

Fig 6. Retrieval accuracy with different pooling cardinality and number of code words.

doi:10.1371/journal.pone.0131721.g006
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Here we also check the effect of varying the number of SURF features extracted using key-
point detector under a sparse coding framework. For key-point detectors, we simply varied the
corner threshold. Fig 6 shows the average retrieval accuracy on Zurich dataset. We can see
clearly that the retrieval accuracy improves as the average feature extracted on each image
increases, no matter which pooling method is utilized. This experimental results support the
probabilistic explanation described in section 3.2.

Therefore in following experiments, we choose to use key-point based sampling strategy to
extract image features, we think it is a tradeoff between efficiency and accuracy.

Performance of Our Proposed Pooling Method
In this section, we compare the different aggregation methods, max, sum and our proposed
pooling methods, under a sparse coding framework with SURF feature only. The retrieval accu-
racy is also compared with state-of-the-art methods, such as BoW, VLAD and Fisher. We do
not apply any post-processing procedure. For Fisher and VLAD, we use the method proposed
in reference [5] directly. In Fisher a 64 SURF feature descriptor is encoded into a 2×64×k
dimensional vector, while in VLAD the resulting dimension is 64×k, here k is the codebook
size. Three datasets are utilized to evaluate the image retrieval accuracy.

Table 3. Retrieval results with different aggregation methods with single SURF feature on Zurich dataset.

Approaches 1K 2K 4K 8K

Fisher 3.6260 3.9045 4.0955 4.1045

Vlad 3.7610 3.8955 4.0435 4.1130

SC Sum 3.9650 4.0785 4.2000 4.2955

max 4.0125 4.1915 4.3085 4.4435

Our 4.1390 4.2435 4.2870 4.3940

doi:10.1371/journal.pone.0131721.t003

Table 4. Retrieval results with different aggregation methods with single SURF feature on UKB dataset.

Approaches 1K 2K 4K 8K

Fisher 2.7784 2.8210 2.9832 3.2143

VLAD 2.7312 2.8237 2.9526 3.2002

SC Sum 2.7573 2.7830 2.9501 3.0112

max 3.0055 3.1102 3.2956 3.3508

Our 3.0736 3.1720 3.3091 3.3380

doi:10.1371/journal.pone.0131721.t004

Table 5. Retrieval results with different aggregation methods with single SURF feature on Holidays dataset.

Approaches 1K 2K 4K 8K

Fisher 0.5773 0.6327 0.6373 0.6579

VLAD 0.5659 0.6204 0.6371 0.6541

SC Sum 0.5459 0.5798 0.5969 0.6140

Max 0.5965 0.6271 0.6435 0.6757

Our 0.6057 0.6334 0.6572 0.6700

doi:10.1371/journal.pone.0131721.t005
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Table 3 shows us the image retrieval results on Zurich dataset. As is shown, on the Zurich
dataset the sparse coding method outperforms VLAD and Fisher. When features are encoded
with 8K visual codes and max pooled, about a 7% improvement is observed. Our modified
pooling strategy outperforms max pooling when coding dimension is below 4K. The retrieval
result is just 3.85 when BoW framework with 106 visual words is applied on Zurich dataset.

Table 4 illustrates that on the UKB dataset we can achieve 3.35 score with max pooling,
which significantly exceeds the Fisher and VLAD by 5%. On the UKB dataset, our pooling
method can improve the retrieval results from 2.78 to 3.17, when coding dimension is as low as
2K. When a BoWmodel with 10^6 codebook is employed, the result is 2.75 of the recall of top
4 on UKB dataset.

Fig 7. Impact on retrieval accuracy with different combining parameters for SURF and color features.

doi:10.1371/journal.pone.0131721.g007

Table 6. Retrieval results with multiple features on Zurich dataset.

Dimension(SURF+color) 2K 3K 5K 9K

Sum 4.0384 4.2027 4.3130 4.4350

Max 4.1826 4.2783 4.3480 4.4955

Our 4.2630 4.3825 4.4520 4.5380

doi:10.1371/journal.pone.0131721.t006
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For Holidays dataset, the results shown in Table 5 demonstrate that the retrieval accuracy is
0.67 using our proposed method.

Above results show that alleviating the higher weights of some visual words, which
most probably are the burst visual features, will help to improve the retrieval performance.
Moreover, eliminating smaller coding coefficients, which may be only assigned by one feature,
will improve retrieval accuracy further.

Sparse Coding with Multiple Features
In this experiment we combine SURF feature with opponent color feature together under a
sparse coding framework. We fix the color codebook size as 1K and change the SURF codebook
size. Fig 7 described how the weight parameters (β1,β2) affect the retrieval accuracy in Zurich
dataset with a 5K visual codebook. The parameters we used are approximate for UKB and Hol-
idays datasets. Therefore in our experiments we choose β2 / β1 = 0.3 as an optimal weight ratio.
Tables 6, 7 and 8 show image retrieval accuracy results with multiple features under a sparse
coding framework on three datasets respectively.

As the above results demonstrated to us, multiple descriptors can bring a significant
improvement over three datasets. Particularly with our modified pooling method, the retrieval
accuracy can outperform max pooling method both in low dimension and high dimension. It
can achieve 4.54 on Zurich dataset of the recall of top 5, 3.73 on UKB dataset of the recall of
top 4 and a mAP of 0.76 on Holidays dataset. As verified in section 5.3, our modified pooling
strategy outperforms max pooling when the codebook size is below 4K. Though the SURF cod-
ing dimension is high, the color codebook size is just within this range. Therefore, because of
the contribution of color features, our pooling method outperforms max pooling.

Compared with the results in [14], we can see that opponent color features extracted around
key-point rather than micro dense sampling, combined with SURF feature can also be a good
feature combination. The retrieval results are approximate but the time consumed is less.

Conclusions
Sparse coding scheme can encode feature descriptors from an image into a fixed size image vec-
tor, which has been successfully used in image classification. However, using sparse coding
scheme for image retrieval has not been intensively studied. In this paper, we have not only
analyzed the effects of feature extraction and pooling strategies on image retrieval performance
under sparse coding framework, but also aggregated SUFR and color descriptors together for

Table 7. Retrieval results with multiple features on UKB dataset.

Dimension(SURF+color) 2K 3K 5K 9K

Sum 3.3675 3.3983 3.4127 3.4176

Max 3.4120 3.5020 3.6128 3.7135

Our 3.4647 3.5210 3.6385 3.7278

doi:10.1371/journal.pone.0131721.t007

Table 8. Retrieval results with multiple features on Holidays dataset.

Dimension(SURF+color) 2K 3K 5K 9K

Sum 0.6700 0.6833 0.7046 0.7351

Max 0.7008 0.7280 0.7458 0.7539

Our 0.7194 0.7351 0.7595 0.7651

doi:10.1371/journal.pone.0131721.t008
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large-scale image retrieval. By further incorporating color feature, our sparse coding scheme
achieves better performance on several benchmark databases than the-state-of-art methods.
Moreover we have discussed the probabilistic essence of sum and max pooling and proposed a
modified sum pooling strategy which can improve the retrieval accuracy significantly, espe-
cially for smaller visual vocabularies. In the future, more efforts will be made to explore the
intrinsic properties of max pooling and to reduce the computation complexity of sparse coding
method.
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