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Dependent Type-1 Interferons in
Shaping the Tumor Immune
Microenvironment
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Purnima Sundar , Xiao Wang, Kenneth G. Geles, Shobha Potluri and
Shahram Salek-Ardakani*

Cancer Immunology Discovery, Worldwide Research, Development and Medical, Pfizer Inc., San Diego, CA, United States

Toll-like receptor (TLR) agonists have received considerable attention as therapeutic
targets for cancer immunotherapy owing to their ability to convert immunosuppressive
tumor microenvironments towards a more T-cell inflamed phenotype. However, TLRs
differ in their cell expression profiles and intracellular signaling pathways, raising the
possibility that distinct TLRs differentially influence the tumor immune microenvironment.
Using single-cell RNA-sequencing, we address this by comparing the tumor immune
composition of B16F10 melanoma following treatment with agonists of TLR3, TLR7, and
TLR9. Marked differences are observed between treatments, including decreased tumor-
associated macrophages upon TLR7 agonist treatment. A biased type-1 interferon
signature is elicited upon TLR3 agonist treatment as opposed to a type-2 interferon
signature with TLR9 agonists. TLR3 stimulation was associated with increased
macrophage antigen presentation gene expression and decreased expression of PD-
L1 and the inhibitory receptors Pirb and Pilra on infiltrating monocytes. Furthermore, in
contrast to TLR7 and TLR9 agonists, TLR3 stimulation ablated FoxP3 positive CD4 T cells
and elicited a distinct CD8 T cell activation phenotype highlighting the potential for distinct
synergies between TLR agonists and combination therapy agents.

Keywords: TLR - toll-like receptor, TLR3 agonist, TLR7 agonist, TLR9 agonist, IFN - interferon, tumor, scRNA-Seq
INTRODUCTION

Toll-like receptors (TLRs) represent a first-line in host defense, providing a means by which signals
derived from invading pathogens or host insult initiate activation of the innate immune system (1).
Activation of macrophages and dendritic cells through TLRs elicits inflammatory cytokine
production, upregulates antigen presentation machinery, and instructs dendritic cells (DCs) to
migrate to tissue draining lymph nodes, initiating adaptive immune processes (2). In mice and
humans, the TLR family of receptors is represented by 10 and 12 members, respectively. These distinct
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receptors differ in their ligand selectivity, subcellular localization,
and cell subset distribution, enabling the detection of a diverse
range of insults. Besides TLR3, mouse and human TLRs all
interact with the adapter protein MyD88 leading to nuclear
factor-kB (NF-kB) dependent expression of inflammatory
cytokines. Additional TLR-induced signaling pathways proceed
via the TRIF, TRAM, and TIRAP adapter proteins, ultimately
leading to interferon (IFN) regulatory factor (IRF) and NF-kB
dependent gene expression (3, 4). Thus, stimulation of distinct
TLRs induces overlapping gene expression profiles, yet notable
differences do exist between receptors (5).

The immune-stimulatory properties of TLRs have led to their
exploration as cancer immunotherapy agents (6) and FDA
approvals have been granted for several TLR agonists in
oncology. These include the BCG vaccine for non-metastatic
bladder cancer whose effects are largely mediated via TLR2/4 (7),
and the TLR7 agonist imiquimod which is approved for the
treatment of acidic keratosis and basal cell carcinoma (8). Many
other agonists targeting TLRs have been considered for use as
clinical oncology agents, including agonists targeting TLR2,
TLR3, TLR7, TLR8, and TLR9, see (9) and (6) and references
within. Single-agent trials with these compounds have typically
shown modest signs of clinical efficacy mimicking findings from
the pre-clinical setting. Reasons for their incomplete clinical
benefit include dose-limiting toxicity and the requirement for
intra-tumoral delivery (9). Furthermore, as TLR agonists engage
innate immunity, the absence of adaptive immune de-repression
of cytotoxic T-cells may mask potential efficacy. Indeed, the
rationale that TLR agonists will polarize the tumor
microenvironment from an unfavorable ‘cold’ state to an
immune-stimulatory ‘hot’ state, providing synergy with
checkpoint inhibitors that influence adaptive immunity has led
to the inception of numerous clinical trials combining these
agents (6, 10, 11).

More needs to be done to understand the immunomodulatory
role of individual TLRs in the tumor, and the influence of TLR
agonists on the immune microenvironment. An improved
understanding in this area may aid in the design of rational
combinations of TLR agonists with additional immunotherapies.
Here we treat B16F10 melanoma with agonists of the endosomal
TLRs TLR3, TLR7 and TLR9 to understand the influence of these
agents on immune polarization in a ‘cold’ tumor model.
Transcriptomic profiling using single-cell RNA-Seq unveils
considerable differences in the tumor-immune microenvironment
between TLR agonists. Most notably, we identify the presence of a
type-1 interferon dominated gene signature and the absence of
regulatory CD4+ Foxp3+ Tregs in response to TLR3 stimulation.
These effects may be attributed both to the DC selective-expression
of TLR3 and its unique intracellular signaling characteristics.
MATERIALS AND METHODS

Animals
Six- to eight-week-old female C57BL/6 mice were purchased
from Jackson Laboratories (Bar Harbor, ME). All animals were
Frontiers in Oncology | www.frontiersin.org 2
housed in a pathogen-free vivarium facility at Rinat/Pfizer Inc
(South San Francisco, CA), and experiments were conducted
according to protocols in accordance with the Institutional
Animal Care and Use Committee (IACUC) guidelines.

Cells
B16F10 melanoma cells were cultured in Dulbecco’s Modified
Eagle Medium supplemented with 10% fetal bovine serum and
100 IU/mL penicillin-streptomycin at 37°C in an atmosphere of
5% carbon dioxide and IMPACT tested for pathogens at the
Research Animal Diagnostic Laboratory (Columbia, MO).
Pathogen-free cells in the exponential growth phase were
harvested and used for tumor inoculation.

Subcutaneous Tumor Models in Mice
C57BL/6 mice were inoculated subcutaneously with 5 × 105

B16F10 cells in 0.1 mL of phosphate-buffered saline (PBS). Three
animals were recruited into each treatment arm 10 days post-
inoculation, at which point tumors volume were approximately
150 mm3. Tumor size was measured in two dimensions using a
digital caliper. The volume was expressed in cubic millimeters
using the formula V= 0.5 x (L x W2), where L and W are the long
and short diameters of the tumor, respectively. 50 µL of each TLR
agonist was delivered by intratumoral injection in PBS, or PBS
vehicle control was used. The following agonists were used in this
study: TLR3 agonist Poly I:C (100 µg total, Invivogen, CA), a
TLR7/8 agonist (150 µg total) lacking the C18 lipid moiety (12)
and referred here within as TLR7 due to the known inactivity of
murine TLR8, and TLR9 agonist CpG1826 (13) (100 µg total).

Single-Cell RNA-Seq and Gene
Expression Quantification
Harvested tumors were dissociated to obtain single-cell
suspensions using the mouse tumor dissociation kit (Miltenyi
Biotec; Bergisch Gladbach, Germany) according to the
manufacturer’s protocol and cells from three individual mouse
tumors pooled for each TLR treatment condition. Cells were
counted using a Vi-CELL (Beckman Coulter; Brea, CA), and
stained using fluorescently labeled anti-mouse CD45 antibody
(clone 30F11, Thermo Fisher Scientific; Waltham, MA) to allow
purification of live CD45+ cells using a FACSAria II cell sorter
(BD Biosciences; San Jose, CA). Purified CD45+ cells were
counted using the Cellometer K2 Viability Cell Counter
(Nexcelom; Lawrence, MA) before to loading on a Chromium
Single Cell Chip (10x Genomics; Pleasanton, CA) per
manufacturer’s guidelines. Library construction was performed
using 50 ng cDNA following the Chromium Single Cell 5’
Library and Gel Bead Kit protocol (10x Genomics). Libraries
were sequenced using the NovoSeq 6000 platform (Illumina; San
Diego, CA). Data were processed using the Cell Ranger v2.1.1
(10x Genomics) to generate count-level data for further analysis.
Each lane of cells was processed independently using the Cell
Ranger count. The unique molecular identifier (UMI) counts for
each sample were then merged using Seurat v2.3.1, requiring that
the number of expressed genes for each cell was > 500 and
< 5000. Cells with > 5% of UMI originated from mitochondrial
genes were removed. Genes expressed in at least three cells were
July 2021 | Volume 11 | Article 711673
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kept and then normalized and scaled using the default setting in
Seurat. Raw sequence data relating to this study have been
deposited at Gene Expression Omnibus under accession
number GSE179449.

Single-Cell Clustering, Annotation,
Differential Expression, and GSEA
For each sample, we selected the top 2000 highly variable genes
(HVG). These genes were combined into 3,756 HVG for
downstream analysis. Canonical correlation analysis (CCA)
(14) was then performed to align cells across different samples
using the top 20 CCA components. Cell clustering was
performed on the aligned CCA space using Seurat. In total 16
cell clusters were generated at resolution 1.2. The cell identity
was determined by a manual review of top differentially
expressed genes in each cell cluster. To identify genes that were
differentially regulated upon TLR treatment, we performed
differential gene expression (DGE) analysis between treatment
conditions within clusters using the Wilcoxon rank-sum test.
Functional enrichment of DE genes within each cluster was
performed using fGSEA by considering the ranked gene lists
generated in the comparison between TLR treatment arm and
vehicle control. Visualization of single-cell RNA-Seq data was
performed using Seurat, or in R using ggplot2 and heatmap.2.
RESULTS

Single-Cell RNA-Seq Defines the Immune
Infiltrate of B16F10 Melanoma
To assess the influence of TLR agonists on tumor immune
activation profiles, B16F10 melanoma was chosen as a poorly
immunogenic ‘cold’ tumor model to understand whether
different TLR agonists differentially affect the tumor immune
microenvironment. We focused our analysis at 24 hours post-
treatment to understand the effects of TLR treatment on myeloid
and DC polarization and gain insight into potential downstream
processes that occur as a result of this activation. Subcutaneous
B16F10 melanoma tumors were grown to 150 mm3 then injected
I.T. with selective agonists targeting TLR3, TLR7or TLR9, or
vehicle control respectively (Figure 1A). Twenty-four hours
post-treatment CD45+ cells were FACS purified from three
independent biological replicates, pooled and processed for 10x
single-cell RNA-Sequencing. mRNA profiles belonging to 3,756
cells spanning all four conditions were clustered, defining 16
tumor-associated immune cell subsets (Figure 1B). Tumor-
associated myeloid populations were identified including one
tumor-associated S100a9 positive neutrophil population (TAN);
six macrophage (TAM)/monocyte populations expressing Csf1r,
CD64 (Fcgr1) and CD11b (Itgam); one cDC1 population
expressing Batf3 and Clec9a; one cDC2 population marked by
Cd209a expression, a migratory DC subset expressing Ccr7 and
Ly75 and a Siglech positive pDC population (Figures 1C, D).
Additionally, two CD8 T cell populations were identified that
express activation and exhaustion-associated markers including
Pdcd1, Lag3, Tim3 and Tigit, these were found to differ in their
Frontiers in Oncology | www.frontiersin.org 3
proliferation signatures as determined by differential Mki67 and
Top2a expression. One NK cell population expressing Ncr1 was
present alongside one CD4 T cell population co-expressing Cd4
and Foxp3; finally another CD3 positive T cell population
putatively classified as CD4 positive yet possessing low CD4,
somewhat higher CD8 expression and higher levels of Cd7 and
may thus be naïve CD8 T cells (15). Myeloid cells, consisting of
tumor-associated monocytes and macrophages, represented
58.7% of the total tumor immune infiltrate and were by far the
most abundant component of the immune cell infiltrate. CD4
and CD8 T cells accounted for 7.4% and 15.7%, respectively, NK
cells represented 4.4%, and dendritic cells comprised 12.8%
(Figure 1E). To identify populations that respond to TLR
stimulation within the tumor microenvironment, we assessed
TLR3, 7 and 9 expression within clusters (Figure 1F). TLR
expression was restricted to myeloid populations with very low
levels observed in NK and T cell subsets. Within the myeloid
compartment expression profiles were found to be notably
distinct. TLR3 was restricted to the classical dendritic cell
(cDC) population Xcr1+ cDC1s, whereas TLR7 was highly
expressed across TAM populations and pDCs, but less
abundant in cDCs. TLR9 was generally less abundant than
TLR7, however, it was observed in pDCs, both DC1 and DC2
subsets, and across monocyte and macrophage subsets 9, 10, and
11. Thus, the tumor immune landscape is characterized by
abundant tumor-associated myeloid populations that
differentially express TLRs and the major adaptive and innate
cytotoxic lymphocyte subsets.

Characterization of Intra-Tumoral TLR
Expressing Cell Subsets
To better understand the characteristics of the TLR expressing
monocyte and macrophage populations we surveyed the
expression profiles of prototypical (Figure 2A) and subset-
specific marker genes (Figure 2B and Supplemental Table 1)
for the four TAM (clusters 2, 3, 9 and 10) and two monocyte
clusters (8 and 11). All subsets expressed high levels of Cd11b,
Csf1r, Csf2ra, Cd14, Cd64 and Cd68 confirming their initial
classification as tumor-associated macrophages and monocytes
(Figure 2A). The relative expression of Adrge1 (F4/80) and
Cd206 were higher in TAM clusters 2 and 3, implying that
these are mature TAMs. Phenotypic clustering identified
markers that distinguished TAM populations (Figure 2C),
cluster 2 was classified by expression of Vegfa and Il7r while
Vcam and Ccl8 (MCP-3) demarcated cluster 3 (Figure 2C).
TAM cluster 9 possessed abundant MHCII-associated gene
expression, including H2-Ab1 and Cd74 suggesting that these
cells may have a role in CD4 T cell activation. Myeloid cluster 10
expressed few unique genes but did express the transcription
factor Spic alongside monocyte cluster 8, which we defined as
nonclassical (Ly6c-) monocytes based on previously defined
profiles that include selective Ceacam1 and Ace expression
(16). Finally, monocyte cluster 11 were determined to be
classical (Ly6c+) inflammatory monocytes based upon Vcan
and Ly6C2 expression (17). To explore relationships between
these TAMs, we used single-cell trajectory analysis (Figure 2D).
July 2021 | Volume 11 | Article 711673
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Classical and nonclassical monocytes were adjacent, while Vegfa
and Vcam1 positive TAMs were distal to the monocytes.
MHCII+ and Spic+ TAMs occupied an intermediate branch of
the trajectory tree. We also identified intra-tumoral DC subsets,
including two Flt3+, Batf3+ cDC1 populations that differentially
express Dec205 (Ly75) and Clec9a, pDCs expressing Siglech and
Spib, and the CD11b positive cDC2 population expressing
Cd209a and high levels of MHCII (Figure 2E). These findings
establish the presence of multiple discreet DC and TAM
Frontiers in Oncology | www.frontiersin.org 4
populations possessing distinct differentiation states that may
respond differently to TLR stimulation.

Tlr3 Agonist Elicits a Type 1 Interferon
Signature Within the Intratumoral Myeloid
Compartment
To address whether distinct TLR agonists impart similar effects
on the tumor microenvironment, we assessed the responses of
individual TAM and DC subsets to TLR treatment. First, we
A B

C E

D F

FIGURE 1 | Schematic overview of experiment. (A) B16F10 tumors were grown to ~150 mm3 and intra-tumorally injected with TLR agonists. 24 hours post
injection tumors were harvested and prepared for scRNA-Seq to profile tumor immune landscape following treatment. (B) tSNE plot showing the presence of tumor
associated immune cell subsets identified by scRNA-Seq. (C) Gene expression intensities for key lineage marker genes plotted on tSNE biaxial plot demarcating
major T cell (CD3e, CD4, CD8a), NK cell (Ncr1) dendritic cell (Batf3, Xcr1, Ly75, Ccr7, Siglech) neutrophil (S100a9) and macrophage (Fcgr1, Csf1r) subsets. (D) Dot
plot showing expression distribution of a wider panel of phenotypic markers for major immune cell subsets identified in (C). (E) Pie chart showing the frequency
distribution between cells in clusters identified in (B) across all tumor samples. (F) Dot plot showing the expression of Tlr3, Tlr7 and Tlr9 genes in tumor-infiltrating
CD45+ cells.
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assessed changes in cell frequencies within the DC compartment.
TLR3, 7 and 9 agonists moderately decreased DC frequencies to a
similar degree, however, the relative abundance of individual
subsets was not affected potentially reflecting DC activation and
Frontiers in Oncology | www.frontiersin.org 5
migration to draining lymph nodes (Figure 3A). However,
within the TAM compartment, we found that TLR7 agonism
led to a profound reduction in TAM frequencies 24h post-
treatment (Figure 3B), while TLR3 and TLR9 stimulation had
A

C D

E

B

FIGURE 2 | Transcriptional phenotyping of tumor-associated macrophage populations. (A) The expression of canonical macrophage lineage markers denotes a
large cluster of TAMs comprising the bulk of the CD45+ infiltrate, (B) Hierarchical clustering of TAM subset marker genes identified during Seurat subset clustering,
(C) Expression distribution of TAM-subset specific marker genes, (D) Pseudotime plot showing relative distances of TAMs to one another, split by cluster, denoting
transcriptional relationships between TAM subsets, and, (E) tSNE plot showing marker distribution of key cDC-subset associated genes.
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little impact on overall numbers. Instead, TLR3 and TLR9
agonists altered TAM subset composition, with both
treatments decreasing in the number of Vegfa and Vcam1
positive macrophages (Figure 3B). This reduction was offset by
a relative increase in Ly6Clow monocytes by 3.4 and 4.8-fold for
TLR3 and TLR9 and 2.8 and 2.0 for Spic positive macrophages.
In order to understand potential chemoattractants contributing
to this recruitment we evaluated the expression of Ccl2 and Ccl5.
We found that TLR3 agonist increased, while TLR9 agonist
decreased Ccl2 expression in TAM and that DCs did not
express this chemokine at an appreciable level (Figures 3C and
S1A). Ccl5 was expressed at a low level by TAMs (Figure S1B)
but highly by DCs, specifically we found that the activated
migDC subset expressed high levels of Ccl5 in response to
treatment with all TLR agonists (Figures 3D and S1B). Thus,
TLR agonists elicit Ccl2 and Ccl5 expression within the myeloid
compartment, potentially underpinning the recruitment of
monocytes following TLR agonist treatment.

To understand differences in TAM gene expression resulting
from TLR agonist treatment we combined TAM subsets to
obtain an aggregated view of TLR treatment. Pathway analysis
identified differences in antigen presentation, immune signaling
pathways, and chemokine signaling between treatment
conditions (Figure 3E). Relative to TLR7, TLR3 and TLR9
agonists both increased antigen presentation gene expression
(Figure 3E). Consistent with this TLR3 and TLR9 agonists
enhanced interferon pathway utilization, however, while TLR3
increased type-1 interferon pathway (IFNa/b) genes, TLR9
possessed a type-2 interferon (IFNg) biased gene signature
(Figure 3E). At the individual TAM subset level, we found
that TLR3 and TLR9 agonists both upregulated antigen-
presentation genes compared to vehicle control (Figures S1C,
D). TLR3 stimulation showed relatively higher expression of
genes involved in MHC-I antigen presentation, including B2m,
Tap1, H2-D1 and H2-K1 compared to TLR9. At the same
time TLR9 demonstrated higher expression of intracellular
antigen processing apparatus, including immunoproteasome
components Psmb8/9/10 and Psme1/2 (Figure 3F). Furthermore,
TLR3 agonist increased antigen presentation-associated gene
expression across TAM subsets, whereas the effects of TLR9-
dependent gene expression were biased towards myeloid
populations expressing higher levels of TLR9, notably clusters 9,
10 and 11.

The relatively uniform induction of antigen presentation
genes across TAM subsets by TLR3 agonist contrasted with the
restricted expression of TLR3 by cDC1 subset 16 (Figure 1F).
We questioned whether this was representative of TLR3-induced
gene expression and if TLR3-dependent effects differ from TLR7
and TLR9 induced changes in TAM gene expression. To address
this, we performed differential expression analysis between TLR
ligand and vehicle control-treated samples for each TAM cluster
and evaluated patterns of differential gene expression by
hierarchical clustering (Figures 3G and S1E). TLR3 agonist-
induced gene expression was generally consistent across TAM
subsets, supporting a model of indirect activation. Increased
MHC-I antigen presentation genes and IFNa/b pathway
Frontiers in Oncology | www.frontiersin.org 6
utilization are consistent with a role of DC1-derived type 1
interferon in regulating TAM gene expression. Consistent with
its broad expression, TLR7 agonist widely affected gene
expression, albeit impacting an overlapping, but distinct gene
set to the TLR3 agonist poly I:C. TLR9 stimulation was found to
influence similar genes to TLR7 (Figure 3G). However, induced
expression levels in TLR9 high classical and nonclassical
monocyte subsets were higher than those in TLR9 low Vegfa
and Vcam1 positive TAMs (Figure 3G). Finally, we assessed
differential gene expression amongst members of the TNF and
IgG gene families as critical gene modulators of immune
activation. Multiple genes were differentially regulated (Figure
S1F), and expression typically trended in the same direction
relative to vehicle control independent of agonist treatment.
Surprisingly however, nonclassical monocyte cluster 8
demonstrated a unique expression pattern upon TLR7 and
TLR9 treatment (Figure 3H) characterized by lower levels of
Fcgr1 and higher levels of the inhibitory receptors Cd274 (PD-
L1), Pirb and Pilra as well higher expression of Trem3, Treml4,
Cd300ld, Cd300e. These data indicate that the main effects of
TLR7 and TLR9-dependent gene expression occur in the TME
via interactions with their cognate TLR and involve the
upregulation of inhibitory receptors on nonclassical
monocytes. TLR3-dependent gene expression however, appears
to be independent of TLR expression and may result indirectly
from interferon IFNa/b secreted by TLR3 expressing cDC1 cells.

TLR3 Agonist Decreases Signature of
CD4+ Regulatory T Cells in the TME
Type-1 interferons profoundly influence adaptive immune
responses by regulating antigen presentation thus influencing
the activation and survival of effector T cells (18). We
hypothesized that the TLR3-induced IFNa/b response
distinctly affected the adaptive immune compartment to that
induced by TLR7 and TLR9 agonists. As MHCI presents antigen
to CD8 T cells, we first assessed changes in CD8 T cell gene
expression. Hierarchical clustering of differentially regulated
CD8 T cell genes showed that TLR3 agonist does indeed
impart a unique transcriptional signature (Figure 4A). All TLR
ligands induced gene signatures consistent with early T cell
activation indicated by enhanced cell cycle pathway utilization
(Figures S2A, B). However, TLR3 treatment selectively
increased gene expression terms associated with translational
and ribosome utilization. Changes in T cell phenotypes at this
24-hour timepoint are not consistent with de novo priming and
trafficking of naïve cells from the lymph node to the tumor.
Rather we expect these distinct transcriptional signatures reflect
differences in the quality of TCR engagement mediated by
myeloid-T cell interactions within the tumor upon treatment
with these distinct TLR agonists.

Similar effects of TLR3 were observed within the CD4 T cell
compartment (cluster 12), TLR3 stimulation with Poly I:C led to
a distinct gene expression profile characterized by increased
type-1 interferon signaling associated genes including Isg15,
Irf7 and Bst2 (Figures 4B and S2C). As TLR-induced
inflammatory cytokines are known to induce regulatory T cell
July 2021 | Volume 11 | Article 711673
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A

D

F

G H

E

B C

FIGURE 3 | Functional profiling of TAM populations during TLR treatment. (A, B) The frequency of tumor-associated (A) dendritic cell and (B) macrophage subsets
amongst CD45+ cells 24 hours post injection of TLR agonist, (C, D) Violin plots showing the expression distribution of (C) Ccl2 mRNA between treatments for all
TAM subsets, and (D) Ccl5 mRNA within the activated migDC subset. (E) fGSEA pathway enrichment of Reactome pathways of TAM-associated genes compared
to vehicle control, (F) Violin plots showing expression distribution of antigen-presentation associated genes in TAM subsets for TLR3-treated (red) and TLR9-treated
(blue) tumors, (G) Hierarchical clustering of differentially expressed genes upregulated upon TLR3-treatment (clusters 5 and 11 from Figure S1E) showing uniform
induction of gene expression in non-TLR3 expressing TAM subsets, and (H) Dotplot showing the relative expression of differentially expressed IgG and TNF receptor
family members in nonclassical monocytes upon TLR agonist treatment. Statistical p values for panels (C, D, F) derived from Wilcoxon test; n.s., not shown, *p <=
0.05, **p <= 0.01, ***p <= 0.001, ****p <= 0.0001.
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(Treg) expansion (19), we questioned whether this could be
explained by altered Treg polarization. Strikingly, we found that
Foxp3 expression was considerably lower in TLR3- treated CD4
T cells than in vehicle control. In contrast, TLR7 and TLR9
agonists both upregulated Foxp3 expression on CD4 T cells
(Figure 4C). To affirm this observation, we plotted the
expression of tumor-specific Treg signature genes (20)
Frontiers in Oncology | www.frontiersin.org 8
comparing TLR3 gene expression against TLR7 and TLR9
induced gene expression in CD4 T cell cluster 12 (Figure 4D).
These results show lower expression of Treg signature genes
upon TLR3 stimulation 24h post treatment, consistent with a
relative reduction in the number of Foxp3+ regulatory CD4 T
cells upon TLR3 stimulation (Figure 4E). Thus, TLR3 treatment
leads to a unique intra-tumor T cell phenotype characterized by
A B

C D E

FIGURE 4 | Effects of TLR treatment on adaptive immune cell populations. Hierarchical clustering of differential expressed genes between treatment conditions for,
(A) CD8 T cell subsets 6 (activated, non-proliferative) and 7 (activated, proliferative), and (B) CD4 T cell subset 12. (C) Ridge plot showing Foxp3 mRNA expression
in CD4 T cell cluster 12 upon TLR agonist treatment, (D) The relative expression of Treg-associated genes in CD4 T cells (cluster 12) from TLR3-treated samples
compared to the average expression of these genes in the same cluster for TLR7 and TLR9-treated samples, and (E) the total frequency of tumor-infiltrating CD4 T
cells as a percentage of CD45+ cells upon treatment with TLR agonists.
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distinct CD8 RNA expression profile and the loss of a regulatory
T cell gene signature 24 hours post-treatment.
DISCUSSION

We set out to compare the influence of intra-tumoral TLR
agonist delivery on tumor immune composition. Because TLR
agonists provide essential co-stimulation to the innate immune
system, they can convert the TME from ‘cold’ to ‘hot’, making
these compelling candidates for cancer immunotherapy. To our
surprise, we observed substantial differences in immune response
profiles to treatment with distinct TLR agonists targeting TLR3,
TLR7 and TLR9. These effects were most evident within the
tumor-associated macrophage compartment, likely due to their
relatively high TLR expression. TAM subsets were found to differ
in the absolute and relative expression of distinct TLRs, which
also signal via distinct pathways. TLR7 and TLR9 were found to
be more broadly expressed, and both commonly elicit the
MyD88-NF-kB axis, whereas TLR3 expression was restricted to
the cDC1 population and signals via TRIF-IRF pathway (3).

Most notably, we observed that TLR7 drove a profound loss
of TAMs 24 hours post-treatment, which was not observed for
TLR9 despite their redundant intracellular signaling pathways.
As TLR7 is more abundant than TLR9, this difference may be
explained by receptor expression. However, distinct ligand
properties may also influence downstream TLR biology (21).
TLR3 and TLR9 agonists decreased the frequency of mature
TAMs expressing F4/80 and CD206, leading to a concomitant
increase in monocyte frequencies. The transient loss of mature
macrophages is a common feature of acute inflammation and has
been postulated to allow infiltrating inflammatory monocytes to
differentiate and orchestrate appropriate inflammatory responses
(22). In this regard, TLR3 and TLR9 agonists increased mRNA
expression of chemokines Ccl2 and Ccl5 within intra tumoral
myeloid populations that may influence subsequent cell
recruitment and activation.

Increased TAM MHCI expression and signatures of early
CD8 activation were a common feature of TLR agonist
treatment. However, TLR7 and TLR9 agonists both elicited a
parallel increase in Foxp3 positive CD4 T cells, one explanation
for which could be TAM derived IL-10 produced because of
Myd88-NF-kB signaling (23, 24). TLR3-dependent effects
mediated by Poly I:C did not possess this Treg signature at the
24 hr timepoint yet did maintain abundant antigen presentation
and early CD8 T cell activation gene signatures. TLR3 treatment
coincided with a type 1 interferon pathway gene signature,
which was observed broadly within the tumor immune
microenvironment. As cDC1 cells most abundantly express
TLR3 and were found to be the only major source of TLR3
within the tumor, our findings are consistent with DC-derived
type 1 interferon-mediated polarization of the tumor immune
microenvironment. An alternative interpretation is that poly I:C
elicits these broad effects through the ubiquitously expressed
intracellular RNA-sensing RigI-Mda5 pathway rather than
indirectly via TLR3-IFNa/b pathway (25). Indeed, our
Frontiers in Oncology | www.frontiersin.org 9
pathway analysis identified a RigI-Mda5 gene signature upon
poly I:C treatment (Figure 3C). However, the genes contributing
to the RigI-Mda5 pathway signature overlap with type 1
interferon pathway signature genes. Furthermore, our pathway
analysis identified a stronger association between the RigI-Mda5
pathway and the TLR9 agonist CpG, which is not a ligand for
either the RigI or Mda5 receptors (26), arguing that the RigI-
Mda5 association may be a false positive. Finally, we did not
observe TLR3, TLR7 or TLR9 expression in previously published
RNA-Seq data of in vitro cultured B16F10 melanoma (data not
shown), ruling our direct effects of agonist treatment on the
tumor itself (27). Ultimately our data demonstrate that the TLR3
agonist poly I:C elicits fundamentally distinct immunologic
effects compared to TLR7 and TLR9 agonists.

Here, using a system-wide interrogation of the tumor
immune microenvironment following treatment with three
distinct TLR agonists, we demonstrate that three distinct
tumor immunophenotypes are elicited within the TAM
compartment. It should be noted that one limitation of our
study is that these effects are only reported for a single tumor
model and at a single timepoint. Additional studies will be
necessary to determine the extent to which these observations
translate into different models. As cancer immunotherapy
approaches frequently rely upon combinations (6, 28), these
findings highlight the importance of appreciating the broader
implications of agents’ effects on the tumor immune
microenvironment in order to ensure such combinations are
both rational and complementary.
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