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Abstract: In pigment cells, melanin synthesis takes place in specialized organelles, called
melanosomes. The biogenesis and maturation of melanosomes is initiated by an unpigmented
step that takes place prior to the initiation of melanin synthesis and leads to the formation of
luminal fibrils deriving from the pigment cell-specific pre-melanosomal protein (PMEL). In the lumen
of melanosomes, PMEL fibrils optimize sequestration and condensation of the pigment melanin.
Interestingly, PMEL fibrils have been described to adopt a typical amyloid-like structure. In contrast
to pathological amyloids often associated with neurodegenerative diseases, PMEL fibrils represent an
emergent category of physiological amyloids due to their beneficial cellular functions. The formation
of PMEL fibrils within melanosomes is tightly regulated by diverse mechanisms, such as PMEL traffic,
cleavage and sorting. These mechanisms revealed increasing analogies between the formation of
physiological PMEL fibrils and pathological amyloid fibrils. In this review we summarize the known
mechanisms of PMEL fibrillation and discuss how the recent understanding of physiological PMEL
amyloid formation may help to shed light on processes involved in pathological amyloid formation.

Keywords: melanosome; PMEL; amyloid; pigmentation; fibril formation; melanocyte; secretases;
apolipoprotein E

1. Introduction

In vertebrates, pigment cells synthesize and store melanin pigment in lysosome-related organelles
(LRO) called melanosomes. Melanin synthesis results from a complex sequence of chemical reactions
that is initiated by the conversion of L-tyrosine in dopaquinone by a key enzyme, Tyrosinase. After the
formation of dopaquinone, distinct pathways of synthesis lead to the generation of the red and yellow
pheomelanins or the black and brown eumelanins [1]. Major modulator of melanin synthesis and
switch from eumelanin to pheomelanin are intrinsic and extrinsic factors [2] that regulate notably
gene expression [3–5] of melanogenic factors. However, different events of endomembranes and
vesicle trafficking in pigment cells also tightly regulate melanin and melanosome production [6].
As a consequence, melanosomes synthesizing predominantly eumelanin or pheomelanin have distinct
contents and morphology. Eumelanosomes that synthesize mostly eumelanin have a characteristic
ellipsoidal shape due to the accumulation of intraluminal fibrils. In this review, we will focus on
the formation of these intraluminal fibrils in eumelanosomes, which we call hereafter melanosomes.
These fibrils are often referred to as “the melanosome matrix” [7,8] and arise from the proteolytic
processing of the pre-melanosomal protein (PMEL) that is also called Pmel17, gp100 or Silver in mice.
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PMEL fibrils are a major functional component of the melanosomal compartment as they optimize
melanin polymerization, condensation and storage [9].

PMEL fibrils have an amyloidogenic nature and share features with pathological amyloids [10].
Various proteins form amyloid fibrils in the context of pathologies such as neurodegenerative
Alzheimer’s and Parkinson’s diseases [11]. However, more recently, the concept of physiological
amyloids has emerged and PMEL fibrils represent the first physiological amyloids that have been
described in humans [10,12]. It is expected that understanding the different mechanisms underlying
optimal formation of physiological PMEL fibrils will help to understand the processes leading to the
formation of pathological amyloids. Indeed, to avoid any toxicity potentially associated with the
formation of amyloids, the fibrillation of PMEL is tightly regulated by different events that involve
PMEL traffic, cleavage and sorting into early melanosomal (premelanosomal) compartments [9].
However, mutations in PMEL that affect PMEL oligomerization and fibrillation render physiological
PMEL amyloid formation pathogenic [13]. Thus, PMEL amyloidogenesis can be considered as a
physiological reference to shed light on unexpected mechanisms that may be compromised under
pathological situations and lead to pathological amyloidogenesis.

Melanosomes mature through four different stages that can be divided into two main steps
(Figure 1) [6,14–16]. The unpigmented step comprises the generation of stage I and II melanosomes
that are referred as immature/premelanosomal compartments, whereas the pigmented step allows the
maturation of stage II into stage III and IV melanosomes that are denoted as mature/late compartments.
Melanogenesis requires morphological and functional modification of endosomal compartments,
where PMEL fibril formation is initiated. PMEL fibrils start to nucleate in stage I melanosomes that
correspond to multivesicular endosomes (MVEs) characterized by the presence of intraluminal vesicles
(ILVs), a clathrin coat at the cytosolic side and the absence of melanin [14]. In stage I melanosomes,
PMEL is cleaved and its luminal domain is sorted onto ILVs promoting the nucleation of fibrils.
Stage II melanosomes are characterized by the absence of pigment and the presence of PMEL fibrils
organized into parallel sheets that elongate the compartment. These fibrils serve as a matrix for melanin
synthesis, which starts in stage III melanosomes. In stage IV melanosomes, melanin synthesis reaches
its paroxysm and results in the complete masking of the fibrils [6]. Here, we present the main steps
regulating PMEL fibril formation and discuss the relevance of this amyloid structure in pigmentation
and its potential use as a reference model to better understand pathological amyloidogenesis.
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transported. Melanin is sequestered on PMEL fibrils, which become completely masked by melanin 
in stage IV melanosomes. In skin, mature stage IV melanosomes are transferred to keratinocytes (red 
arrow). 

Figure 1. Schematic representation of melanosome biogenesis. The different stages of melanosomes are
illustrated by electron microscopy pictures. Melanosome biogenesis is initiated in multivesicular
endosomes, also called stage I melanosomes, where PMEL fibrils start to assemble. In stage II
melanosomes, PMEL fibrils give the melanosomes their characteristic ellipsoidal shape and striated
appearance. Both stage I and stage II melanosomes are unpigmented. Melanin starts to be produced
in stage III melanosomes, to which melanin synthesizing enzymes, such as Tyrosinase or Tyrp1,
are transported. Melanin is sequestered on PMEL fibrils, which become completely masked by melanin
in stage IV melanosomes. In skin, mature stage IV melanosomes are transferred to keratinocytes
(red arrow).
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2. PMEL Protein Structure

PMEL is a type I transmembrane glycoprotein composed of a short signal peptide that is
co-translationally removed by peptidases, a long luminal N-terminal domain, a single transmembrane
domain and a short cytoplasmic C-terminal domain. Alternative splicing generates four different
human PMEL isoforms: a long, an intermediate and two short ones, which are all co-expressed [17]
and likely display distinct features in oligomerization and fibril formation as well as in their capacities
to bind melanin intermediates as fibrils [18].

The long luminal domain of PMEL is organized in four sub-domains, named NTR (N-terminal
region), PKD (polycystic kidney disease domain), RPT (repeat domain) and KLD (kringle-like domain)
that are highly conserved among vertebrates. The NTR subdomain follows directly the signal peptide
and contains 3 conserved consensus sites for N-glycosylation and 3 cysteine residues that might
participate in the formation of disulfide bonds necessary for correct folding of the protein preventing
any pre-aggregation [17]. The PKD domain follows the NTR and shares homology with PKD domains
found in the polycystin 1/PKD-1 protein (Polycystic Kidney Disease associated protein 1), which adopt
a β-sheet conformation [19]. The PKD domain does not contain any glycosylation sites and has only one
conserved cysteine residue. The RPT domain displays series of 10 imperfect direct repeats of 13 residues
rich in proline, serine, threonine, and glutamic acid. This domain becomes highly O-glycosylated
during PMEL maturation [20,21]. The last luminal domain is the KLD domain, which shows high
similarity to a cysteine rich domain called Kringle domain. The 7 cysteine residues found in the KLD
may be involved in domain folding, protein-protein interactions and formation of disulfide bonds with
cysteine residues found in the NTR or in the PKD [22]. The KLD domain also contains N-glycosylation
sites important for protein folding [23].

3. PMEL Forms Physiological Amyloids

Amyloids are characterized by a cross-β sheet quaternary structure and have been associated
with several pathologies, such as Alzheimer’s disease or Parkinson’s disease. Their assembly starts
from a monomer that oligomerizes and assembles into fibrils, which then organize into sheets. It has
been proposed that the toxicity associated to amyloid formation is rather caused by soluble oligomers
and not by assembled amyloid fibrils and sheets [24–26]. Different studies have demonstrated the
amyloidogenic nature of PMEL fibrils based on their physicochemical properties. Like pathological
amyloids, PMEL fibrils are very stable and insoluble in detergents [7,27,28]. X-ray diffraction studies
showed that they form β-sheet rich oligomeric structures, which assemble into fibrils, as observed by
electron microscopy. These fibrils bind specific amyloid dyes, like Thioflavines and Congo Red [10,29–31].
Interestingly, Fowler and colleagues noted that melanin intermediates and the amyloid binding dye
Thioflavine have similar structures [10]. Moreover, it has been shown that not only PMEL amyloids,
but also pathological amyloids formed by β-Amyloid (Aβ) or α-synuclein accelerate melanin synthesis
in vitro.

Although PMEL fibrils are physiological and functional, their formation represents a challenge for
pigment cells as an incorrect formation and organization of fibrils leads to toxicity. Thus, in contrast
to pathological amyloids, PMEL fibrillation is tightly regulated at different levels to avoid any
toxicity linked to the formation of amyloids. First, in melanocytes fibril formation is restricted to
melanosomes and this is ensured by a tight control of PMEL trafficking, sorting and processing.
Second, the kinetics of PMEL fibril formation is very fast compared to the one of pathological amyloid
fibrils. While pathological amyloids need several days to form in vitro, PMEL fibrillogenic domain
only requires several minutes [10,31]. This compartmentalization and fast kinetics prevent PMEL
aggregation in the wrong compartment and accumulation of toxic amyloid oligomers, respectively.
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4. PMEL Processing

As a type 1 transmembrane glycoprotein, PMEL is synthesized and modified in the ER by
the removal of its signal peptide, the addition of N-glycosylations and the formation of disulfide
bonds [32–34]. Immature PMEL is then exported from ER to the Golgi complex via the COPII
machinery that recognizes a valine residue in the C-terminal domain [35,36]. In the Golgi complex,
PMEL is further modified by the addition of O-glycosylations [23,32,34]. From the trans-Golgi network,
this mature form of PMEL is targeted to premelanosomal compartments either directly (only a minor
proportion) or indirectly via the plasma membrane and AP-2 dependent internalization [15,36].

In addition to these post-translational modifications, PMEL also undergoes multiple proteolytic
processing (Figure 2). It is first cleaved in the Golgi apparatus or a post Golgi compartment by
a proprotein convertase (PC) of the furin family to form a large luminal fibrillogenic Mα fragment
(composed of the NTR, PKD and RPT), which remains linked to the Mβ fragment (composed of
the KLD, the transmembrane and cytoplasmic domain) by a disulfide bond [27,32,37]. The function
of this cleavage still remains elusive but could modulate PMEL conformation and expose protein
interactions sites [27]. Recent studies identified some of the proteases involved in PMEL processing.
Once targeted to stage I melanosomes, the PC processed form of PMEL is cleaved by the β-secretase
BACE2 (β-site APP cleaving enzyme 2). BACE2, also called Asp1 (aspartyl protease 1) or memapsin 1
(membrane-anchored aspartic protease of the pepsin family), is a transmembrane aspartic protease
and the homolog BACE1, the well-known enzyme implicated in Alzheimer’s disease that cleaves
the Amyloid β Precursor Protein (APP). Although BACE2 can cleave APP, it is not implicated in
Alzheimer pathology [38]. BACE2 cleaves PMEL within the Mβ fragment to release the luminal
Mα fragment associated to a portion of the Mβ fragment called MβN from a C-terminal fragment
(CTF) [39]. This was the first time a β-secretase was reported to be involved in the processing of
a functional amyloid. Further proteolytic cleavage of Mα is required for proper fibril formation,
but with the exception of ADAM17 [40] other proteases remain unknown. The CTF generated by
BACE2 cleavage is then processed by γ-secretase enzyme to release a short intracytoplasmic domain
(ICD) [41,42]. A recent report identified the γ-secretase complex containing presenilin 2 (PSEN2) as
the major one acting on PMEL CTF but also on other melanosomal proteins [43].
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Figure 2. Schematic representation of pre-melanosomal protein (PMEL) protein domain structure.
Triangles and pentagons represent N- and O-linked glycosylations, respectively. PMEL cleavage sites
and the involved proteases are indicated in red. PMEL amyloid fibril formation requires processing
of the amyloidogenic Mα fragment into subfragments by still unknown proteases (indicated as ?).
Red arrows illustrate proteolytic PMEL processing steps and black arrow represents amyloid formation.
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5. PMEL Trafficking and Sorting

Concomitant with PMEL processing in stage I melanosomes, the luminally released Mα fragment
is sorted onto ILVs that are formed by invagination of the limiting membrane [15,32,42,44,45]. In most
cells, cargo sorted to ILVs are fated for lysosomal degradation—a process that is mediated by the
endosomal sorting complexes required for transport (ESCRT) machinery [46,47]. The recruitment
of the ESCRT machinery is initiated by ubiquitin moieties associated to the cytoplasmic domain
of transmembrane proteins. ESCRT subunits then induce clustering of cargo into membrane
microdomains, membrane budding and scission to generate ILVs [46,47]. In contrast, in melanocytes
the sorting of PMEL onto ILVs is independent of ubiquitin and its cytoplasmic domain [44].
PMEL sorting was also the first reported example of ESCRT-independent sorting despite the presence
of ESCRT subunits in a clathrin coat at the cytosolic side of stage I melanosomes. Our recent study has
demonstrated that ESCRT-independency only concerns the luminal fragment of PMEL [42].

Following BACE2 cleavage at the limiting membrane of stage I melanosomes, two distinct
processes sort the two cleavage products of PMEL, the Mα form and the CTF (Figure 3). While the
membrane integral CTF of PMEL is sequestered in an ESCRT-dependent manner into the clathrin coat
at the limiting membrane of the compartment, only the luminal amyloidogenic domain of PMEL is
sorted onto ILVs [42]. Thus, we rather consider the sorting of PMEL luminal domain as a loading
process on the surface of ILVs. Thus far, two main regulators of PMEL luminal domain loading have
been reported: Apolipoprotein E (ApoE) and CD63 (cluster of differentiation 63) [42,45]. To better
understand the sorting of PMEL onto ILVs we notably used ILVs secreted as exosomes as reporters of
endosomal sorting processes. ApoE is associated to the surface of exosomes and ILVs and interacts with
the PMEL luminal domain. The presence of ApoE on ILVs allows the loading of PMEL amyloidogenic
domain on ILVs [45]. This loading process also involves the tetraspanin CD63, a known component of
the late endosomal pathway, whose role remained still elusive [48]. Our studies revealed that CD63 is
important for PMEL loading on ILVs for at least two reasons. First, CD63 regulates targeting of ApoE
towards stage I melanosomes and association to ILVs. Accordingly, the absence of CD63 results in
decreased loading of processed PMEL luminal domain on ILVs. Second, CD63 interacts with PMEL
CTF (and full-length) and likely embeds it in tetraspanin enriched microdomains [49] at the limiting
membrane of stage I melanosomes. Depletion of CD63, however, induces a targeting of full-length
PMEL towards the clathrin coat and the ESCRT-dependent pathway. This suggests that integration of
PMEL into CD63 enriched microdomains may prevent premature targeting of full-length PMEL to
the ESCRT machinery and thus allow PMEL cleavage by BACE2 and loading of the amyloidogenic
domain onto ILVs.

Regarding the CTF of PMEL, its sequestration in an ESCRT-dependent manner into stage I clathrin
coat is directly linked to its degradation by γ-secretase as depletion of ESCRT-I subunits induces large
accumulation of CTF [42]. This is in agreement with treatment of cells with γ-secretase inhibitor
that leads to CTF accumulation at the limiting membrane of stage I melanosomes, on tubulations
emerging from stage I melanosomes and in lysosomes [42]. The recent localization of PSEN2 containing
γ-secretase complex to lysosomes is line with this observation [43]. However, the trafficking processes
involved in encountering of PMEL CTF present in stage I melanosomes with the γ-secretase complex
localized in lysosomes are still unknown.
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Any PMEL mutation that impairs its trafficking to stage I melanosomes causes a defect in 
fibrillogenesis. Several of such mutations have been identified and revealed that multiple 
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export or impaired AP2-dependent internalization from the plasma membrane cause PMEL 
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Figure 3. Model for pre-melanosomal protein (PMEL) fibril formation in stage I melanosomes.
The amyloidogenic Mα fragment of PMEL is released into the lumen of stage I melanosomes by action of
BACE2 (beta-site APP cleaving enzyme 2) protease. This cleavage also produces a C-Terminal Fragment
(CTF) that is sequestered at the limiting membrane of stage I melanosomes by the endosomal sorting
complexes required for transport (ESCRT) machinery, to be further cleaved by the presenilin 2 (PSEN2)
of the γ-secretase complex in lysosomes. The Mα fragment is then loaded onto intraluminal vesicles
(ILVs) in a process that requires the tetraspanin CD63 (cluster of differentiation 63) and apolipoprotein
E (ApoE). ILVs have been proposed to act as nucleators for PMEL fibril formation. One may speculate
that CD63 and ApoE cluster PMEL on ILVs, thus promoting its fibrillation. However, it remains to
characterize the unknown mechanism and proteases (indicate as ?) involved in PMEL fibrillation.

6. PMEL Fibrillation in Vivo

PMEL is the only melanosomal protein necessary and sufficient for the formation of intraluminal
fibrils in melanosomes. This is nicely illustrated by the fact that PMEL ectopically expressed in
unpigmented cells, such as HeLa cells, localizes to MVEs and forms structures similar to PMEL fibrils
found in melanocytes [27,32]. PMEL has a high intrinsic capacity of aggregation, which is necessary to
form amyloid fibrils, but which also bears dangers as uncontrolled intracellular protein aggregation
may lead to cellular dysfunctions and cell death. Thus, PMEL fibril formation is tightly regulated and
requires correct PMEL trafficking, processing and sorting. Accordingly, in melanocytes where expression,
trafficking or sorting of PMEL is affected, the formation of PMEL fibrils is compromised [42,44,50].
This tight multi-step regulation of PMEL fibril formation ensures that potentially toxic amyloid
structures are only formed at the appropriate time and location.

Any PMEL mutation that impairs its trafficking to stage I melanosomes causes a defect in
fibrillogenesis. Several of such mutations have been identified and revealed that multiple subdomains
control PMEL intracellular trafficking. Mutations in the CTF that lead to delayed ER-export or
impaired AP2-dependent internalization from the plasma membrane cause PMEL deficiency in stage I
melanosomes and eventually depletion of PMEL fibrils [36]. Similarly, NTR and PKD deletion mutants
are not targeted to ILVs of MVEs in HeLa cells and do not form fibrils [44]. A more detailed mutational
analysis of the NTR revealed an additional regulatory function in PMEL fibril formation without
being part of the fibrils itself [51]. While the RPT domain is dispensable for PMEL trafficking, it is
required for fibril formation [28,44]. In addition, O-glycosylation of the RPT domain was reported to be
important for fibril formation [21]. The KLD domain is not required for PMEL trafficking and sorting
to ILVs, but it regulates PMEL amyloid formation by facilitating the resolution of disulfide-bonded
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PMEL dimers [22,44]. These studies often conducted in unpigmented cells have certainly advanced
our understanding of PMEL trafficking and fibril formation and illustrate how tightly PMEL fibril
formation is regulated. Nevertheless, these results have to be interpreted with a grain of salt, as in
unpigmented cells fibrils accumulate in MVEs, which are distinct from stage II melanosomes in
melanocytes and may neither provide the optimal environment for fibril formation nor the specific
machinery required for the generation of true melanosomes.

Proteolytic processing of PMEL is also a mandatory step for fibril formation as it allows the
extraction of amyloidogenic domains from the full-length protein at the right time and place. Although
BACE2 and PC cleavages are independent from each other, both cleavages are necessary for the
formation of organized PMEL fibrils in melanosomes. Indeed, inhibition of either of the two cleavages
results in the formation of disorganized aggregates [27,39,41]. The inhibition or depletion of γ-secretase
subunit PSEN2 that cleaves the PMEL CTF also affects PMEL fibril formation [43] and likely other
process related to melanogenesis. However, further studies are needed to reveal the molecular role of
the PSEN2 in melanosome maturation.

The sorting of PMEL fragments, especially of PMEL luminal fragments onto ILVs is a key step in the
formation of amyloid fibrils. ApoE depletion in a human melanocyte cell line results in the formation
of unstructured aggregates instead of organized parallel sheets, while the suppression of CD63,
which also decreases ILV formation, abrogates the formation of PMEL fibrils in melanosomes [42,45].
These data strengthen the hypothesis raised from the observation of 3D reconstructions of melanosomes
by electron-tomography showing protofibrils emerging from ILVs in stage I melanosomes [14].
This hypothesis proposes that ILVs might serve as nucleating platforms for PMEL fibrils in stage
I melanosomes. Thus, it is attractive to speculate that ILVs provide a favorable environment for the
nucleation of PMEL fibrils by allowing the loading and concentration of PMEL fribrillogenic domain
at their surface [45]. Sequestering the amyloidogenic PMEL domain on ILVs in the lumen of the stage
I melanosomes, may also provide a mean to ensure organelle integrity by protecting the limiting
membrane from being damaged during amyloidogenesis. The progressive maturation of PMEL fibrils
into sheets is associated to the disappearance of ILVs that may fuse with the limiting membrane of the
melanosomes or may be degraded by lipases [14]. The appearance and formation of PMEL fibrils in
stage I and II melanosomes segregates the melanosomal pathway from the endosomal pathway and
marks the beginning of melanogenesis that then continues with melanin synthesis in stage III and
IV melanosomes [15]. Thus far, the mechanisms regulating the separation of the melanosomal and
endosomal pathway are still elusive but likely involve several actors such as OA1 (ocular albinism)
and MART1 (Melan-A) [52].

7. PMEL Fibrillation in Vitro

To gain a better understanding of the mechanisms regulating PMEL fibrillogenesis, several
groups have conducted in vitro experiments. Due to their amyloidogenic nature, PMEL fibrils are
insoluble in detergents [7,10,27,28,30]. Accordingly, the amyloidogenic Mα domain of PMEL is
found in Triton X-insoluble fractions of melanocytes. This insoluble fraction also contains proteolytic
subproducts of the Mα domain, suggesting that PMEL amyloid fibrils are not only composed of Mα

fragments, but also of subfragments, which are still poorly characterized [10,27,31]. The capacity
of Mα to form amyloid-like fibrils was also shown in vitro using recombinant Mα [10]. Similarly,
recombinant RPT, PKD and NTR domains were used in vitro to determine their roles in fibrillation.
These studies revealed that the recombinant RPT is sufficient to form fibrils in vitro [29,30,53,54].
In addition, an aggregation-prone peptide at the RPT C-terminal part has recently been reported to
form amyloidogenic fibrils in vitro [55]. Although, in vitro generated RPT fibrils are organized in
typical amyloid-like parallel β-sheet structures, some of their properties are not consistent with our
knowledge on in vivo PMEL fibril formation. Indeed, in vitro the kinetics of RPT fibril formation
is extremely slow (in the range of days to weeks), while in melanocytes PMEL fibrils are formed
very quickly to avoid any toxicity. However, addition of lysophospholipid-containing vesicles can
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shorten the lag time (less than 4 h) and enhance the growth rate of RPT fibrillation [56]. These in vitro
data are in line with the potential role of lipid membranes, such as ILVs, as nucleating platforms of
PMEL amyloid fibrils. In addition, in vitro RPT fibrils form at acidic pH similar to the one of stage I
melanosomes and dissolve in neutral pH. This pH dependent fibrillation can be seen as a potent way
to restrict PMEL fibrillation in endosomes. However, PMEL fibrils formed in the slightly acidic stage
I and stage II melanosomes are stable in neutral pH and persist in the less acidic lumen of stage III
and stage IV melanosomes [15]. One caveat of these studies is the use of bacterially expressed RPT
isolated under denaturing conditions, which is lacking the O-glycosylation that seems to be required
for PMEL fibril formation in vivo [21]. Recombinant NTR and PKD also form fibrils in vitro [31],
but with an extremely fast (few minutes) kinetics that is identical to the one of the full recombinant Mα

domain [10,31]. Although, the NTR is not present in PMEL fibrils isolated from melanocytes, it does
play a regulatory role in fibrillogenesis in vivo [51]. The PKD domain is predicted to be composed of
β-sheet structures that could easily be incorporated in the β-cross spine of amyloid-like fibrils [19,57].
All together these findings suggest that the PKD domain may form the core of the melanosomal matrix
and that its assembly is regulated by the NTR. The RPT may be involved in the regulation of PMEL
fibril formation by pH and in the organization of fibrils into sheets as observed in stage II melanosomes.

8. PMEL Fibrils: Implication for Melanogenesis

However, why do melanocytes put all these efforts into the potentially hazardous generation
of PMEL fibrils? One possible role of PMEL fibrils is to act as a scaffold for highly reactive melanin
intermediates, which would otherwise freely diffuse within melanosomes and potentially damage
melanosomal content and integrity [3]. Melanin intermediates sequestered by PMEL fibrils polymerize,
which has been shown to accelerate melanin synthesis [10,58,59]. Thus, PMEL fibrils may protect
melanocytes from the toxicity associated with melanin synthesis. This notion has been supported
by studies based on mice models where PMEL is mutated (silver mice) or not expressed (Pmel−/−

mice). Silver mice show a defect in PMEL fibrillation because of mislocalization of a truncated PMEL
mutant protein [36,60]. As the PMEL knock-out (Pmel−/−) mice, silver mice show a slight dilution of
their coat color on some genetic backgrounds [50,61,62] that may be explained by reduced viability
of melanocytes present in the hair bulb follicle. In the Dominant White chicken, mutations in PMEL
are localized in its transmembrane domain and perturb its pre-oligomerization into amyloids and its
association to membranes, with the consequence of impairing the formation of PMEL fibrils, instead
PMEL amyloid aggregates accumulate in melanosomes [63,64]. The oligomerization of PMEL via the
transmembrane domain seems to be required for PMEL fibrillation and the final correct conformation
of PMEL fibrils into organized parallel sheets [13]. The severe hypopigmentation defect observed in
those animals is due to a loss of melanosome membrane integrity, leading to a decrease in the number
of melanosomes and lower melanocyte viability [13].

Thus, in the absence of PMEL fibrils free oxidative melanin intermediates may compromise
melanosome integrity and cause cytotoxicity. Importantly, although PMEL fibrils assemble early
in melanogenesis and serve as a scaffold for pigment, melanin synthesis does not depend on their
formation. Indeed, the formation of PMEL fibrils and melanin synthesis are two independent processes.
In the Dominant White chicken, the silver and Pmel−/− mice, melanin synthesis still occurs even though
PMEL fibril formation is altered [13,36,50,60]. Interestingly, the Dominant White chicken and the
silver mice display more severe pigmentation defects than the Pmel−/− mice. The reason may be
that PMEL mutations of the silver mice and the Dominant White chicken slow down PMEL fibril
formation causing an accumulation of toxic amyloid oligomers and aberrant PMEL fibrils [13,36].
Aberrant PMEL fibrils in turn may also affect the kinetic of melanin synthesis and the concentration of
the pigment in melanosomes. Thus, the strong pigmentation defects of these mutant animals might
result from a combination of the accumulation unsequestered melanin intermediates and of toxic
amyloid oligomers and aberrant fibrils. Interestingly, a defect of PMEL processing in Bace2−/− mice
results in the formation and accumulation of PMEL amyloid aggregates in melanosomes and a dilution
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of the coat color. This phenotype, which is reminiscent of the one of the silver mice, strongly supports
that a correct organization of PMEL fibrils is important for an efficient melanisation [39].

The transposition of pigmentary defects from mice to human is biased as melanocytes are
differently localized. In human, melanocytes are localized in the epidermis and hair follicles, throughout
the skin. In the epidermis, mature pigmented melanosomes are transferred from melanocytes to
keratinocytes where they surround the nucleus to protect it from harmful UV radiations [65].
In comparison, in adult mice, melanocytes are restricted to hair follicles with exception for hairless
regions such as the tail and ear. However, the mechanisms of melanin transfer from melanocytes to
skin keratinocytes in the epidermis are similar to the transfer of melanin to keratinocytes that compose
the hair follicle in mice and human [66,67]. These mechanisms of melanin transfer are still unclear,
but the condensation of the melanin pigment upon compact and stable PMEL fibrils may optimize its
transfer from melanocytes to the keratinocytes [68]. Thus, another possible function of PMEL fibrils
may be to facilitate melanin transfer in the skin of human and fur of mice. To summarize, PMEL
amyloid fibrils are necessary for melanosome function to secure and optimize the synthesis of melanin
pigment and its transfer to keratinocytes.

9. PMEL as a Physiological Model for Pathological Amyloids

In contrast to pathological amyloids PMEL fibrils are not harmful, have a biological function
and form under physiological conditions. Thus, it has been proposed that they could serve as
a physiological model to study pathological amyloids [69].

Many studies have underlined striking analogies between PMEL and APP that forms pathological
amyloids involved in Alzheimer’s disease [39,41,42,45]. Like PMEL, APP is a type I transmembrane
protein with a long N-terminal luminal domain and a short C-terminal cytoplasmic domain.
In a physiological context, most APP is cleaved by α-secretase, notably ADAM10, at the plasma
membrane and then by γ-secretase to release an extracellular soluble fraction called p3 that does not
form amyloids [70–73]. Interestingly, although PMEL is mainly processed intracellularly, it can also be
shed at the plasma membrane to release an extracellular soluble fraction that does not form amyloids,
and ADAM10 has been proposed to be implicated in this cleavage [39,41]. In a pathological context,
APP is first cleaved by the β-secretase BACE1 [74–76], which is a homolog of BACE2 that cleaves
PMEL [39]. Then a γ-secretase complex containing either PSEN1 or PSEN2 release an amyloidogenic
peptide called Aβ [77]. Interestingly, γ-secretase complex containing PSEN2 reside in lysosomes [43]
and also cleaves the CTF of PMEL [43]. Aβ oligomers can form amyloid fibrils that accumulate into
senile plaques in the extracellular space of the brain. It has been suggested that Aβ oligomers are
more neurotoxic than fibrils or the senile plaques [25,26]. Thus, the assembly of APP amyloids into
fibrils may be a mechanism to prevent any toxicity associated with an accumulation of toxic Aβ

oligomers [78]. In this context, it is worth noting that in vitro PMEL amyloids form within seconds
while the assembly of Aβ or α-synuclein amyloids requires hours to days. Thus, this fast kinetic of
PMEL amyloid formation may have evolved to prevent toxicity associated with an accumulation of
toxic oligomers. Accordingly, mutations in PMEL that affect PMEL oligomerization and likely the
kinetics of fibril formation convert physiological PMEL amyloidogenesis into a pathogenic process [13].

In a nutshell, PMEL and APP both traffic through the endosomal pathway where they are
processed by the same family of β- and γ-secretases to release an amyloidogenic peptide. In addition,
PMEL amyloid formation is regulated by ApoE and sensitive to ApoE isoforms [45], the ApoE E4
gene variant being the major known genetic risk factor for late-onset Alzheimer’s disease [79,80].
These striking similarities in trafficking, processing and assembly of physiological and pathological
amyloidogenic substrates, suggest that common molecular machineries may be involved in the
formation of both physiological and pathological amyloids. Thus, one may speculate that in
a pathological context the molecular mechanisms that allow the formation of amyloids in pigment
cells are also involved and may be deregulated during pathological amyloid formation. Moreover,
such similarities have to be taken into account in the therapeutic strategies developed against
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Alzheimer’s disease. Recent therapeutic assays using chemical inhibitors of BACE1 induced notably
hypopigmentation as they inhibited also BACE2 and PMEL cleavage [81]. Hence, dissection of the
molecular machinery involved in physiological amyloid formation is expected to identify new potential
key players in the formation of pathological amyloids and their role and potential use as therapeutic
target in disease could be selectively studied.
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