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ABSTRACT: We have developed an innovative system, AI QM
Docking Net (AQDnet), which utilizes the three-dimensional
structure of protein−ligand complexes to predict binding affinity.
This system is novel in two respects: first, it significantly expands
the training dataset by generating thousands of diverse ligand
configurations for each protein−ligand complex and subsequently
determining the binding energy of each configuration through
quantum computation. Second, we have devised a method that
incorporates the atom-centered symmetry function (ACSF), highly
effective in describing molecular energies, for the prediction of
protein−ligand interactions. These advancements have enabled us
to effectively train a neural network to learn the protein−ligand
quantum energy landscape (P−L QEL). Consequently, we have achieved a 92.6% top 1 success rate in the CASF-2016 docking
power, placing first among all models assessed in the CASF-2016, thus demonstrating the exceptional docking performance of our
model.

■ INTRODUCTION
Virtual screening (VS) is a computational approach that
facilitates the identification of bioactive compounds that bind
to a specific target protein from an extensive library of
compounds. This method can significantly expedite the drug
discovery process and reduce the expenses, the time, and effort
required to evaluate compounds in assays.1 Recently, various
attempts have been made to leverage the achievements of
computer vision and natural language processing technologies,
such as convolutional neural networks2 and transformers,3 for
VS. One of the key objectives of VS is to predict the binding
affinity of protein−ligand (P−L) interactions. Several VS
techniques have been proposed, based on physicochemical
calculations and machine learning.4−8 Recently, methods based
on deep learning have shown remarkable success in this field.
Nonetheless, the accuracy of binding affinity prediction by
deep learning models remains inadequate and demands
significant improvement. The cause of this inadequacy lies in
the absence of an established learning methodology and an
insufficient number of training samples.

Behler discussed the three essential requirements for
artificial intelligence (AI) to predict the potential energy,
including invariant predictions for system rotation and
translation, invariant predictions regardless of the atom
processing order, and a unique representation of the three-
dimensional molecular structure.9 Various approaches have
been developed to represent the molecular structure as

graphs,8,10 but they may not effectively use the exact relative
positions of numerous atoms. Another approach is to use 3D
convolutional neural networks (3DCNNs) to process molec-
ular structures as three-dimensional images to predict binding
affinity.5,7 However, 3DCNNs are not invariant to molecule
rotation and translation and may neglect energy changes due
to slight differences in interatomic distances. Various attempts
have been made to predict binding affinity by processing the
ligand and protein separately.6 However, these approaches fail
to consider the intricate three-dimensional structure of the
ligand−protein complex. OnionNet11,12 is an invariant method
to system rotation and translation and the order of atoms
processed, which predicts binding affinity by counting the
number of the elements’ contacts that exists at a particular
distance as a feature. However, this method uses shells in 0.5 Å
increments to determine distances and cannot recognize
differences in atomic coordinates smaller than 0.5 Å.

The atom-centered symmetry function (ACSF)13 satisfies all
three of the above requirements and has proven effective in
predicting molecular energies. However, while ACSF has been
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successfully applied to single-molecule systems, it cannot be
directly employed for predicting P−L binding affinity.
Furthermore, some of the reported methods for the application
of ACSF to predict P−L bond affinity do not fully utilize the
information on protein-side atoms. Nonetheless, ACSF
possesses two desirable features that are useful in predicting
P−L bond affinity: accounting for three-body interactions and
generating high-resolution features that can even detect small
differences in atomic coordinates.

The majority of current methodologies for predicting the
activity of ligand−protein complexes rely solely on information
regarding two-body interactions.11,12 However, P−L intermo-
lecular interactions are essentially many-body interactions.
Although many-body interactions are known to play a
significant role in predicting the physical properties of chemical
compounds, they have rarely been taken into account when
predicting binding affinity. Therefore, it is necessary to
establish a method to utilize the information of not only
two-body interactions but also three- or more-body inter-
actions for the prediction of binding affinity. ACSF extracts
features by utilizing information pertaining to the distances
between three atoms and the angles they form. This enables
the model to account for the interactions between the three
bodies, making it highly advantageous in predicting P−L bond
affinity.

Binding affinity predictions are applied in tight collaboration
with molecular docking programs. However, many of these
prediction systems rely on other docking programs to predict
the most stable conformation, and only a few are capable of
evaluating protein−ligand docking. Those systems only predict
the binding affinity using the most stable conformation
predicted by other docking programs. It is thus imperative to
develop a method that can predict both the most stable
conformation and the binding affinity of P−L complexes, as
few machine learning systems currently exist that can
accomplish this task.

One of the reasons why evaluating the stability of P−L
complexes is challenging is because differences in binding
stability must be predicted from small differences in atomic
coordinates. Previously reported machine-learning methods for
predicting binding affinity are based on grids of 1 Å
increments14 or shells of 0.5 Å increments,11,12 and are unable
to recognize small differences in atomic coordinates. As a
result, these methods are unable to evaluate protein−ligand
docking. In this respect, ACSFs can generate high-resolution
features that take into account the slightest difference in atomic
coordinates because the distance between two atoms is
represented by the outputs of the multiple Gaussian functions.
Thus, the use of ACSF in predicting P−L binding affinity
allows us to evaluate the stability of the P−L complex and even
predict the most stable conformation.

In databases such as PDBbind,15 which are commonly
employed as training datasets, approximately 20,000 combina-
tions of ligand−protein complex structures and binding
affinities are archived. In contrast, while more than 1.5 million
training samples are commonly used for image recognition,16 a
meager number of samples are available for training in the
domain of binding affinity prediction. Thus, there is an urgent
need to increase the number of training samples and develop
methods for data augmentation.

Previous methods for predicting the binding affinity of P−L
complexes using machine learning have basically used only
crystal structures registered in databases as training data.7,11,12

However, as mentioned before, the number of complexes
registered in the database is limited. This makes it difficult to
prepare a sufficient amount of training data by using crystal
structures alone. In addition, the VS needs to evaluate not only
the crystal structure but also the configurations of the
transition process before reaching the most stable config-
uration. For this reason, it is not appropriate to train the model
for VS only on the most stable configurations. In this paper, we
propose a new data augmentation method that generates a
large number of configurations based on a single crystal
structure registered in a database. The challenge here is how to
label the generated configurations. To address this challenge,
we have devised a method of estimating the change of stability
of each generated configuration compared to that of the most
stable pose using quantum chemical calculation. By using this
method, we were able to generate more than 1000
configurations for a single crystal structure and successfully
expand the training dataset by labeling each of them.

In labeling the configurations generated by the above
method, we used semiempirical quantum mechanics (SQM)/
COSMO to estimate the change of stability from the most
stable pose. This method is a scoring function that combines a
quantitative SQM description of various noncovalent inter-
actions with an implicit COSMO solvation approach.17 This is
an extremely accurate method of predicting the most stable
conformation in P−L docking. In the P−L docking task, where
a root-mean-square deviations (RMSD) of 2 Å or greater from
the native binding pose is the criterion for false positives,
SQM/COSMO showed a substantially lower number of false
positives than classical SFs such as AutoDock Vina and Glide.
These outcomes suggest that SQM/COSMO is adept at
correctly identifying the native binding pose among decoys for
each protein−ligand system.

The energy difference between the generated configurations
and the most stable poses estimated by SQM/COSMO was
used for labeling. This approach not only serves as a data
augmentation method but also as a novel approach to train the
model using the protein−ligand quantum energy landscape
(P−L QEL) dataset calculated by SQM/COSMO.

This study is novel in two ways. The first is the development
of a method that applies ACSF to the prediction of P−L
binding affinity prediction. Second, quantum mechanics (QM)
simulations were used to extend the data and overcome the
lack of training data. These two points have enabled us to
successfully learn the P−L QEL. As a result, our model was
superior to all others evaluated on the CASF-2016 docking
power benchmark.18

■ RESULTS AND DISCUSSION
We trained two different AQDnet models, depending on the
task being evaluated. The docking AQDnet, which is a model
specialized for the evaluation of docking power, was used for
the evaluation of docking power and screening power.
Similarly, the scoring AQDnet was used to evaluate scoring
power. The only difference between the docking AQDnet and
the scoring AQDnet is the training data. Details are described
in the data filtering section of method.

Docking Power. During training the docking AQDnet, the
Pearson correlation coefficient (PCC), root mean square error
(RMSE), and the loss function (PCC_RMSE) described
below were monitored. Finally, the loss function of validation
dataset was minimized at epoch 27 (Table S1); hence, we
adopted the model of this epoch.
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For the evaluation of our model, we used the CASF-2016
benchmark dataset.18 Notably, our model achieved a top 1
success rate of 92.6% in the docking power test, surpassing all
other evaluated symmetry functions (SFs) in the CASF-2016
(Figure 1a). Additionally, our model demonstrated top 2 and
top 3 success rates of 96.5 and 97.2%, respectively, ranking first
in both categories (Figure 1b,c). These outstanding results are
attributed to the successful learning of the P−L QEL by the
model, facilitated by our data augmentation method.

The attempt to expand the data by generating numerous
configurations from crystal structure appears clearly beneficial
in overcoming the insufficient number of training samples.
However, this has not been achieved so far due to the difficulty
of labeling. In this study, we developed a method of labeling
the generated configurations by calculating the energy
difference from the most stable pose using SQM/COSMO
and correcting it using the experimental pKa. This labeling
strategy can be employed in various existing machine-learning
methods for predicting pKa from crystal structures. It is of great
significance as it has the potential to substantially enhance the
performance of docking tasks, which pose difficulties for many
of the current machine-learning approaches. Although the

proposed data expansion technique has the drawback of
necessitating a substantial amount of time for calculation, it is
expected to be incorporated into diverse machine learning
methods in the future.

DeepBSP19 uses a simple data augmentation method using
configuration generation. This method utilizes the RMSDs
from crystal structures as labels. While this method is very easy
to prepare data for, it is not trained to predict binding affinity
and therefore cannot compare binding affinity between ligands.
Therefore, it is not possible to evaluate the scoring power and
screening power of CASF-2016. In contrast, our method can
compare binding affinities among complexes. In fact, we
achieved the 4th place in the screening power test of the top
1% enrichment factor, indicating that our method can be used
to compare binding affinities between complexes.

In learning the energy landscapes, the amount of high-
energy unstable conformation to be included in the training
data is very important. To determine the optimal value of this
energy threshold, we conducted filtration under three different
conditions. As outlined in the methods, we designated ΔE as
the variation between the lowest energy conformation for each
complex and the corresponding conformation’s energy.

Figure 1. CASF-2016 docking power of AQDnet model. CASF-2016 docking power test performance (top 1/2/3 success rates) of the AQDnet
model (colored pink) and other scoring functions. (a−c) Top 1/2/3 success rates when the native ligand binding pose is included. (d−f) Top 1/2/
3 success rates when the native ligand binding pose is not included. Error bars indicate 90% confidence intervals obtained from 10,000 replicated
bootstrapping samples. The 90% confidence intervals are derived from the CASF-201618 results. However, error bars are not shown for those that
do not provide 90% confidence intervals in CASF2016 (e.g., Top2 success rate). Adapted with permission from Ref 18.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c02411
ACS Omega 2023, 8, 23925−23935

23927

https://pubs.acs.org/doi/10.1021/acsomega.3c02411?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02411?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02411?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02411?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c02411?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Filtering of the training data was performed under the
following three conditions: ΔE < 10 kcal/mol, ΔE < 20
kcal/mol, and ΔE <30 kcal/mol. For the RMSDs, all the data
were filtered under the consistent condition (<2.5 Å). The
model was then trained on each of the training datasets. In this
case, the number of training data differed across the three
conditions. Although the quantity of training data increases as
the ΔE threshold elevates, this tendency is also apparent in
actual VS, making it valuable to explore the optimal values,
including the effect of the increase in the number of training
data points.

The results of the docking power evaluation under three
different energy thresholds are shown in Figure 2. The model

trained on filtered training data with ΔE < 30 kcal/mol had a
docking power top 1 success rate of 92.6%, the highest success
rate among the three conditions. The model trained with
training data filtered by ΔE < 10 kcal/mol had the lowest
docking power top 1 success rate of 71.2%. A success rate of
90.5% was obtained for ΔE < 20 kcal/mol, which is not as
good as that for ΔE < 30 kcal/mol, but still good. From these
results, it was observed that docking performance tended to
increase as the ΔE filtering threshold was increased.

Scoring Power. During training, the scoring AQDnet,
PCC, RMSE and the loss function described below were
monitored. Finally, the loss function (PCC_RMSE) of the
validation dataset was minimized at epoch 33 (Table S2);

Figure 2. Comparison of CASF-2016 docking power by energy threshold. The threshold for energy filtering was varied and used to compare
CASF-2016 docking power in terms of (a) top 1 success rate, (b) top 2 success rate, and (c) top 3 success rate. Error bars indicate 90% confidence
intervals obtained from 10,000 replicated bootstrapping samples.

Figure 3. CASF-2016 scoring power of AQDnet model. Comparison of AQDnet with the scoring functions listed in CASF-2016 (left panel). Error
bars indicate 90% confidence intervals obtained from 10,000 replicated bootstrapping samples. Scatter plot of CASF-2016 “coreset” experimental
values (horizontal axis) and predicted values by AQDnet (vertical axis) (right panel). Error bars indicate 90% confidence interval obtained from
10,000 replicated bootstrapping samples. The 90% confidence intervals are derived from the CASF-201618 results. Adapted with permission from
Ref 18.
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hence, we adopted the model of this epoch. In the scoring
power test, our scoring AQDnet achieved 0.677. This is the
2nd best result among the SFs evaluated in the CASF-2016
(Figure 3). Note that the best scoring power of the docking
AQDnet was about 0.63, while that of the scoring AQDnet was
0.047 higher.

The scoring AQDnet was trained using only the
conformations that were very close to the crystal structure
data (ΔE < 2 kcal/mol, RMSD < 2.5 Å). To improve scoring
performance, it is necessary to learn as many different protein−
ligand systems as possible, rather than learning many different
conformations of the same protein−ligand combination, as in
the training data for the docking AQDnet. Comparing the
scoring power of the docking AQDnet with that of the scoring
AQDnet, which was trained by adding samples with relatively
high energy, the scoring power of the scoring AQDnet is
higher. A tendency toward better scoring power emerged when
filtering with very low ΔE values, in contrast to the docking
power, which improved when filtering with higher ΔE values.
These results suggest that it is challenging to improve both the
docking power results and the scoring power results with a

single model at this time. Our future objective is to enhance
the scoring power of the docking AQDnet by augmenting the
training dataset, enabling a single model to perform superiorly
in both docking and scoring evaluations.

In this case, AQDnet’s CASF-2016 scoring power was 0.68.
After CASF-2016 was published, many machine-learning
methods have been evaluated using CASF-2016. For example,
Pufnucy,14 which learns the 3D structure of the protein−ligand
complex using a 3DCNN, achieves a scoring power PCC of
0.780, and InteractionGraphNet (IGN),20 which learns the
structure of the P−L complex as a graph, achieved a scoring
power PCC of 0.837. The current best is extended connectivity
interaction features (ECIF),21 which learns the count values of
contacts between atoms represented in detail as features in
gradient boosting decision tree (GBDT), achieving a PCC of
0.866.

Our method is apparently not competitive in terms of the
scoring power compared to the current state-of-the-art
methods. However, it is important to emphasize that before
utilizing such methods, it is necessary to provide the most
stable, or near-stable, structures of the protein−ligand complex,

Figure 4. CASF-2016 screening power of the AQDnet model. Average enrichment factor (EF) top 1/5/10% performance (a−c) and top 1/5/10%
success rate performance (d−f) of the AQDnet model (colored pink) and other scoring functions on the CASF-2016 screening power test. Error
bars indicate 90% confidence intervals obtained from 10,000 replicated bootstrapping samples. Error bars indicate 90% confidence intervals
obtained from 10,000 replicated bootstrapping samples. The 90% confidence intervals are derived from the CASF-201618 results. However, error
bars are not shown for those that do not provide 90% confidence intervals in CASF2016 (e.g., Average EF Top 5%). Adapted with permission from
Ref 18.
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like its crystal structure, for accurately evaluating protein−
ligand affinity. In fact, current state-of-the-art methods do not
exhibit exceptional docking performance, unlike AQDnet,
requiring the “true” structure of the protein−ligand complex
for accurately determining protein−ligand affinity with these
approaches. In contrast, the AQDnet system exhibits the
significant performance in the identification of the most stable
pose as shown in the docking power result. This was
established in the AQDnet system by combining the quantum
docking techniques. This is an exclusive feature of our AQDnet
system, compared with the other state-of-the-art methods, and
also critical for the actual use in the practical VS workflow.

Screening Power. Screening power was evaluated using
the docking AQDnet. In the forward screening power test, our
model’s screening power average enrichment factor top 1% was
8.81, placing it in the 4th position among the SFs evaluated by
the updated CASF-2016 (Figure 4a).

The CASF2016 screening power test sample was generated
by cross-docking 285 ligands against 95 proteins, and it has not
been experimentally shown whether the decoys are truly
inactive. It is also reported that there are serious biases in the
dataset using a decoy, but it is unclear how CASF-2016
addresses this issue. Therefore, as another reliable indicator, we
conducted a validation with the LIT-PCBA22 dataset. In order
to compare our method with the current state-of-the-art
machine-learning-based method in screening power, we
compared the results of the five scoring functions (Surflex-
Dock,23 Pafnucy,24 Deltavina,25 IFP,26 and GRIM27) evaluated
in Bret and co-workers28 Details of the method are described
in the method section. AQDnet predictions were made for all
15 targets included in the LIT-PCBA and compared using an
enrichment factor (EF) of 1% as metric. The results are shown
in Figure S1. Although it fell short of Pafnucy and Deltavina for
11 of the 15 targets, it outperformed the other 5 SFs for ESR1-
antagonist, MTORC1 and TP53. Thus, evaluation results of
CASF-2016 and LIT-PCBA show a reasonable screening
performance of our method (also see the last part in the
Scoring Power section).

We discuss below how the methodology can be improved
from a developmental standpoint and its prospective
applications. There are three ways to improve this method-
ology.

First, a small number of complexes was currently used to
generate the training data. Most of the existing methods that
use PDBbind as the source of training data use about 12,000
complexes. In contrast, we used only 1123 complexes herein as
training data due to computational reasons. By creating a
training dataset based on a larger number of complexes, we
expect to achieve improved results in scoring power and
screening power.

Second, our method presently neglects the energy difference
between the free and bound states of the ligand. To accurately
compare ligand binding affinities, it is crucial to consider the
energy differences, specifically requiring an understanding of
the ligand’s topology to ascertain its distortion. However, the
presented algorithm in AQDnet solely considers the distance
between the protein atoms and the ligand atoms, without
accounting for the covalent bonding of the ligand atoms. This
limitation could potentially hinder the scoring power and
screening power of the model, highlighting the need for a
feature extraction approach that incorporates the topology of
ligands to further enhance the methodology. This work is
actually ongoing in our lab.

Third, our method does not recognize the exposed moiety of
the ligand molecule from the protein pocket. Feature
extraction is performed for protein atoms within 12 Å of
each atom of the ligand and regions lacking protein atoms
within 12 Å of ligand atoms are disregarded. This is a major
challenge in predicting the binding affinity of relatively large
molecules such as peptides. For example, even if two ligands
are in the same conformation in a protein pocket, the stability
of one that fits completely in the protein pocket and another
with a large hydrophobic segment exposed outside the pocket
may differ significantly. However, AQDnet predicts that the
two would have the same binding affinity. Therefore,
implementing measures such as increasing the cutoff distance
is necessary when dealing with large ligand molecules.

■ CONCLUSIONS
In this study, we devised a novel approach for predicting the
P−L binding affinity by applying ACSF, which is suitable for
describing the energy of a single molecule. This method takes
into account not only two-body interactions but also three-
body interactions and generates high-resolution features that
clearly represent changes in atomic coordinates of 0.1 Å or
smaller. In these two respects, this method proves valuable for
VS applications. Additionally, we have devised a data
augmentation technique that leverages configuration gener-
ation and QM calculations, thereby overcoming the shortage of
training data for P−L binding affinity prediction. We believe
that this method has great value in that it can be easily
integrated into existing machine-learning methods and
enhance their performance.

Our method was evaluated by the CASF-2016 dataset and
ranked first in the docking power test of the top 1 success rate
and fourth in the screening power test of the top 1% EF. Note
here that our method achieves the above results by creating
training data based on the crystal structures of only 1123
complexes. Actually, this is the smallest number of training
data used by any machine learning method, which suggests
that our method can learn features originated from the QM-
based first principles (i.e., the quantum field) found in P−L
interactions. Accordingly, further increase in the number of
training data will enable us to effectively obtain higher
performance.

Moreover, the presented method does not take ligand
characteristics into account and predicts affinities only with
information on P−L interactions, which is unfavorable for
scoring and screening performance. Nevertheless, the obtained
achievements were within an acceptable level even for the
actual use of the presented system. Thus, our method is also
promising in terms of improvements in the scoring and
screening performance by incorporating a ligand energy
feature, which leads to the involvement of how much the
docked ligand is destabilized from the most stable
conformation of the free ligand.

Note herein that prior to performing most of current
machine-learning-based P−L docking methods including state-
of-the-art ones, one needs to provide the most stable structures
(or structure that is close to being native) of the P−L
complexes, such as the crystal structures of the complexes, for
the appropriate evaluation of the P−L affinity. In fact, present
state-of-the-art methods for the P−L docking task do not
exhibit excellent docking performance (whereas the AQDnet
system does, as described in this report), and thus do require
the “true” (native) structures of the P−L complexes for
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obtaining the appropriate P−L affinity. In contrast, the
AQDnet system discriminates the most appropriate pose
among other many poses, as shown in the presented docking
score data. This is an exclusive feature of our AQDnet system
in the actual VS workflow, compared with those of the other
state-of-the-art methods.

■ METHOD
Feature Extraction of Protein-Ligand Complexes.

Feature extraction was conducted on the three-dimensional
structure of the ligand−protein complex. MDTraj29 was used
to read the PDB files and calculate the interatomic distances.
The Gaussian function calculation and other processes were
implemented using NumPy. The three-dimensional structures
were prepared using PDB files that contain both ligand and
protein information. The feature extraction method used in
this study consisted of two main parts: the radial part, which
contains information on the distance between two atoms, and
the angular part, which contains information on the distance
and angle between three atoms. These two parts are explained
below. Figure S2 shows a graphical representation of the
features.

Radial Part. The radial part uses the interatomic distance
between one atom on the ligand side and one atom on the
protein side as the input of the multiple Gaussian functions,
with the output vector being the feature value of the radial part.
The feature extraction process is as follows. First, the distance
between all ligand atoms and protein atoms is calculated. Next,
all pairs with distances below a specified threshold (Rc) are
obtained. For each pair, the elements of the ligand atom and
the protein atom are retrieved, and the radial symmetry
function is calculated using the interatomic distance of the two
atoms (Rij) as input.
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The cutoff function, fc includes Rc as the cutoff radius�a
hyperparameter that determines which atoms are considered
based on their distance. Rs is a hyperparameter that adjusts the
peak of the Gaussian functions. In this process, multiple Rs are
used to output multidimensional features for each pair. Finally,
features with the same combinations of ligand-side element,
protein element, and Rs are summed to produce the final
feature as shown below.
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where El is the element type of the ligand-side atom, Ep is the
element type of the protein-side atom, LEdl

is the set of all the El

atoms on the ligand side, PEdp
is the set of all the Ep atoms on

the protein side, and Rs
(k) is the kth Rs. The name of the feature

with El for the ligand-side atom, Ep for the protein-side atom,
and Rs

(k) for Rs is defined as El_Ep_k. For example, the feature
N_C_3 is characterized by a combination of a ligand-side
nitrogen atom, a protein-side carbon atom, and R_s as Rs

(3). As
a result, a feature vector with (Nelement

2 × NRds
) dimensions is

obtained, where Nelement is the number of elemental species
considered, and NRds

is the number of Rs values.
Angular Part. The feature value of the angular part is

generated using the interatomic distance between a ligand-side
atom and two protein-side atoms, as well as the angle between
the three atoms. The feature extraction procedure is as follows.
First, the distance between all ligand atoms and protein atoms
is calculated. Next, all combinations of two protein-side atoms
with distances less than a certain threshold (Rc) from any
ligand-side atom are obtained. For the resulting triplet of one
ligand-side atom and two protein-side atoms, the interatomic
distances Rij and Rik, the angle between the three atoms θjik,
and the element type of each atom are obtained. For each
triplet, the following angular symmetry function with Rij, Rik,
and θjik as inputs is calculated.
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where fc is the same cutoff function as that of the radial part.
R_s is a hyperparameter that adjusts the peak of the Gaussian
function, and θs is a hyperparameter that modifies the phase of
the Cosine function. In this process, multiple Rs and θs are used
to output multidimensional features for each triplet. Finally,
the features with the same combination of ligand side element,
protein elements, Rs, and θs are summed up to get the final
feature value as shown below.
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where El represents the element type of the ligand-side atom,
Ep1 and Ep2 are the element types of the protein-side atoms. LEdl

is the set of all the El atoms on the ligand side, PEdp1
and PE dp2

are
the sets of all the Ep1 atoms on the protein side and all the Ep2
atoms on the protein side, respectively. θs

(p) is the pth θs value
and Rs

(q) is the qth Rs value. The feature comprising El for the
ligand-side atom, Ep1 and Ep2 for the protein-side atoms, θs

(p)

for θs and Rs
(q) for Rs is named as Ep1_El_Ep2_p_q. For example,

the feature where the ligand-side atom is carbon, the protein-
side atoms are hydrogen and nitrogen, θs is θs

(1), and Rs is Rs
(2) is

defined as H_C_N_1_2. As a result, we get a feature vector
with +( )N N N N( 1) R

1
2 element element s s

dimensions, where

Nelement is the number of elemental species considered, NRds
is

the number of Rs values, and Nθ ds
is the number of θs values.

Exporting Features to Files. For memory efficiency
reasons, the features are exported as TFRecords files.

Parameters. For feature extraction, we targeted seven
elements for feature extraction, H, C, N, O, P, S, Cl, and Zn,
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while the remaining elements were collectively represented as
Dummy (Du). Consequently, eight-element types, H, C, N, O,
P, S, Cl, Zn, and Du, were used for El and Ep above. The Rc
parameters were set to 12 Å for radial part and 6 Å for angular
parts. The R_s parameters for the radial part are [0.5, 1.0, 1.5,
2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0,
9.5, 10.0, 10.5, 11.0, 11.5]. Regarding the angular part, the Rs
parameters are [0.5, 2.5, 4.5] and the θs parameters are a
sequence of numbers from 0 to 2π divided into 8 equal
segments [0.0, 0.785, 1. 570, 2.356, 3.142, 3.927, 4.7124,
5.4978].

Dataset Preparation. Quantum Docking Simulation. P−
L complex structures were obtained from the PDBbind
database.15,30 For each complex, hydrogen atoms were added
using the Protonate 3D module in the Molecular Operating
Environment (MOE) suite, and the structural data of the
complex were intensively augmented by performing the
docking simulations as follows. The partial charges of each
atom were assigned by mmff94x force field. Over 1000
configurations were generated from each complex by Smina,31

which is a fork of AutoDock Vina.32 The configurations were
energy-minimized using Amber 18 (http://ambermd.org/)
with ff99SBildn force field33 for proteins, the second
generation of the general AMBER force field (GAFF2)34 for
ligands. With protein coordinates fixed, the energy of the
ligand was minimized. The energy of each configuration was
calculated with PM6-D3H4X/COSMO in MOPAC (http://
openmopac.net/). In order to improve the calculation
accuracy, solvation energy was compensated by the effective
surface tension coefficient ξ = 0.046,35 which was also coupled
with our correction scheme depending on the P−L QEL
(more detailed descriptions are provided elsewhere).

Labeling of the Generated Configurations. In this paper,
experimentally obtained values are represented as variables
without dashes (e.g., pKa), while values corrected by ΔE are
represented as variables with dashes (e.g., pKa′). From the
experimentally measured binding affinity (Kd), ΔG is
calculated using eq 5, where R is the gas constant and T is
the temperature.

=G RT Kln d (5)

The lowest energy conformation generated from a single
ligand is defined as the reference configuration for that ligand.
For other configurations, the difference in energy (ΔE)
between each configuration and the reference configuration
was calculated. The corrected energy label of each config-
uration, ΔG′, is then calculated using eq 6.

= +G G E (6)

The configurations except for the reference configuration
were labeled with ΔG′, while the reference configuration was
labeled with ΔG. If necessary, pseudo-Kd (Kd′) and pseudo-
pKa (pKa′) corrected by ΔE are obtained using the following
equations.

=G RT Kln d (7)

=K Kp log da 10 (8)

PDB Preparation of CASF-2016 Dataset. Ligand Mol2
files were converted to PDB files by Open Babel. Subsequently,
protein PDB files and ligand PDB file were merged to generate
complex PDB files. The −log Kd/Ki registered in PDBbind was
converted to ΔG using eq 5 and used as the correct label. In

both docking decoy and screening decoy, one ligand Mol2 file
contains multiple ligand structures. Therefore, we parsed each
structure and created PDB files containing one ligand structure
per file. These parsed ligand PDB files were merged with the
corresponding protein PDB file to establish the complex PDB
file.

PDB Preparation of LIT-PCBA Dataset. The smi file of
ligand was loaded using RDkit (https://www.rdkit.org) to
generate 3Dconformation and add hydrogens. The files were
then saved as sdf files. All template PDB files were protonated
by MOE. Then, docking of ligand to protein was performed
using gnina.36 If multiple templates were given in the target,
docking was performed on all templates. The docked ligands
were then saved as sdf files. Ligand Mol2 files were converted
to PDB files by Open Babel. Subsequently, protein PDB files
and ligand PDB file were merged to generate complex PDB
files.

Evaluation Method. Evaluation by CASF-2016. We
evaluated scoring power, docking power and screening power
of CASF-2016 in order to facilitate comparison with existing
methods. Features were extracted from PDB files generated by
the method described in PDB preparation of CASF-2016
dataset. The predicted values were formed using the method
described in the CASF-2016 update study,18 and the docking
power, screening power, and scoring power were evaluated.
The docking AQDnet, which is a model specialized for the
evaluation of docking power, was used for the evaluation of
docking power and screening power. Similarly, the scoring
AQDnet was used to evaluate scoring power. The only
difference between the docking AQDnet and the scoring
AQDnet is the training data. The structure and hyper-
parameter of these two models remain the same. The
differences between the two models are discussed in the data
splitting and data filtering sections.

Data Splitting. The data were divided into test sets, valid
set, and train set with reference to OnionNet and Pufnucy’s
method.

We carried out data augmentation on 1223 complexes,
excluding those in the CASF-2016 and CASF-2013 core sets.
During the data expansion process, each complex generated
approximately 5000 conformations. We divided the complexes
into trainset, validation set, and test set in the following
manner.

The trainset for the docking AQDnet consisted of 1123
complexes from the augmented data. For the scoring AQDnet,
we included 16,306 crystal structures that were not present in
the validation set, CASF-2016 core set, or CASF-2013 core set.
However, we did not add any crystal structures to the docking
AQDnet’s trainset.

The validation set for the docking AQDnet was composed of
100 randomly-selected complexes from the initial 1223
complexes. Additionally, the scoring AQDnet’s valid set
contained crystal structures of these 100 complexes and 900
other randomly chosen complexes, totaling 1000 complexes.

Lastly, the test set included the CASF-2016 core set and the
CASF-2013 core set. The summary of the aforementioned
divisions is presented in Table 1. The PDBIDs of the
complexes used for the test set, validation set and training
set for both the docking-specific and scoring AQDnet are listed
in Tables S3−S7.

Data Filtering. We defined ΔE for each configuration as
the difference between the minimum energy among the
configurations generated for each complex and the energy of
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the corresponding configuration. For example, if configurations
A, B, and C have energies of −7, −5, and −4, respectively, the
ΔE values for configurations A, B, and C would be 0, 2, and 3,
as configuration A possesses the minimum energy among the
three. Given the impracticality of utilizing all generated
configurations for training from a computational standpoint,
RMSD from each crystal structure and ΔE were used to filter
the data. Different filtering criteria were used for the training
data of the docking-specific and scoring AQDnet. For the
training and validation sets of the docking AQDnet, we used
conformations with ΔE less than 30 kcal/mol and RMSD less
than 2.5 Å. For the docking AQDnet’s training and validation
sets, conformations with ΔE values below 30 kcal/mol and
RMSD values under 2.5 Å were utilized.

For the scoring AQDnet’s training and validation sets,
conformations with ΔE values below 2 kcal/mol and RMSD
values under 2.0 Å were employed. The validation set for the
docking AQDnet contains 100 PDBIDs and a total of 89,740
configurations. The training set for the docking AQDnet
comprises 1123 PDBIDs and a total of 940,038 configurations.
The validation set for the scoring AQDnet consists of 1000
PDBIDs and 20,995 total configurations. The training set for
the scoring AQDnet includes 16,306 PDBIDs and 247,393
total configurations.

Neural Network Model. All of the following models were
built and trained in TensorFlow 2.3.2. The architecture of the
deep neural network (DNN) is presented in Figure S3. The
DNN model employed in this project consists of 18 sub-
DNNs, which process the radial or angular features of each
corresponding element, and one output DNN that summarizes
the outputs of the 18 sub-DNNs. Specifically, 9 of the sub-
DNNs process radial features and correspond to different
elements (H, C, N, O, P, S, Cl, Zn, and Dummy), responsible
for processing the features when the atom on the ligand side is
the target element. The remaining 9 sub-DNNs process
angular features and are responsible for processing features
when the atom on the ligand side is the target element, in a
similar manner to the sub-DNNs that process radial features
above. All 18 sub-DNNs share the same structure, and their
details are described below.

Sub-DNN Structure. A dropout layer is used after the
input layer with a dropout rate of 0.05. Each DNN consists of
6 blocks featuring the residual learning mechanism. As
illustrated in Figure S4, a block comprises one dense layer
with 500 nodes, a batch normalization layer, and a dropout
layer with a dropout rate of 0.15. A sub-DNN is a stack of 6 of

these blocks, and outputs a 10-dimensional tensor. The output
DNN consists of three dense layers with 256 nodes, taking the
above-mentioned 18 sub-DNN’s outputs as input and
produces a one-dimensional output. In order to prevent the
over fit problem, spectral normalization and L2 regularization
are implemented in all the above dense layers with the λ
parameter of L2 regularization set at 0.1.

Preprocessing. Feature preprocessing procedure are
depicted in Figure S3. The features are separated into 18
subsets based on radial or angular features and ligand side
element types, which are then input into the corresponding
DNN. Radial features are segregated into nine groups using El
of the feature name El_Ep_k, while angular features are divided
into nine groups based on El of the feature name
Ep1_El_Ep2_p_q. Each segregated feature group is subse-
quently input into the DNN responsible for processing El
features.

Loss Function (PCC_RMSE). A loss function combining
correlation coefficient R and RMSE, as utilized in OnionNet,11

was adopted. We call this loss function PCC_RMSE. The
equation is as follows:

= +Rloss (1 ) (1 )RMSE (9)

where R represents the correlation coefficient, RMSE denotes
the root mean square error, and α is the coefficient
determining the R and RMSE ratio, with values ranging
between 0 and 1. All models in this study were trained with α =
0.7.

Model Training. Each model underwent 200 epochs of
training with early stopping set at 20 epochs. The initial
learning rate value was set at 1e−3, and the learning rate was
multiplied by 0.2 if the validation loss failed to improve for five
epochs.

■ ASSOCIATED CONTENT
Data Availability Statement
The code for AQDnet feature extraction, model training, and
inference with trained models can be accessed on GitHub
(https://github.com/koji11235/AQDnet). Due to the data
size constraints, only a subset of the PDB files and features
used for training have been uploaded.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.3c02411.

Table S1: Transition of loss function during training of
docking AQDnet. Table S2: Transition of loss function
during training of scoring AQDnet. Table S3: PDB IDs
used for test set. Table S4: PDB IDs used for validation
set of docking AQDnet. Table S5: PDB IDs used for
train set of docking AQDnet. Table S6: PDB IDs used
for validation set of scoring AQDnet (data augmented).
Table S7: PDB IDs used for validation set of scoring
AQDnet (crystal structure). Table S8: PDB IDs used for
train set of scoring AQDnet (data augmented). Table
S9: PDB IDs used for train set of scoring AQDnet
(crystal structure) Figure S1: Comparison of AQDnet
performance on the LIT-PCBA data set. Figure S2: A
graphical representation of the AQDnet features. Figure
S3: A simplified schematic of the structure of the deep
neural network of AQDnet. Figure S4: A schematic of
residual dense block (PDF)

Table 1. Differences between the Training Data of the
Docking AQDnet and that of the Scoring AQDnet

docking
AQDnet

scoring
AQDnet

number of expanded complexes (PDBIDs)
in validation set

100 100

number of expanded complexes (PDBIDs)
in training set

1123 1123

crystal structures added no yes
number of crystal structures in validation

set
0 1000

number of crystal structures in training set 0 16,306
energy filtering <30 kcal/mol <2 kcal/mol
RMSD filtering <2.5 Å <2.0 Å
number of configurations in validation set 89,740 20,995
number of configurations in training set 940,038 247,393
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