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The “stationarity time” (ST) of neuronal spontaneous activity signals of rat embryonic cortical cells, measured by means of a planar
Multielectrode Array (MEA), was estimated based on the “Detrended Fluctuation Analysis” (DFA). The ST is defined as the mean
time interval during which the signal under analysis keeps its statistical characteristics constant. An upgrade on the DFA method
is proposed, leading to a more accurate procedure. Strong statistical correlation between the ST, estimated from the Absolute
Amplitude of Neural Spontaneous Activity (AANSA) signals and the Mean Interburst Interval (MIB), calculated by classical spike
sorting methods applied to the interspike interval time series, was obtained. In consequence, the MIB may be estimated by means
of the ST, which further includes relevant biological information arising from basal activity. The results point out that the average
ST of MEA signals lies between 2-3 seconds. Furthermore, it was shown that a neural culture presents signals that lead to different
statistical behaviors, depending on the relative geometric position of each electrode and the cells. Such behaviors may disclose
physiological phenomena, which are possibly associated with different adaptation/facilitation mechanisms.

1. Introduction

The digital processing of biological signals may be considered
a challenging task [1], due to the underlying characteristics
of such systems and signals: the nonlinearity, which is closely
connected with the complex behavior of the alive organisms
[2, 3]; and the nonstationarity of the time series [4].

A classical mathematical procedure in neuronal signal
processing consists of the detection of spikes connected with
action potentials, which requires the establishment of an
amplitude threshold, above which any potential is considered
a spike [5]. The next step is devoted to the estimation of
the “Interspike Interval” (ISI) time series, including spike
classification [6], which enables several analyses in the field
of neuronal coding [3]. Notice that spike classification is

based on pattern recognition theory, involving tools such
as Mahalanobis minimum distance [6, 7] and Independent
Component Analysis [5]. In addition, neural connectivity
[8] is also a very important research field, based on the
application of cross-correlation theory [9–12] and spectral
coherence [13] to the ISI time series, in order to evaluate
the network of synaptic connections among cells within
the cultured tissue. All these signal processing techniques
are based on the concept of “ISI time series” [8], the
estimation of which depends on the performance of spike
detection and classification. However, to our knowledge,
literature associated with all the research topics previously
discussed devotes few efforts on two relevant computational
issues, which establish bounds on the performance of current
neurophysiological data acquisition systems: ISI time series
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windowing and real-time processing [14], pointing out that
both of them should consider the nonstationary behavior of
biological signals [4, 14].

Multielectrode Arrays (MEAs) emerged during the
1990’s, in order to measure the electrical activity of cultured
neurons [15]. This new approach was important to support
the development of deeper studies of ISI time series, leading
to significant contributions to neuronal coding theory, as
well as on the effects of induced neurostimulation in neural
cultures [6].

On the other hand, neuropathologies may be considered
relevant deseases from a clinical viewpoint. Particularly,
epilepsy disturbs 1% of the world population, corresponding
to 50 million people. From this amount, at least the
seizures of 30% of patients can not be well managed by
conventional treatments based on anticonvulsivant drugs
[2]. Henceforth, the development of new treatments is
necessary, such as neuroprostheses [15, 16]. Studies using
MEAs are very promising because they can provide a basis for
the implementation of these technologies in a near future.

Consequently, MEA devices should be capable to process
both cellular-level signals, such as action potentials, as
well as electroencephalographic (EEG) data in real time,
to minimize epileptic seizures [15, 17], working as neuro-
prostheses. The last application surely imposes restrictions
on signal processing tools. In fact, algorithms must present
low computational complexity, in order to allow the lowest
power dissipation [15], assuring the biocompatibility of
the device [18]. Furthermore, the clinical efficiency of the
neuroprosthesis-based therapy involves real-time operation
[16], which must be achieved by the device.

For these reasons, the neuroprosthesis implementa-
tion requires simple statistical tools of low computational
complexity, leading to real-time signal processing. To our
knowledge, these practical constraints have been very fewly
addressed by literature connected with MEA-signal analysis,
especially regarding the estimation of optimal data window-
ing, taking into consideration the non-stationary behavior
of the signal. Notice that such procedure is essential for
any operation linked to the MEA-signal processing [9].
Moreover, it should be important to develop mathematical
tools capable of analyzing the signal to avoid the spike
detection. In consequence, spike pre-processing would not be
mandatory, leading to a more simple system, which of course
agrees with the idea of real-time operation and low power
dissipation.

A possible strategy to establish optimal windowing is
based on the concept of “Stationarity Time” (ST), defined
as the time interval during which the signal measured by
MEA keeps its statistical characteristics constant [19]. In
this context, the “Detrended Fluctuation Analysis” (DFA)
may be pointed out, since it is a classical tool for the study
of non-stationarity, firstly used in order to carry out the
similarity analysis among animal nucleotides [20]. Later, it
was employed to study the stationary behavior of neural
signals in [19], in which the ST is estimated based on the
visual analysis of the plot involving the average variance
(F) as a function of the window length (L). In this case,
“variance” regards the error calculated between the signal

under analysis and its polynomial approximation, based on
the principles of fractal theory. In addition, the plot F × L is
fitted to a particular “alfa-exponential” spectrum [19]. Both
operations of visual analysis and spectrum fitting may be
considered empirical, as well as dependent on the researcher
and on the application.

In brief, the study of the stationary behavior of MEA
signals can disclose important features of culture neuro-
dynamics, as well as enabling the definition of optimal
windowing, which is mandatory for efficient neuroprosthesis
implementation. In this context, this paper develops the
estimation of the ST of a set of spontaneous activity signals.
An upgrade on DFA technique is proposed, leading to an
accurate tool that is able to process the absolute amplitudes
of neuronal spontaneous activity. The results are compared
to classical quantities that are currently used to characterize
the culture dynamics, such as the Mean-Interburst Inter-
val, pointing out strong statiscal correlations. Finally, the
neurodynamics of the culture is discussed in terms of the
ST diagram, leading to physiological interpretations of the
results.

2. Materials and Methods

2.1. Data Acquisition. MEA signals are characterized by
the absolute amplitude of neural spontaneous activity
(AANSA), collected from primary cultures of cortical neu-
rons, extracted from rat embryos of 17-18 days. These
cells were plated on planar MEAs containing 60 microelec-
trodes (MEA60, Multichannel Systems, Reutlingen, Germany).
Electrode diameter is 30 μm, and interelectrode spacing is
200 μm. Experiments were performed after 18–34 days in
vitro (DIV), as the cultures may be considered stable, in
order to allow the maturation of the synapses among the
neurons, supposing 4-milliseconds sampling interval. Four
consecutive experiments were accomplished, each one lasting
5 minutes, leading to a continuous global sample of 20
minutes. Additional details are presented in [21].

2.2. Spike Analysis. MEA signals were analyzed by means of
the plataform SpikeManager [21], which performs classical
spike analysis. ISI time series were calculated, and average
statistics were performed over all the sixty channels consider-
ing all the four experiments, supposing the same parameter
set for spike analysis as reported in [21].

2.3. Classical DFA. The following quantities are defined
through (1) and (2), wherein the input signal I , (k) is the
absolute amplitude of the MEA signal, measured in V:

y(n) =
N∑

k=1

[I(k)− Iave], (1)

Iave = 1
N

.
N∑

k=1

I(k), (2)
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where (k), (n) represent the discrete time; (N) is the length
of the time series; Iave the average value of the amplitudes of
MEA signal under analysis.

DFA method [19] requires three steps. Based on signal
I(k), the first step calculates the parameter Iave, defined in
(2), in order to generate y(n), as presented in (1), which can
be considered the zero-mean MEA signal.

In the second step, the signal y(n) is divided up into
consecutive and nonoverlapping segments of L length, so
that 100 < L < 15000. Afterwards, a polynomial fit Ti(n) is
carried out in order to approach the signal y(n), where index
i represents the segment under analysis. This fit is called
“local trend”, which is defined in the following equations:

Ti(n) = A∗n + B,

Ci(n,L) = y(n)− Ti(n),
(3)

where A, B are real constants, estimated as a function of y(n)
values within segment i; Ci(n, L) is the “detrended walk”,
associated with y(n), which depends on the length L of each
segment.

It should be noticed that (3) present a linear regres-
sion, which will be considered in this paper, since this
approach leads to a reasonable trade-off between algorithm
performance and low computational complexity, according
to comparative studies accomplished in [19].

In the third step, the detrended walk variance is cal-
culated for each segment, and, finally, all these variances
are averaged, considering all segments, as shown by (4) as
follows:

F(L) =

√√√√√ 1
N + L− 1

N−L+1∑

i=1

L∑

k=1

(Ci(n,L))2, (4)

where the parameter F(L) represents the average variance of
the residual error among the signal y(n) and the local trend
Ti(n), as a function of the window length L.

In the following, the classical methodology for the ST
estimation based on the variance F(L) is discussed. Figure 1
presents an example of the plot log 10(F(L)) × log 10(L),
which is depicted in the lower part of the graph; whereas,
the first derivative of F(L) with respect to L is depicted in the
upper part, by the plot α(L)× log 10(L). Notice that the first
derivative is also called “angular variation α(L)”. It should
be pointed out that as L increases the slope of the function,
F(L) keeps constant up to a specific point, wherein the slope
α(L) increases or decreases considerably, leading to peaks in
the α(L) amplitude. This sudden change in the derivative
amplitude is called “signal rupture” [19], which is closely
connected with the signal nonstationarity as discussed in [4].

The ST is estimated as the L value of plot log 10(F(L)) ×
log 10(L) associated with the signal rupture [4, 9], which may
be established based on a careful analysis of α(L) variations.
Generally, the signal rupture is considered at a specific value
of L wherein the first derivative is not constant. This value
is located between two regions of constant amplitude of
α(L) graph. In the case under analysis, Figure 1 points out
two regions of constant first derivative: the first one lies
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Figure 1: Example of the classical methodology for ST estimation
through DFA [19]. The lower plot shows log(F(L))× log(L); α(L) is
presented in the upper plot. The vertical dashed line in the middle
of the figure represents the signal rupture detected by the technique
in [19].

within log(L) <2.0 followed by the second region log(L) >2.5.
Henceforth, the ST is estimated as a value within the interval
2.0 < log(L) < 2.5, and the signal rupture is established by
the vertical dashed line in Figure 1.

The ST characterizes the signal time-variation profile as
discussed in the following. Since ST is estimated as particular
value of the window length L, (4) points out that high-
amplitude values of ST are associated with the detection of a
small number of ruptures, leading to few statistical-behavior
variations, which in turn characterizes a stationary signal.
Conversely, the smaller the values of ST, the larger will be the
amount of ruptures, which characterizes a non-stationary
behavior.

In brief, the ST estimation procedure previously
described [4, 19] does not follow a rigorous mathematical
methodology, so that results depend on the signal under
analysis and on the researcher goals. In addition, notice
from Figure 1 that other ruptures should take place at other
window lengths different from log 10(L) = 2.4 seconds.
Although these ruptures do point out statistical changes, they
are not taken into consideration in the classical method. For
all these reasons, a more accurate mathematical technique for
ST estimation should be developed, including all the non-
stationary points of the signal, which are presented in the
following.

2.4. A New Approach for ST Estimation Based on DFA. In
order to highlight all the changes of the first derivative of
F(L) plot , the concept of the second derivative of function
F(L) with respect to variable L was employed, according to
the following equations:

D(i + 1) = F(L)(i + 1)− F(L)(i)
L(i + 1)− L(i)

, (5)

where i is the parameter that represents the ith element of
vector F(L); D is the first derivative of F(L); F(L)(i + 1) −
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Figure 2: Hypothetical illustration of a second-derivative generic
plot, associated with a function log 10(F(L)) × log 10(L). Vertical
axis depicts the amplitude of D2, as defined in (6); whereas,
horizontal axis presents the values of L. Signal rupture points
take place exactly at times {T(1), . . . ,T(Q)}, for which function
D2 attains a peak of amplitude 1. The stationarity intervals
{Ta(1), . . . ,Ta(Q − 1)} are used to estimate the final ST of a single
MEA channel, based on (7).

F(L)(i) is the variation of F(L); L(i+ 1)−L(i) is the variation
of the window length.

D2(i + 1) = D(i + 1)−D(i)
L(i + 1)− L(i)

, (6)

where D2 is the second derivative; D(i + 1) − D(i) is the
variation of the first derivative of F(L).

The ST estimation for one single electrode is performed
based on the plot D2 × L, which will be discussed in the
following by means of Figure 2. The peaks of this figure
indicate strong variations of D, the first derivative of F(L),
thus pointing out that ruptures are taking place for window
lengths L = {T(1),T(2),T(3) . . . T(Q)}, wherein Q is the
number of ruptures. The symbol T is used to indicate a time
associated with the window L, since T is equal to Lmultiplied
by the sampling rate. Notice that, based on the properties
of the second derivative, just positive peaks in function D2
are of interest. In consequence, the signal may be considered
stationary during the time intervals Ta(1) = T(2) − T(1);
Ta(2) = T(3) − T(2); Ta(3) = T(4) − T(3); . . . ; Ta(Q − 1)
= T(Q) – T(Q − 1). Henceforth, there is a set of stationarity
times {Ta(1),Ta(2),Ta(3), . . . ,Ta(Q − 1)}, so that the final
ST is estimated as the weighted average of all times in the set,
as defined in the following equation:

ST = q(1)∗Ta(1) + · · · + q(Q − 1)∗Ta(Q − 1)
q(1) + q(2) + · · · + q(Q − 1)

, (7)

where {q(1), . . . , q(Q)} is the number of occurences of a
specific time interval Ta(i); i = 1,2,3, . . . ,Q−1 respectively.

Table 1: Average results of ISI analysis.

Number of
spikes/second
within one burst

Average
duration of
one burst

Average
number of
spikes during
one burst

Average duration
of one spike within
the burst

78.02
161.16
seconds

12570 12.82 milliseconds
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Figure 3: Overall average log(F(L)) function resulting from the
application of the proposed DFA method is depicted as the thin
line, considering all 64 electrodes and the four experiments. The
horizontal axis is measured in seconds. The thick line represents an
approximation generally performed by literature [9, 19]; ST = 3.2
seconds.

Considering just one single five-minute experiment, the
average ST of each electrode was estimated based on (7). The
representative ST value associated with the ensemble of 64
electrodes, for this same single experiment, was calculated
based on the average considering all the mean STs, each of
them characterizing one single electrode. Finally, an overall
medium ST was estimated through the average performed
on the four representative ST values, each of them connected
to a single experiment.

3. Results

Table 1 presents a general characterization of the culture
under study, following classical spike analysis.

The processing of all MEA channels, considering all the
four experiments, leads to the estimation of the overall
log(F(L)) function based on (4), which is shown by the thin-
line plot in Figure 3. Points A, B, C, and D of this plot clearly
indicate that strong ruptures have taken place. The thick line
in Figure 3 represents a rough and simple linear approach of
the real log(F(L))×L plot based on two straight lines, that is,
generally performed in order to estimate the ST as the value
of L for which the two straight lines meet each other [19, 20].
In consequence, based on this approach, the ST of Figure 3
is estimated as L = 3.2 seconds. Of course, such approach
does not consider points A, B, C, D, which may highlight
important characteristics of the signal.
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Figure 4: Overall average value of D2(i)×L, based on the results of
Figure 3, wherein the horizontal axis presents the window length
L measured as the number of samples, and the vertical axis is
measured in absolute values. The points of the plot identified by
letters A, B, C, D correspond to the same points A, B, C, D of
Figure 3.

The second derivative D2(i) of the function depicted
in Figure 3 was estimated through the application of (5)
and (6), leading to the plot D2 × L presented in Figure 4.
Of course, this last figure clearly points out the values
of L associated to signal ruptures, which are completely
disregarded by the classical approach [9, 19] based on the
linear approximation (see thick line in Figure 3). Based on
Figures 3 and 4, the ST estimation should consider strong
signal statistical variations at 3.2 seconds (point A), 3.3
seconds (point B), 3.4 seconds (point C), and 3.6 seconds
(point D). If one considers the ST the average among all
these values [19], then ST2 = 3.35 seconds, which is slightly
different from ST = 3.2 seconds estimated by the classical
approach (see Figure 3).

Table 2 summarizes the results obtained for each five-
minute experiment, presenting values that arise from aver-
aging all the sixty microelectrodes. Results involve both
ST estimated based on (7), which was applied to AANSA
signals and to ISI time series, as well as characteristic
times associated to the general interspike and interburst
interval histograms, which were estimated by classical spike
processing methods on the SpikeManager [21] platform
(see subsection “Spike Analysis” in section “Materials and
Methods”).

Figure 5 presents a bidimensional visualization of the
overall-ST amplitude variation along the MEA device. The
horizontal and vertical axes of Figure 5(a) present the spatial
coordinates associated with the position of each electrode,
and the color scale of Figure 5(b) provide the overall ST
amplitudes, measured in seconds, thus considering the
average performed on all the results obtained on the four
experiments.

In order to get further insights on the relationship
of the several quantities of Table 2, Pearson correlation
coefficients r among all of them were estimated, and t-
student hypothesis-tests have been carried out to assess the

K1

K2

K3

(a) Spatial variation of the amplitude of the overall-
average ST (AANSA) along the MEA electrodes, upper
view

2.1 2.9
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(b) Colour scale representing the amplitude of the
overall-average ST, in seconds

Figure 5
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Figure 6: Dispersion plot involving ST and MFR for 60 channels,
four experiments; r = −0.0111, P = 0.9334.

significance of all these coefficients, supposing α = 0.05.
Figures 6 and 7 present results of the overall-average values
for sixty channels; whereas, Figures 8, 9, and 10 depict
results considering the overall-average values in terms of each
experiment. Table 3 summarizes the results of these figures,
also including other ones.
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Table 2: Average values for each experiment, considering all the 60 channels, based on (7) and classical spiking processing.

Experiment number ST [s] – AANSA signals ST [s] – ISI time series MIB [s] MFR [spikes/s] MBR [bursts/min]

1 2.29 ± 0.06 3.10 ± 0.04 3.26 ± 0.01 10.01 ± 0.06 19.07 ± 0.06

2 2.41 ± 0.06 4.93 ± 0.02 5.03 ± 0.02 6.63 ± 0.01 13.63 ± 0.09

3 2.50 ± 0.06 6.12 ± 0.01 6.44 ± 0.02 5.69 ± 0.03 11.77 ± 0.02

4 2.42 ± 0.06 5.53 ± 0.03 5.61 ± 0.01 7.17 ± 0.02 13.57 ± 0.03

Overall average 2.40 ± 0.06 4.92 5.09 7.38 14.51

Remarks on abbreviations: AANSA = Absolute-Amplitude Neural Spontaneous Activity; ISI = Interspike Interval; MIB = Mean InterBurst Interval; MFR =
Mean Firing Rate; MBR = Mean Burst Rate.

Table 3: Pearson Correlation Coefficients (r) among ST and other classical measures, relationship with Figures 6–10. α = 0.05.

Comparison in terms
of

r involving
ST and MFR

[spikes/s]

r involving
ST and MBR
[burst/min]

r involving
ST and MIB

[s]

r involving
ST (estimated

for AANSA
signals) and

ST (estimated
for ISI time

series)

Channels, considering
four experiments

r = −0.0111; r = 0.1591; r = 0.5956; r = .9654

P = .9334
Figure 6

P = 0.2285
P < .0001
Figure 7

P = .0118

Experiments (5
minutes, all channels
at a time)

r = −0.9721; r = −0.9784; r = 0.9891; r = 0.9792;

P = .0279
Figure 8

P = .0216
P = .0109
Figure 9

P = .0208
Figure 10

2
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)
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Figure 7: Dispersion plot involving ST and MIB for 60 channels,
four experiments; r = 0.5956, P < .0001.

4. Discussion

The last line of Table 2 depicts the overall-average ST =
2.40 seconds, which is different from the ST obtained by
the classical approach (3.3 seconds, as discussed in Figure 3

above). Such difference points out that the proposed method
is much more accurate than the rough estimation technique
of Figure 3 [19, 20].

2
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2.5

ST
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MFR (spikes/s)

Figure 8: Dispersion plot involving ST and MFR, average for 60
channels, four experiments; r = −0.9721, P = .0279.

Consider now Table 2. In principle, ST estimated from
AANSA signals is quite different from that estimated from
ISI time series, which is not a surprising result, since the first
one includes basal activity information, and the second one is
just spiking information. The overall-average value of the ST
estimated from AANSA signals also seems not to be related
with any other spiking-analysis values of the table. However,
the overall-average ST estimated for ISI time series is quite
close to the overall-average MIB.
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Figure 9: Dispersion plot involving ST and MIB, average for 60
channels, four experiments; r = 0.9891, P = .0109.
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Figure 10: Dispersion plot involving ST estimated for AANSA
signals and ST estimated for ISI time series, average for 60 channels,
four experiments; r = 0.9792, P = .0208.

Results of Figures 6–10 and Table 3 aim at clarifying
discussions of the previous paragraph based on a rigorous
statistical approach. Beforehand, however, it should be
recalled how to analyze these results, based on the following
considerations, which are closely tied to t-Student-tests.
Since the value α was set as 0.05 for these calculations, the
zero hypothesis is rejected if Pearsons coefficient approach is
±1 and if p is lower than α, thus leading to the conclusion
that there is indeed relevant statistical correlation between
the two variables under analysis. Otherwise, nothing be
stated anything regarding the existence of the statistical
correlation. From this point of view, major conclusions from
Figures 6–10 and Table 3 may be summarized as follows.

(i) There is a significant statistical correlation between
ST (AANSA) and MIB, at the channel level (see
second line of Table 3).

(ii) There is a very strong and significant statistical
correlation between ST (AANSA) and MFR, MBR
and MIB, at the experiment level (see third line of
Table 3).

(iii) There is a very strong and significant statistical
correlation between ST estimated for the AANSA
signals and the ST estimated for ISI time series, even
if their absolute amplitudes are different from each
other.

Particularly regarding the first conclusion above, based
on Table 3 and on a linear regression model that can be
derived from Figure 7, it is possible to establish the following
analytic expression:

ST (AANSA) ∼= 0.6∗MIB. (8)

In fact, the value 0.6 was obtained from Figure 7, which
considers the context of each experiment, all channels.

There are, however, several relevant issues involving
the results of the statistical analysis presented in Figures
6–10 and Table 3. Firstly, they are related to quantities
which present different physical meanings and measurement
unities. Secondly, the ST amplitude variation is very little
when compared to the amplitude variation of the other
quantities in Table 3. Finally, windowing performed for
classical spike analysis does not match exactly that one used
for DFA method.

Consider now results of Figure 5. As a general conclusion
of Table 2, it can be stated that strong neurodynamical
changes take place every 2.40 seconds in the cultured neu-
rons. This conclusion agrees with previous results reported
in [19], wherein the authors studied the statistical behaviour
of the neuronal spontaneous activity of fusimotor neurons,
measured in cats by in vivo experiments. In this paper, the
stationarity profile of the signals is characterized as a second-
order white noise, leading to the conclusion that spontaneous
neural activity plays an important role on the stochastic
resonance mechanism, which may be used to explain the
underlying physiological process of this group of neurons.

Furthermore, the results shown in Table 2 also agree
with the conclusions of [22]. In this article, the author
analyzes the electrical activity of postsynaptic neurons from
the somatosensorial cortex of rats, supposing that these cells
are electrically stimulated by a specific protocol, according
to Ornstein-Uhlenbeck Model, for which the presynaptic
stimulation signal resembles to white noise. In the following,
the statistical characterization of the postsynaptic response
is accomplished based on the classical interspike interval
time series. For this last signal, the stationarity time was
estimated as about 2 seconds. It should be pointed out that
such behavior takes place during all times of the experiment,
until the end of the stimulation protocol carried out by the
author.
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According to Table 2, the average-ST values for each
experiment do not present significant difference at the time
scale of 2 seconds, disclosing a similar stationarity pattern
in the four experiments. The major differences between
these average-ST amplitudes lie within the millisecond scale.
Furthermore, as reported in [21], the four experiments were
performed in a consecutive way, using the same cultured
neurons, so that the second one was carried out after the
first one, and so on. Based on this context, Table 2 points
out that the average-ST amplitudes increased slightly as the
experiments were performed, so that the average stationarity
profile of the signals kept almost constant in time.

Figure 5 shows that there is a spatial distribution of the
overall-average ST, so that it is possible to establish relations
between specific groups of electrodes and the overall-average
ST amplitudes. For example, regions K1, K2, and K3 in
Figure 5 may be considered quite confined spaces, each of
them connected with specific groups of electrodes, so that
there is no overlapping involving such regions. In conse-
quence, K1 characterizes regions with strong statistical vari-
ation, since its overall-average ST amplitude is minimum;
whereas, K2 groups electrodes for which signals present
a more stationary behaviour. On the other hand, region
K3 is characterized by an intermediate statistical-variation
profile. Consequently, the neural spontaneous activity of
a cellular culture may present different statistical variation
profiles, pointing out that electrical activity throughout the
electrodes is structurally different. In the context of Figure 5,
intermediate time variations may be considered the major
average stationarity profile associated with the ensemble of
signals recorded by MEA electrodes.

Figure 5 points out that difference between time-
variation characteristics along the MEA lies within the
millisecond scale, which suggests that such time variations
are due to physiological processes connected to fine-tuning
cellular mechanisms [22]. In brief, the overall-average ST of
MEA electrodes could result from physiological phenomena.
To our knowledge, the biological concepts that could be
used to explain the ST are based on the dynamics action
of the adaptation/facilitation components in different time
scales, providing the modulation of neural responses after an
electrical stimulus [22, 23].

Among these components, there are those characterized
by a quick dynamics, which can change in the scale of
hundreds of milliseconds, known as “brief components”.
There are also other ones, presenting slower action, which
will influence neurophysiological phenomena in the time
scale of seconds [22], called “later adaptation”. According
to results of Table 2, the average stationary behaviour of
MEA signals is controled by the later adaptation, since
all the overall-average STs lie within the range 2 seconds;
whereas, the brief component can be considered responsible
for the differences between the stationarity profiles in each
electrode, in terms of the time scale of milliseconds, as
shown in Figure 5(a). Even if the physiological mechanisms
underlying the later adaptation have not been completely
established yet, studies explain this phenomenon by the
slow inactivation of the sodium channels, including also the
influence of the brief facilitation component [23]. Although

results depicted at Table 2 and in Figure 5 suggest strong evi-
dence supporting the role of the physiological mechanisms
previously described, it is not possible to establish a definite
explanation on ST physiology associated with the cellular
culture measured by the MEA device.

Finally, comparing the results and discussions in this
paper, in [19] and in [22], it can be noticed that the
overall-average ST amplitudes converge almost to the same
magnitude of 2–5 seconds, for several types of neuronal
cells: fusimotor neurons of cats [19], somatosensorial cells
of rat cortex [22], and cortical neurons of rat embryos (18
days of life); the last ones are analyzed in this paper. At the
same time, the white noise theory, associated with the ionic-
channel dynamics, also emerges in an outstanding way, since
it was used for explaining the results in [19] by the stochastic
resonance theory, for the experimental protocol carried out
in [23] and for the statistical characterization accomplished
in [24]. This last paper employs the concept of white noise in
the context of high-order statistical theory.

5. Conclusion and Future Work

The upgraded DFA method allowed the detection of nonsta-
tionarities of the neural-culture signals throughout the time.
Our proposition enables a more accurate and systematic
detection of signal ruptures, if compared to the classical
straight-line rough approach [19, 20].

Results based on experiments and on a rigorous statistical
analysis discussed the relationships among the ST (which
was estimated for both AANSA signals and ISI time series)
and the classical spike analysis quantities MIB, MFR, and
MBR, which are generally calculated to assess the global
physiological state of the culture. It was shown that ST
(AANSA) does not present any correlation with both MFR
and MBR. However, ST (AANSA), ST (ISI), and MIB
(which is also calculated from ISI) do present a strong
statistical correlation, so that it is possible to estimate
MIB(ISI) as the ST (AANSA) divided by 0.6, as shown
in (8). Notice that since the AANSA signal is composed
of basal activity, bursts, and spikes, then indeed bursts
may be considered a kind of “non-stationarity”, since they
involve significant signal amplitude and frequency changes.
In consequence, all these results suggest that it is possible to
perform neural coding analysis based just on the absolute
amplitude of the neural spontaneous activity, instead of
considering the interspike interval (ISI) time series, currently
used by classical systems. It should be noticed that ISI
signals do not consider data present in the basal activity
existent between spikes, thus losing (maybe) important
biological information. In addition, ST estimation may also
avoid inaccuracies and the high computational complexity
associated to spike detection, which fulfils the requirements
imposed by neuroprosthesis clinical use in terms of biocom-
patibility.

The upgrade on the DFA technique proposed in this
paper leads to the estimation of the overall-average ST
within the range 2-3 seconds, pointing out that the optimal
windowing of signals arising from the neural culture is about
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2-3 seconds. According to literature [19, 22], such result
provides an accurate windowing, which is required by the
classical methods of spike detection and classification for an
efficient operation. Furthermore, it was shown that cellular
culture signals can present different characteristics in its
electrodes, which of course may be associated to different
physiological behaviours. Particularly, for the signals con-
sidered in this paper, the average level of time variations
may be considered intermediate, which defines the average
non-stationary profile. Numerical results and previous work
in literature suggest that the mechanism of later adaptation
defines the global behavior of MEA signals; whereas, the
brief facilitation component is responsible for the slight
differences associated with particular non-stationary features
of each electrode.

Future work involves the use of the upgraded DFA
method for the development of efficient spike classification
and neural connectivity techniques, based on the concept
of ST. White-noise theory plays also an important role
according to previous works of literature, suggesting its
association with DFA. Finally, deeper studies about the role
of ionic channels involved in the physiological mechanisms
of adaptation/facilitation should be performed to evaluate
the association of these channel dynamics with the ST profile
of the neuronal culture.
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