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Computational simulations of cardiac electrophysiology provide detailed information on the
depolarization phenomena at different spatial and temporal scales. With the development
of new hardware and software, in silico experiments have gained more importance in
cardiac electrophysiology research. For plane waves in healthy tissue, in vivo and in silico
electrograms at the surface of the tissue demonstrate symmetric morphology and high
peak-to-peak amplitude. Simulations provided insight into the factors that alter the
morphology and amplitude of the electrograms. The situation is more complex in
remodeled tissue with fibrotic infiltrations. Clinically, different changes including
fractionation of the signal, extended duration and reduced amplitude have been
described. In silico, numerous approaches have been proposed to represent the
pathological changes on different spatial and functional scales. Different modeling
approaches can reproduce distinct subsets of the clinically observed electrogram
phenomena. This review provides an overview of how different modeling approaches
to incorporate fibrotic and structural remodeling affect the electrogram and highlights open
challenges to be addressed in future research.
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1 INTRODUCTION

Patients with cardiac arrhythmias are often treated with ablation therapy. Substrate-based ablation
therapy is guided by intracardiac measurements acquired from catheters inserted into the cardiac
chamber that record the extracellular potential.

The signal recorded by an electrode with respect to a distant reference is called unipolar
electrogram (uEGM). EGMs of several electrodes on a catheter and/or multiple catheter
locations are used to understand the dynamics of the cardiac arrhythmia. However, the
recorded uEGMs are affected by different artifacts such as contraction of the heart,
breathing of the patient, far-field signals from distant parts of the heart and noise from
different hardware components. To alleviate these issues, bipolar electrograms (biEGM) are
most frequently used, which subtract the uEGMs of two close-by electrodes. In this way, artifacts
that affect both electrodes in the same way are cancelled. The difference between two potentials
is called voltage and we should keep in mind that we can only measure voltages. Therefore,
uEGMs always have to be considered with respect to their (distant) reference electrode. In
clinical literature, also the peak-to-peak amplitude of an electrogram signal (i.e., a voltage time
course) is often called “voltage”.
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The mathematical model of an excitable cell proposed by
Hodgkin and Huxley, (1952), the tissue homogenization
approach proposed by Schmitt, (1969), and the set of
bidomain equations first applied by Tung, (1978) in 1978 is
the most complete and accurate model that describes the
spread of electrical depolarization across the myocardium
and its cells.

Computational simulations based on this mathematical model
have been used to understand the phenomena of the depolarization
spread in cardiac tissue and their effects on electrogram genesis and
morphology (Bishop and Plank, 2011b; Oesterlein et al., 2016;
Roney et al., 2016; Pollnow et al., 2017; Beheshti et al., 2018; Hwang
et al., 2019). While EGMs can be extracted from the extracellular
medium in a bidomain simulation, this approach is
computationally expensive. Thus, different methods based on
excitation propagation simulations in the monodomain model
have been proposed. Another modeling approach to accelerate
the computation is the so-called reaction-eikonal model Neic et al.
(2017), which can simulate physiological propagation using a
coarser mesh (element average length 400 μm). In the
monodomain model and the reaction-eikonal model, the
extracellular potential is not calculated directly. However, it can
be approximated with the pseudo-bidomain approach or the
infinite homogeneous volume conductor method to obtain
EGMs as detailed below. The infinite homogeneous volume
conductor method approximates the extracellular potential
caused by a group of cells spatially distributed in space and
acting as sources of the electric field (Malmivuo and Plonsey, 1995).

In this review, we give an overview of the biophysical
phenomena governing wave propagation in cardiac tissue and
the corresponding extracellular potentials measured as
electrograms. We will particularly focus on different
approaches used to model fibrotic remodelling and simulate
the corresponding electrograms to reproduce and understand
the clinically observed changes in electrogram amplitude and
morphology.

2 INTRACARDIAC ELECTROGRAMS

The electrical activity in the myocardium originates from the
coordinated opening and closing of the ion channels in the cell
membrane. The time course of the difference between the
potential in the intracellular and in the extracellular medium
is known as the action potential. In cardiac tissue, the cells are
interconnected through gap junctions that will start a cascade
effect of cellular activation along the major axis in which
myocytes are aligned locally (also known as fiber direction),
resulting in excitation propagation across the myocardium.

The extracellular field is a consequence of the spatial
distribution of the transmembrane voltage of the cells in the
myocardium (Figure 1A). An advancing depolarization wave in
the cardiac tissue changes the spatial distribution of the
extracellular potential. The extracellular potential can be
measured as the uEGM at one electrode (technically the
voltage between the extracellular potential at the measuring
electrode with reference to for example, Wilson central
terminal). The unipolar electrogram morphology is
characterized by a biphasic symmetric shape (Figure 1B)
where the positive phase (R-peak) indicates the approaching of
the wavefront to the measuring electrode and the fast downslope
indicates the moment that the wavefront is underneath the
electrode. The opposing negative phase (S-peak) indicates the
movement of the wavefront away from the measuring electrode.
The peak-to-peak amplitude of the signal is also called “voltage”
in the clinical literature. Peak-to-peak voltage is used as a marker
to distinguish healthy from pathological tissue both for biEGMs
(Jadidi et al., 2020) and uEGMs (Nairn et al., 2020b). However,
biEGM amplitude can be affected by to several factors (Hwang
et al., 2019) such as the orientation of the catheter (Schuler et al.,
2013; Gaeta et al., 2020), the electrode spacing and size (Beheshti
et al., 2018; Abdi et al., 2020; Nairn et al., 2020a; Takigawa et al.,
2022), depolarization patterns (Jacquemet et al., 2003), substrate
remodeling (Jacquemet et al., 2003; McDowell et al., 2012;

FIGURE 1 | Electrical propagation in healthy cardiac tissue. (A) Extracellular field caused by the depolarization of cardiomyocytes when an excitation propagates
from left to right (green arrows). (B)Symmetric unipolar electrogrammeasured at the surface of the cardiac tissue (pink). The initial positive wave (R-peak) is caused by the
wavefront approaching the electrode (dark gray), the polarity changes when the wavefront passes underneath the electrode, and the S-peak is caused by the wavefront
traveling away from the measuring electrode.
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Campos et al., 2013; Mendonca Costa et al., 2014; Roney et al.,
2016; Sánchez et al., 2021b) and signal filter settings (Starreveld
et al., 2020).

3 MODELLING INTRACARDIAC SIGNALS

Computational cardiac modeling has advanced rapidly in the last
years and different numerical methods to simulate the
propagation of the cardiac depolarization have been proposed
over the years. Finite difference approaches have been widely
used (Potse et al., 2006) and can be generalized for grids with
distinct spacing (Trew et al., 2005; Sánchez et al., 2019a). Also the
finite element method has been used to discretize complex
geometries such as the cardiac chambers to simulate cardiac
electrophysiology (Vigmond et al., 2003; Cooper et al., 2015; Neic
et al., 2017; Plank et al., 2021).

The bidomain model represents cardiac tissue as a
homogenized medium composed of the intracellular and the
extracellular domains. The two computational domains coexist
in the bidomain model and occupy the same geometrical space:

∇ · σ i∇ϕi( )) � βIm (1)
∇ · σe∇ϕe( )) � −βIm − Iextra (2)

Im � Cm
zVm

zt
+ Iion Vm, ]( ) − Iintra (3)

Vm � ϕi − ϕe , (4)
where ϕ represents the electrical potential, the indices i and e refer
to the intracellular and extracellular spaces, respectively. σ is the
conductivity tensor, β is the surface to volume ratio of the
myocytes and Iion the total transmembrane ionic current
density defined by the cellular model. The latter is dependent
on Vm and a vector ] of further state variables. Iintra (a
transmembrane current density) and Iextra (an extracellular
current density) describe external stimuli. If a bath surrounds
the tissue, it is treated as an extension of the extracellular space.

Adding Eqs 1, 2 and incorporating it into Eq. 4 yields:

∇ · σ i + σe( )∇ϕe � −∇ · σ i∇Vm( ) − Iextra (5)
∇ · σ i∇Vm( ) � −∇ · σ i∇ϕe( ) + βIm . (6)

As mentioned before, the reference potential during an
electro-anatomical mapping procedure is usually a potential in
a remote site or an average of potential values such as Wilson’s
central terminal. For a bidomain model, when calculating
uEGMs, the reference potential can, for example, be
considered as an average of the extracellular potential of the
furthest surface with respect to the tissue (Colli Franzone et al.,
2007; Keller et al., 2014), which is not a perfect approximation of a
remote reference electrode (e.g., a surface patch on the back of the
patient) but markedly reduces drift of the reference potential. The
further away the reference is from the myocardial tissue in the
model, the better the representation of the reference potential but
also the higher the computational cost due to the extended
computational domain. Considering the average potential in a
remote surface or volume is numerically advantageous compared

to defining a fixed reference potential as a Dirichlet boundary
condition.

The monodomain model is an approximation that assumes
that the anisotropy of the extracellular and intracellular
conductivity are aligned. Therefore, under the assumption of
equal anisotropy ratios, one needs to solve only the parabolic
partial differential equation above with the monodomain
conductivity set appropriately:

∇ · σm∇Vm( ) � βIm + βItr , (7)
where the bidomain equivalent monodomain conductivity σm is
given as

σm � σ iσe σ i + σe( )−1 . (8)
Potse et al. (2006) performed a thorough comparison between

the results of the bidomain model and monodomain model. The
authors conclude that the monodomain model, although being a
simplification of the bidomain model, is sufficient to study and
understand the electrical propagation in the cardiac tissue under
physiological conditions as well as for electrically remodeled
tissue (ionic current abnormalities). The acceleration of the
wavefront at the tissue-to-blood interface due to the bath-
loading effect can be represented with the augmented
bidomain approach (Bishop and Plank, 2011b). One of the
biggest disadvantages of the bidomain model is the long
computation time that it requires. Therefore, a common
modeling approach is to combine the monodomain model
with independent forward calculation of extracellular
potentials. The most simplistic approach is the infinite volume
conductor assumption, which assumes that the cardiac tissue is
immersed in a homogeneous extracellular medium with infinite
extent. This approach was for example, used to study the relation
of the spread of depolarization in the cardiac tissue to the genesis
and morphology of the unipolar electrogram (Gima and Rudy,
2002; Ganesan et al., 2013; Ugarte et al., 2014; Cabrera-Lozoya
et al., 2017; Hwang et al., 2019) but neglects the influence of the
heterogeneous surrounding tissue like other cardiac chambers,
the lungs or the liver.

Briefly, the source and the measuring point (electrode) for a
dipole are assumed to be immersed in an unbounded (infinite)
volume conductor with homogeneous properties. The time
course of the potential of the dipole corresponds to the uEGM
electrogram measured at a location x in a certain distance to the
source located in the cardiac tissue (xsrc) with respect to a
reference electrode in infinite distance using the integral
solution to Poisson’s equation:

ϕe �
1

4πσ
∫∫∫

V

Isrc
‖x − xsrc‖ dV , (9)

where ϕe is the extracellular potential, σ is the conductivity of the
volume conductor, Isrc is the source current density and ‖x − xsrc‖
is the Euclidean distance from the source point to the
measuring point.

Bishop and Plank (2011a) proposed a combined bidomain and
monodomain model (pseudo-bidomain) to calculate the
extracellular potential. The proposed pseudo-bidomain
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approach computes the elliptic bidomain equation for a given
transmembrane voltage distribution only at the time instants for
which the extracellular potential is sampled. This approach is
suitable to reproduce extracellular signals [EGM (Keller et al.,
2012) and ECG (Nagel et al., 2022)] for a finite surrounding
conductive medium (bath, potentially inhomogeneous) and is
computationally efficient.

3.1 Factors Affecting the Intracardiac
Signals
Using the bidomain model and realistic geometries of
commercially available catheters can help to better
understand EGM morphology (Schuler et al., 2013; Pollnow
et al., 2017; Sánchez et al., 2021a). Schuler et al. (2013)
modeled a realistic 7F catheter with two electrodes such
that the tip was at the center of the tissue and in direct
contact with the tissue patch surface. The catheter angle
was changed with respect to the surface of the tissue
(elevation) and to the wavefront propagation direction
(rotation). Additionally, the authors explored the impact of
the tissue thickness and conduction velocity on biEGM
amplitude and duration. One of their main findings was
that catheter orientation greatly affects the height and ratio
of the positive and negative bipolar signal amplitude, which
can be traced back to changes in the proximal signal.

Moreover, the authors pointed out that the substrate
characteristics (thickness and conduction velocity) mainly
affect the biEGM peak-to-peak amplitude.

In new highly detailed bidomain simulations for this review,
we show the biophysical phenomena of the spread of
depolarization in the left atrium and the EGMs from a 7F
LASSO™ (Biosense Webster) catheter in a healthy left atrium.
Figure 2 shows that local activation time is the main factor that
impacts the biEGM amplitude and that it is less sensitive to the
wavefront direction. Additionally, bidomain simulations showed
that biEGMs from electrodes that are not in direct contact with
the tissue have the same activation time resulting in a small
biEGM amplitude, which confirms the results previously shown
(Gaeta et al., 2020). In brief, the atrial anatomical model (Roney
et al., 2021) has a realistic wall thickness and an average edge
length of 100 μm. Tissue conductivity was tune to achieved a
conduction velocity of 40 cm/s (McDowell et al., 2013). The value
of conductivity of the blood were as reported by Clerc (1976), the
electrode conductivity was set to 1 × 1012 S/m to represent a good
conductor that yields an isopotential volume, the conductivity of
the catheter insulator was set close to zero (1 × 106 S/m).

The amplitude of uEGMs is affected by the geometrical
properties of the electrode, such as the size of the electrode.
Nairn et al. (2020a) performed a series of in silico experiments to
understand the effect of the electrode size on the amplitude of the
measured EGM. uEGM amplitude was shown to be inversely

FIGURE 2 | Bidomain simulation of a realistically deformed LASSO™ (Biosense Webster) catheter in a left atrium to study the genesis of different EGM
morphologies in healthy myocardium. (A) The wavefront approaches the electrode pair 7–8 and activates both electrodes at the same time, the resulting bipolar
electrogramwith a reduced peak-to-peak amplitude (0.42 mV). (B) Several wavefronts approaching electrode pair 13–14, both unipolar electrograms are asymmetrical,
lacking an S-peak; the resulting bipolar electrogram has a high peak-to-peak amplitude and a positive polarity. (C) The wavefront travels almost perpendicular to
electrode pair 3–4; the electrodes are activated at different times, the resulting bipolar electrogram has negative polarity and a high peak-to-peak amplitude (7.45 mV).
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related to the size of the electrode. biEGM amplitude is
additionally affected by the electrode pair spacing. Beheshti
et al. (2018) showed that biEGM amplitude was increased
when the electrode spacing increased. Assuming a plane wave
and a perfectly symmetric uEGM in a simple thought experiment,
the biEGM amplitude is zero for electrodes that are activated at
exactly the same time. When increasing the distance between the
electrodes, the peak-to-peak biEGM amplitude increases up to
two times the uEGM amplitude. When further increasing the
interelectrode distance, the biEGM amplitude decreases again
until there is no more temporal overlap between the two uEGMs
and the biEGM amplitude plateaus at the uEGM amplitude.

An additional factor that impacts the EGM amplitude and
morphology are the filter settings (Schneider et al., 2004; Lin et al.,
2007; Starreveld et al., 2020). In clinical practice, a bandpass filter
is commonly used. However, the cut-off values of the bandpass
filter differs for different mapping systems, catheters or due to the
noise environment present in the specific electrophysiology
laboratory. During an electroanatomical mapping procedure,
uEGMs are typically filtered with a highpass of 0.5–2 Hz and a
lowpass filter of 300–600 Hz biEGMs are typically bandpass
filtered with a highpass of 1–30 Hz and a lowpass of
300–500 Hz. Both EGM types are also filtered at the frequency
of the powerline with a notch filter (50 or 60 Hz). Figure 3 depicts
the effect of the filter settings on both uEGMs (panel A) and
biEGMs (panel C). In particular for biEGMs, the highpass filter
cut-off value affects the measure voltage (Figure 3D). The higher
amplitude of these simulated EGMs compared to clinical EGMs is
likely due to the chosen extracellular conductivity, perfect contact
of the electrode with the tissue and absence of losses along the
signal chain.

Considering the numerous factors that affect the uEGM and
biEGM amplitude and morphology, standardized mapping
modality (uEGM or biEGM), electrode size, electrode spacing
and filter settings could increase comparability between studies.
For modeling the healthy myocardium and electrograms,
bidomain models provide the most accurate representation of
the biophysical phenomena of depolarization and the influence of
the catheter inside the cardiac cavity. Monodomain models and
reaction-eikonal models in combination with forward calculation
approaches to obtain the EGMs provide sufficient information
about the propagation in the cardiac tissue in most scenarios.
After reviewing the factors that influence the EGMs in the healthy
myocardium, the next section covers factors that increase the
complexity of the signals due to heterogeneities of the tissue and
different patterns of propagation.

4 MYOCARDIAL STRUCTURAL
REMODELING AND INTRACARDIAC
SIGNALS
Structural remodeling alters the cardiac substrate, and the
depolarization wavefront often has to follow a zig-zag
pattern (Figure 4 white arrows). The zig-zag pattern of the
propagation is reflected in uEGM and biEGM as fractionation
in the signal due to constantly changing orientation of the
wavefront. Fractionation is defined as an increase of
deflections, thus an increase in complexity of the signal as
well as a prolongation of the EGM (Jacquemet and Henriquez,
2009; Verheule and Schotten, 2021). As previously mentioned,
the highpass filter cut-off value affects the signal amplitude. In

FIGURE 3 | Filter effects on electrograms measured in healthy myocardium. (A) Unipolar electrograms with different highpass filter values. (B) Effect of different
highpass cut-off values on the unipolar electrogram amplitude. (C) Bipolar electrogram with different highpass cut-off values. (D) Effect of different highpass cut-off
values on the bipolar electrogram amplitude.
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the presence of fibrotic tissue, uEGMs and biEGMs have a
different frequency spectrum and are affected in a different
manner. Figure 5D shows that there is no optimal cut-off
frequency as previously reported by Starreveld et al. (2020).
The filtered biEGM amplitude (orange line) drops due to the
highpass cut-off but does not intersect the unfiltered amplitude
(blue dashed line) as is the case for healthy myocardium
(Figure 3D).

Many approaches have been proposed to model fibrotic
cardiac tissue (Table 1) to understand the effect on the
wavefront propagation and the corresponding electrograms
(Ashihara et al., 2012; McDowell et al., 2013; Roney et al., 2016).

Creating a model of cardiac fibrotic tissue is not an easy task
as fibrosis formation has been associated with different
diseases (myocardial infarction (Liu et al., 2017), diabetes
(Russo and Frangogiannis, 2016), autoimmune diseases

FIGURE 4 | Electrical propagation in fibrotic cardiac tissue, the composition is heterogeneous and includes cardiac myocytes (orange), myofibroblasts/fibroblasts
(green) and collagen fibers (purple). Depolarization of cardiomyocytes when an excitation propagates from left to right (brown arrows). Dotted arrows represent a
conduction block, while dashed arrows represent slowed conduction. As a result of the zig-zag propagation of the wavefront (white arrows), the unipolar electrogram
morphology is not symmetric, is prolonged and shows multiple deflections.

FIGURE 5 | Filter effect on electrograms measured in the proximity of a fibrotic area. (A) Unipolar electrograms with different highpass filter values. (B) Effect of
different highpass cut-off values on the unipolar electrogram amplitude. (C)Bipolar electrogramwith different highpass cut-off values. (D) Effect of different highpass cut-
off values on the bipolar electrogram amplitude.
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(Tschöpe et al., 2021) and others), which produce different
patterns of structural remodeling (interstitial, compact,
diffuse, and patchy) (Nguyen et al., 2014). For example, it
has been described that during an ischemic episode in the
ventricle, the myocardium undergoes electrical remodeling
(Mendonca Costa et al., 2018). From a macroscopic view,
conduction velocity is reduced in the scar area, which can
be modeled by decreasing the conductivity or by including
isolating barriers (Balaban et al., 2018). Additionally, at a
cellular scale the cardiac myocytes undergo electrical
remodeling (Mendonca Costa et al., 2018). At the border
zone of the ischemic area, cardiomyocytes lack oxygen
which impacts their metabolism and increase acidity. This
triggers a series of effects in the cell’s ion channels. To model

these effects, the maximum conductance (Rodriguez et al.,
2006; Loewe et al., 2018) of certain ionic channels are modified
including an ATP-sensitive potassium channel (IKATP), which
has a major contribution during ischemic episodes (Dutta
et al., 2017).

Moreover, computational models of pathological tissue need
to include fibrosis at the tissue scale. Fibrosis patterns (Figure 6)
can be modeled using different approaches by assigning different
properties to the mesh using for example, a random distribution
(e.g., uniform or Gaussian) (Sánchez et al., 2019b; ten Tusscher
and Panfilov, 2007; Alonso and Bär, 2013; Vigmond et al., 2016),
by extracting the scar area from MRI (McDowell et al., 2012;
Krueger et al., 2014; Morgan et al., 2016; Beach et al., 2021) or by
using algorithms that synthetically generate similar patterns as

TABLE 1 | Different modeling approaches to represent fibrotic tissue in computational models and their effect on simulated EGMs.

Modeling approach Effect on EGMs References

Myofibroblasts/fibroblasts coupled to myocytes longer duration due conduction slowing in the fibrotic
area

MacCannell et al. (2007), Ashihara et al. (2012), McDowell et al.
(2013), Morgan et al. (2016), Roney et al. (2016), Zahid et al.
(2016), Sánchez et al. (2019b)

Reduced conductivity in fibrotic region,
potentially with gradient to surrounding tissue

peak-to-peak amplitude reduced and duration
prolonged due to slow propagation of the wavefront

Krueger et al. (2014), Caixal et al. (2020), Lim et al. (2020), Beach
et al. (2021)

Severely reduced conductivity in some elements
in the fibrotic region

reduced peak-to-peak amplitude in the fibrotic area Alonso and Bär, (2013), ten Tusscher and Panfilov, (2007),
Clayton, (2018)

Removing some elements in the fibrotic region fractionation and reduced peak-to-peak amplitude Roney et al. (2016), Vigmond et al. (2016)

Edge splitting fractionation depending on the length of the path Jacquemet and Henriquez, (2009), McDowell et al. (2013),
Mendonca Costa et al. (2014), Roney et al. (2016)

Reduction of conductivity in the transversal fiber
direction

increased anisotropy of excitation propagation, effect
on EGMs not yet studied

McDowell et al. (2012)

Reduction of conductivity in the transmural
direction

excitation propagation dissociation between
transmural layers, effect on EGMs not yet studied

Gharaviri et al. (2016), Irakoze and Jacquemet, (2020)

FIGURE 6 | Sketches of a tissue cut for healthy and fibrotic tissue (top row). Fibrotic sketches represent different fibrotic patterns (diffuse, interstitial, patchy or
compact). The bottom row depicts the homogenization assumption where a hexahedral mesh element of 100 μm × 100 μm×100 μm represents several cardiac
myocytes and has to assume one average set of properties that describes the electrophysiology of this group of cells. For fibrotic tissue, homogenization implies that one
element contains different types of cells (cardiac myocytes and fibroblasts/myofibroblasts) and collagen. Also the electrophysiological characteristics of this piece of
tissue has to be represented by one set of effective parameters.
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observed in histological cuts of fibrotic tissue (Jakes et al., 2019;
Pezzuto et al., 2019; Sutanto et al., 2020; Sánchez et al., 2021b).

Fibrosis can be modeled differently and many studies reduce
the tissue conductivity such as for example, informed by
microstructural modeling in Gokhale et al. (2017). The
conductivity of the fibrotic areas can also be reduced in the
transversal direction (McDowell et al., 2012) to represent
lateralization of gap junctions, close to zero in all directions
(Clayton, 2018) or affected by a no flux boundary condition
(ten Tusscher and Panfilov, 2007; Alonso and Bär, 2013) to
represent replacement fibrosis. The specific spatial distribution
of conductivities or conduction velocity can be informed by
fibrosis imaging such as the pixel intensity in late gadolinium
enhanced magnetic resonance images (Krueger et al., 2014;
Morgan et al., 2016; Caixal et al., 2020; Beach et al., 2021) or
using a mathematical function determined from EGM
amplitude (Lim et al., 2020). Within the regions, either
uniform conductivities can be assumed or a gradient from
the center of the fibrotic area to the healthy surrounding tissue
is assumed.

Furthermore, the edge splitting method has been proposed
to separate the computational mesh along its edges with the
aim to reproduce the effect of collagen deposition in fibrotic
tissue that separates the cardiac myocytes (Mendonca Costa
et al., 2014). Edge splitting consists of splitting the nodes along
and edge to disconnect adjacent elements creating an
alternative path for the wavefront propagation in the
cardiac tissue. However, reducing the conductivity or
splitting the edges of the mesh does not capture the effect
of increased cellular heterogeneity in the cardiac tissue
(fibroblast-myocyte coupling) and the inflammatory
response. To model cellular heterogeneity, myofibroblast or
fibroblast models have been introduced (MacCannell et al.,
2007; Ashihara et al., 2012; Morgan et al., 2016; Roney et al.,
2016; Sánchez et al., 2021b). Myofibroblasts or fibroblasts were
electrically connected to the myocytes by gap junctions. There
are equivocal data about the exact conductance of these gap
junctions and the number of fibroblasts that a myocyte couples
to. In computational models, the value of conductance ranges
between 0.5 nS to 2 nS and up to 9 fibroblasts are considered
Morgan et al. (2016), MacCannell et al. (2007), Maleckar et al.
(2009), Rook et al. (1992), Sánchez et al. (2019a), Seemann
et al. (2017). The inflammatory response (myocyte-fibroblast
paracrine interactions) has been modeled by altering the
maximum conductance of the sodium ion channel (reduced
by 50%), the maximum conductance of the L-type calcium ion
channel (reduced by 50%), and the maximum conductance of
the inward potassium rectifier ion channel (reduced by 40%)
(Zahid et al., 2016), as reported by in vitro experiments (Avila
et al., 2007; Ramos-Mondragón et al., 2011).

Lately, Vigmond et al. (2016) proposed to represent fibrotic
tissue in a monodomain model by removing the elements of the
mesh to capture the effect of the low conductive extracellular
medium and the absence of an intracellular current path. One
advantage of the proposed modeling approach, is that there is no
flux of current towards the fibrotic tissue; therefore, there are no
source elements that will contribute to the calculated extracellular

potential. Using this modeling approach, the authors observed
that at the percolation threshold (Alonso and Bär, 2013) the
fibrotic tissue was be able to trigger and maintain an arrhythmia.
The EGMs calculated over the fibrotic tissue exhibit fractionation
due to the zig-zag patterns of depolarization in the cardiac tissue
in this modeling approach. Moreover, the study also looked at the
impact of the mesh resolution when modeling fibrotic tissue and
showed that in meshes with a resolution of 300 μm conduction
block was reached at lower degrees of fibrosis than in meshes with
finer resolution (< 100 μm).

Using a realistic geometry Jacquemet et al. (2003) studied the
morphology of uEGMs during different atrial fibrillation
propagation patterns. The authors showed that different
propagation patterns (plane waves, spiral waves, and
wavefront collision) lead to different uEGM morphology
(symmetry and amplitude) and that asymmetric signals
(Figure 2B) occurred in less than 2% of the cases in
homogeneous substrate. However, the increase of
heterogeneities in the cardiac tissue also increases the
asymmetry and reduces the amplitude of the EGM(van der
Does and de Groot, 2017). Frontera et al. (2018) showed how
different depolarization patterns affected the biEGM
morphology. High peak-to-peak amplitude and short duration
of biEGMs are wavefront collisions or pivotal points, low peak-to-
peak amplitude and EGM prolongation are associated with slow
conduction areas. The authors remarked how understanding the
genesis of the electrograms is a key factor to improving the
arrhythmia treatments.

Including heterogeneous tissue composition in the model
changes the wavefront propagation in the cardiac tissue
(McDowell et al., 2012; Campos et al., 2013; Mendonca Costa
et al., 2014; Roney et al., 2016) (Figure 7). Roney et al. (2016)
showed how different modeling approaches of cardiac fibrosis
can change the propagation in the cardiac tissue and affect the
morphology of EGMs. In that study, Roney et al. (2016) modeled
fibrosis as conduction disturbances (lower conductivity, edge
splitting, or removing elements). They included electrical
remodeling of the cardiac myocyte due to inflammatory
processes mediated by transforming growth factor-β1,
myocyte-fibroblast coupling and combinations of the
preceding. EGM morphology was mostly affected when
fibrosis was modeled by edge splitting or removing the
elements (Figure 7) as also shown previously. In addition,
including fibroblast coupling has an organizing effect on rotor
dynamics, also shown by other studies (McDowell et al., 2012;
Sánchez et al., 2019b).

The amplitude of the EGMs can also be affected by
conduction impairment along certain axes (McDowell et al.,
2012; Gharaviri et al., 2016; Irakoze and Jacquemet, 2020).
Gharaviri et al. (2016) created a model of the cardiac tissue that
enables the study of dissociation between transmural layers,
for example, dissociation between the subendocardial and the
subepicardial myocardium as can be caused by endomysial
fibrosis. Moreover, Saba et al. (2009) described how the
epicardial EGM amplitude varies in the ventricle with the
thickness of the epicardial fat layer. The authors showed
that biEGM amplitude was inversely related to epicardial fat
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thickness. Thus, using a voltage cut-off of 0.5 mV to define scar
tissue would lead to identifying also healthy areas with
overlaying fat and more information needs to be used to
define epicardial tissue characteristics.

5 OTHER FACTORS IMPACTING
INTRACARDIAC SIGNALS

EGM morphology and amplitude are also affected by electrode
polarization, excessive contact pressure, catheter motion
(Oesterlein et al., 2016), electromagnetic interference (Unger
et al., 2019), near field and far field effects (Schicketanz et al.,
2021), and poor grounding. However, most in silico experiments
do not consider these factors, which might alter the EGM
characteristics. Simulation studies have created a model of
clinical noise which covers the electromagnetic interference
(Sánchez et al., 2021a; Nothstein et al., 2021). However,
further aspects likely need to be considered explicitly if their
influence is relevant for the intended use of the model.

6 RESEARCH GAPS AND POTENTIAL
FUTURE DEVELOPMENTS

Modeling of the cardiac tissue has significantly advanced
understanding of the electrical propagation and the measured

intracardiac EGMs. There is consensus on how to assign the
properties of the computational model to represent healthy
myocardium and the advantages and limitations of the
different approaches to compute the extracellular potentials
are mostly characterized. However, the question how to model
fibrosis is far from being ultimately answered and will most likely
continue to depend on the question of interest to be answered
with a specific model. Additionally, the mesh resolution used in
most of the studies of ≈300 μm determines the degree of
homogenization (Figure 6). Spatial discretization of the mesh
at the cellular level should be considered to study the influence of
microstructural heterogeneity in the tissue (e.g., fibrosis) on
EGMs (Figure 4). In addition, such models with subcellular
resolution would enable to investigate to which degree
discontinuous propagation within a cell vs. between cells leads
to fractionation in healthy tissue. Here, we presented an overview
of the commonly used methods and their corresponding EGMs.

Over the last years, the human cardiac digital twin has been under
development to suggest personalized treatments for cardiac
arrhythmias. Gillette et al. (2021) proposed an automated
framework to generate a patient’s digital twin from clinical data
and Nagel et al. (2021) proposed a statistical approach to generate a
population of anatomical models. While the anatomical model can
be accurately generated from magnetic resonance images or
statistical shape models, functional twinning can be achieved by
tuning a phenomenological model or using generalized global
properties for the cardiac tissue. Functional information will

FIGURE 7 | Different fibrosis modeling methodologies and their corresponding unipolar and bipolar electrograms. Central fibrotic area (dashed line), the choice of
the modeling approach affects the resulting uEGMs and biEGMs. (A) fibroblasts coupled tomyocytes in the fibrotic region; (B) removing a share of elements in the fibrotic
region from the computational domain; (C) severely reducing conductivity in a share of elements in the fibrotic region but the spatial transmembrane voltage gradients of
fibrotic elements still contribute to the EGMs; (D) conductivity gradient from center of the fibrotic region to the surrounding healthy tissue. Absolute EGM amplitudes
are smaller than in vivo due to the small size of the tissue patch.
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impact the morphology and amplitude of the EGM. However, over
the years, different studies proposed distinct methodologies to
extract structural and functional information from the EGM
signals. One open question is still the possibility of obtaining
repolarization times from EGMs as repolarization of the cardiac
tissue plays a pivotal role for the initiation of arrhythmias (Rivaud
et al., 2021). From simulations of atrial electrophysiology, Celotto
et al. (2021) proposed a method to detect areas of parasympathetic
innervation from the amplitude of the repolarization EGM. Verrier
et al. (2016) showed that repolarization times can be recovered from
EGMs for both the atrium and the ventricle in a controlled clinical
environment. However, initial experience in other groups including
our own suggest that reliably obtaining atrial repolarization
information from EGMs remains a challenge.

Different studies demonstrated discrepancies when using the
same voltage threshold (for example, 0.5 mV) to distinguish
healthy from pathological tissue when mapping during
different rhythms (sinus rhythm and AF) (Rodríguez-Mañero
et al., 2018; Nairn et al., 2020b; Nairn et al., 2022). Nairn et al.
(2022) looked at how the amplitude of EGMs changed when
electroanatomical mapping was performed under three different
rhythms (sinus rhythm, native AF, and induced AF). The authors
proposed not only one single cut-off voltage value for the entire
atrium but regional voltage thresholds to minimize the
discrepancies between different mapping rhythms. Computer
models could help to further characterize the voltage relations
during different rhythms and to overcome the use of a voltage
threshold to distinguish the cardiac substrate (healthy and
fibrotic) by combining in vivo data and in silico data to fully
exploit the information contained in EGMs (Sánchez et al.,
2021a). Additionally, computer models of cardiac
electrophysiology could aid the design of medical devices
helping in understanding the factors that affect EGMs to raise
awareness for them (Oesterlein et al., 2016; Pollnow et al., 2017;
Beheshti et al., 2018; Hwang et al., 2019) as well as to inform the
choice of parameters to improve the technologies as proposed for
cardiac resynchronization therapy (Jolley et al., 2010).

Understanding the functional relationship between the
discrete structure and continuum behaviour of cardiac tissue
at microscopic and macroscopic levels is a significant challenge
(Gokhale et al., 2017). At the microscopic level, Tveito et al.
(2017) and Bécue et al. (2017) proposed a cell-by-cell approach
that explicitly models the extracellular, membrane and
intracellular domain. However, cell-by-cell models are
computationally expensive and will require an increase of
computational resources such that finer meshes up to cellular
resolution can be handled efficiently (Potse et al., 2020). At the
macroscopic level, reduced order models (Fresca et al., 2020)
could help to reproduce in detail the electrophysiology of the
cardiac tissue without losing important details that will determine
the vulnerability of the tissue to arrhythmia. Recently, (Herrero
Martin et al., 2022) explored the use of Physics Informed Neural
Networks (PINN) to model the electrical propagation in the
cardiac tissue. The authors introduced electrophysiology
models to the neural network and were able to reconstruct the
spatial-temporal dynamics of the action potential and its
propagation. One of the big drawbacks of these approaches is

the amount of data needed to train the network in order to predict
different possible propagations patterns.

Software plays a fundamental role in cardiac modeling.
Recent work demonstrated significant speedup of
simulations of cardiac electrophysiology (Sundnes et al.,
2006; Seemann et al., 2010; Cooper et al., 2015; Quarteroni
et al., 2017; Sánchez et al., 2020; Plank et al., 2021). However, it
remains to be seen how effectively GPUs can be integrated into
large-scale cardiac simulations. Regardless, several numerical
libraries are currently available, opening the door to accelerate
cardiac electrophysiology simulations (Anzt et al., 2020; Mills
et al., 2021).

7 CONCLUSION

Models of cardiac tissue electrophysiology have played an
essential role in advancing our understanding of action
potential propagation in the heart and the genesis of EGMs.
Despite the significant progress of different modeling
approaches and efficient numerical software, there are
substantial challenges, such as modeling of the
microstructure at a close-to-cellular scale, modeling the
different aspects of fibrosis, electrophysiological
heterogeneity as well as realistic electrode configurations.
Dedicated simulation studies with refined models will help
to further elucidate the different factors that contribute to
EGM genesis and impact their morphology.
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