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Abstract: Nanofibrillated cellulose (NFC) and graphene oxide (GO) with reinforcing and film-forming
properties were employed with graphene to develop a novel and thin electric heating membrane
with heat dissipation controllability. A negative charge was found on the surface of GO and NFC
in aqueous dispersions, which contributed to the homogeneous distribution of the graphene sheets.
The membrane had a good laminated structure with three-dimensional interaction between GO
and NFC, with embedded graphene sheets. Conductivity was characterized as a function of the
amount of graphene, thus giving control over to the heating power by adjusting the ratio of graphene.
Subsequent electric heating tests can remove irregularities on the GO and graphene sheet, improving
the laminated structure further. The temperature on the surface of the membrane presented an
exponential increasing regularity with time. Under the same power density and time, the stabilized
temperature rise of membranes was higher when grammage was higher, which was characterized by
the linear function of the power density. Low-grammage membranes (1 and 4 g·m−2) also exhibited
regular and even stabilized temperature rises. The indicated structure and heating performance of
the membrane, as well as the variation induced by Joule heating, would drive its applications.

Keywords: nanofibrillated cellulose; graphene; graphene oxide; electric heating membrane; electric
heating performance

1. Introduction

Graphene-based materials such as graphene nanosheets, multilayer graphene nanoplatelets,
graphene oxide (GO), and reduced graphene oxide (RGO) are currently of considerable interest in
many fields, including composite materials, paints and coatings, flexible electronics, energy generation
and storage, sensors and metrology, and bioapplications [1–3]. In the field of electric heating, new
graphene-based composites have been applied for the heating and thermal analysis of microdevices or
micro/nano regions of materials [4], as well as being used in snow melting and deicing devices [5–8],
demisting and defrosting of transparent substrates such as glass [9–11], wearable/smart electronics [8],
and even indoor heating. One such high-temperature heating device utilized a RGO coating on the
surface of a horseshoe-shaped substrate by three-dimensional (3D) printing using aqueous solution [4],
which was first reduced at 600 ◦C for 1 h under argon and then further reduced by input electrical
current below 1 A. This 3D heater reached a temperature up to 3000 K and displayed extremely fast
rise and descent, with speeds of up to ~20,000 K·second−1. It was also reported that there was a good
linear relation between voltage and electric current, and a high coincidence degree was observed after
50 tests [4]. In addition, it exhibited stable electric heating performance; the current changed by only
0.1 mA after operation at 4 V for 24 h.
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However, this Joule heating effect has more diverse applications than simply heating. When RGO
is used for current collection in a lithium battery, after Joule heating up to 2750 K for 1 min by
applying a direct current, the sheet resistivity has been demonstrated to drop as low as 0.8 Ω/sq, with
conductivity of up to 3112 S·cm−1 [12]. In addition, graphene-based composites have been produced
that have “reversible superwettability”; they can convert from super-hydrophilic to super-hydrophobic
in 1 min under Joule heating from an applied electric current [13].

It is clear that endowing graphene and graphene-based composites with electric heating functions
has much promise; however, there are few systematic studies focusing on the electric heating
performance. While polymer substrates such as polydimethylsiloxane [6] and epoxy resin [5]
were used in the above works, graphene material can be fabricated directly into membranes by
printing [4], chemical vapor deposition (CVD) [10], or spin coating [11]. However, membranes
or other lamellar materials constituted from graphene or RGO without sufficient polar groups
at the surface would deteriorate under heat, load, or deformation, etc. To make up for these
deficiencies, nanofibrillated cellulose (NFC) is often added to graphene composites for better heat
stability, suppleness [14], and tensile strength [15] in reinforcing materials [16], sensing elements [14],
and capacitor electrodes [17]. Besides, some other polymers such as polybenzimidazole with
outstanding thermal and mechanical stability had been recently used for graphene functional
composite [18]. However, NFC, as an abundant natural polymer, has an excellent capacity for
forming self-assembled monolayers due to its high surface area, abundant polar groups, and high
length-diameter ratio [19]. These monolayers can be combined with GO by hydrogen bonds to form a
3D network [15], thus forming a favorable structure for the homodispersion of graphene-GO-NFC
systems. It can be concluded that NFC facilitates and stabilizes the system’s homodispersion [20,21].

Consequently, a new strategy was developed for fabricating NFC-graphene-GO 3D systems for
electric heating membranes. A mixture of NFC and GO was first prepared, which acts as a binder
and dispersion stabilizer, before the graphene sheet dispersion was added. In addition, the influence
of the ratios among graphene, NFC, and GO on the morphology, structure, conduction, and heating
performance are systematically reported in this work, as well as the effect induced from Joule heating.
Moreover, the relationship of grammage to conductivity and heating performance will be taken into
account, aimed to produce a thinner membrane with suitable power efficiency. This presented work
endowing the membrane with a new-type of electric heating function would further broaden the
application of NFC–graphene based composite.

2. Materials and Methods

2.1. Materials

NFC dispersion, concentration 1.07 wt.%, diameter 10–20 nm, length 2–5 µm, was manufactured
by Tianjin Woodelfbio Cellulose Co., Ltd., Tianjin, China; GO dispersion, concentration 2 mg·mL−1,
pH 5–7, specific surface area 1000–1217 m2·g−1, thickness 0.6–1.0 nm, and a lamellae diameter 0.5–5 µm,
was from Suzhou TANFENG Graphene Tech. Co., Ltd., Suzhou, China; graphene, was produced by
the CVD method, 1–2 layers, purity > 99 wt.%, and a specific surface area of 1000–1217 m2·g−1, sheet
thickness 0.5–3.0 nm, lamellae diameter 0.5–5 µm, was produced by Suzhou TANFENG Graphene
Tech. Co., Ltd., Suzhou, China; copper foil electrodes with the a thickness of 0.03 mm and width 5 mm.

2.2. Preparation of the Composite Membrane

The process for producing NFC–graphene–GO composite membranes is summarized in Figure 1.
First, a NFC-GO mixture was prepared by mixing a certain proportion of NFC dispersion with GO
dispersion, along with 20 mL of distilled water. The mixture was stirred using a magnetic stirrer for
5 min, and then dispersed by ultrasonication (1000 W, 5 min) using an ultrasonic cell crusher (TL-1200Y,
Jiangsu Tenlin Instrument Co., Ltd., Yancheng, China).
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Next, a graphene dispersion was prepared by mixing a certain amount of graphene with 20 mL
of distilled water. The mixture was stirred using a magnetic stirrer for 5 min, and then treated with
ultrasonication (1000 W, 10 min).

Finally, a NFC-graphene-GO dispersion was formed by pouring the NFC-GO mixture into the
graphene dispersion. The mixture was treated with ultrasonication (800 W, 20 min) and filtered
with a 0.22 µm organic filter (Shanghai XINYA Purification Equipment Co., Ltd., Shanghai, China).
The dispersion was then placed in a vacuum drying oven at 60 ◦C for 12 h to obtain NFC-graphene-GO
composite membranes, which were kept in an indoor environment (about temperature of 20 ◦C and
humidity of 60%) for 24 h.

Composite membranes were prepared with different grammages or graphene contents, in which
the weight ratio of GO to NFC was kept constant, at 1:1. The graphene content was varied from 20 to
55 wt.% in 5 wt.% intervals with a controlled grammage of 16 g·m−2 (dry weight); the grammage was
varied at 1, 4, 8, 12 and 16 g·m−2 with a constant 50 wt.% graphene. Further composite membranes
were prepared to investigate the influence of GO on the surface morphology and phase structure.
The GO contents were 5, 15, 25, and 30 wt.%, with a constant 50 wt.% graphene, corresponding to GO
to NFC weight ratios of GO:NFC = 1:9, 3:7, 1:1, and 3:2.

2.3. Electric Heating Membrane and Heating Properties

Composite membranes with different amounts of graphene and grammages were used to prepare
electric heating membranes. First, a four-probe resistivity tester (ST2258C, both separation between
probes and diameter of probe as 1 mm, Suzhou Jingge Electronic Co., Ltd., Suzhou, China) was used to
test the sheet resistance of the membranes at 7 equidistant points (Figure S1, Supplementary Materials),
with three repeat measurements for each sample. Then, samples were cut with a size of 20 × 30 mm2,
to which copper foil electrodes were fixed at both ends, to prepare electric heating membranes with an
effective heating surface area of 20 × 30 mm2. Electric heating device and installation of electrodes
and temperature senor on the membrane can be seen in Figures 1 and S2 (Supplementary Materials).

Change rate of resistance between two electrodes of the membrane after different bending cycles
(bending angle of about 90◦) of 0–600 times at 100 times intervals were tested for the evaluation
on its stability and flexibility using a multimeter (Fluke15B+, Fluke Corp., Washington, DC, USA).
The change rate is the percentage of the absolute value of difference between the resistance before and
after bending to the resistance before bending.

To improve the stability of the heating performance, membrane annealing was induced by Joule
heating [4,12] in a first heating test. A power density of 1500 W·m−2 was applied to each membrane
for 15 min with a voltage regulator controlling the power, considering the tested resistance between
the two electrodes and the effective surface (Calculation for voltage applied on two electrodes is
shown in Equation (S1) and Equation (S2), Supplementary Materials). A second heating test was then
carried out under the same conditions for specific analysis of the heating performance. In addition, in
order to reveal the relation between heating performance and power density, the heating performance
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of the 8 g·m−2 membrane annealed at 1500 W·m−2 for 15 min was further analyzed by applying
power densities of 500–2500 W·m−2 at 500 W·m−2 intervals (electrifying time 15 min). In both
tests, the temperature was recorded every 2 s at two test points using a multichannel temperature
recorder (SIN-R960, Hangzhou SinoMeasure Automation Technology Co., Ltd., Hangzhou, China);
the room temperature was simultaneously recorded to calculate the temperature rise (difference
between real-time membrane temperature and ambient temperature). The resistance between the two
electrodes was recorded before the heating test, at the outage moment, and when cooling to room
temperature, to investigate the membrane’s power stability.

2.4. Characterization

The morphology of graphene, NFC, and GO dispersions (concentration 0.01 mg·mL−1, ultrasonic
treatments at 1000 W for 5 min, then 800 W for 20 min), and NFC–graphene–GO dispersion
(concentration 0.01 mg·mL−1, graphene 50 wt.%, GO:NFC = 1:1 (weight ratio), ultrasonic treatment
as for the composite membrane above) were analyzed in an aqueous solution using transmission
electron microscopy (TEM; Hitachi HT7700, Hitachi Advanced Microscopy Techniques Corp.,
Chiyoda-ku, Japan) at 100 kV. Both the surface and cross-section were observed using scanning
electron microscopy (SEM; S-3400N, Hitachi, Chiyoda-ku, Japan). The zeta potential and particle size
of NFC, GO, and NFC-GO dispersions were analyzed in aqueous solution with the Zetasizer Nano
ZSP (Malvern Instruments Ltd., Malvern, UK). The concentrations of the NFC and GO solutions were
0.25 mg·mL−1, and that of the mixed dispersion was 0.5 mg·mL−1. The 3D surface morphology and
roughness (10 × 10 µm area) were analyzed using atomic force microscopy (AFM; Model 5500, Agilent
Technologies Inc., Palo Alto, CA, USA) in tapping mode. Fourier transform infrared (FT-IR) spectra of
powdered samples were collected from 400 to 4000 cm−1 with a Nicolet iS50 spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA) that had a resolution better than 0.09 cm−1. The phase structure
of the membrane was analyzed by laser confocal micro-Raman spectrometry (inVia Reflex, Renishaw,
Gloucestershire, UK) from 4000 to 500 cm−1 with an excitation wavelength of 532 nm. Each sample
was tested three times. X-ray diffraction (XRD; SmartLab 3 kW, Rigaku Corp., Akishima-shi, Japan)
was carried out for 2θ from 5◦ to 70◦ with an 8◦·min−1 scanning speed on graphene, NFC, GO,
and the composite membrane. Differential thermal-thermogravimetric analysis (DTA-TG; DTG-60
(H), Shimadzu Corp., Kyoto, Japan) was applied to study the thermal performance during heating
from room temperature to 600 ◦C at a rate of 10 ◦C·min−1 in a nitrogen atmosphere, with respect to
NFC, GO, graphene, and the composite membrane (graphene 20 wt.% and 50 wt.%, GO:NFC = 1:1
(weight ratio)). The surface morphology and phase structure of the membrane (graphene 50 wt.%,
GO:NFC = 1:1 (weight ratio)) were evaluated after the two electric heating tests using SEM, Raman,
and XRD, and compared with that before heating.

3. Results and Discussion

3.1. Morphology and Structure of the Electric Heating Membrane

Figure 2c displays the NFC-graphene-GO dispersion after standing for 12 h. The stability was
better than that of the graphene dispersions (Figure 2b); notably, there was distinct stratification in the
pure graphene sheet dispersion after standing for only 3 h (Figure 2b). The particle size distribution
in Figure 2a also suggests that NFC and GO had been dispersed uniformly; the size distribution of
the particles in NFC, GO, and NFC-GO dispersions was 396–459, 78–825, and 58–712 nm, respectively.
Furthermore, the stability of these dispersion can be directly appraised by the zeta potential [22],
which was measured as −46.8, −42.7, and −37.9 mV, respectively (Figure S3, Supplementary Materials).
NFC and GO particles presented a negative charge in the water dispersion [23–25], giving the NFC-GO
mixture negative charge that facilitated a stable homodispersion due to repulsion between particles
with the same negative charge; of which, GO sheets exhibit negative zeta potential values mainly
due to the presence of hydroxyl (O−) and carboxylic acid (COO−) groups on their surface [25].
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Consequently, a stable NFC-graphene-GO dispersion was obtained. The electrostatic interaction
induced by negative charges on the surface of the NFC and GO should have contributed to the
formation of a network [23,24], which would include the graphene after it was ultrasonically mixed.
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Figure 3a,c shows the morphology of graphene and GO sheet dispersions in distilled water;
individual sheets can be observed with a folded appearance and high aspect ratio of diameter to
thickness. This morphology would contribute toward the enhancement of the mechanical properties
as well as the formation of a conductive network [15]. Figure 3b shows the whisker shape of the
NFC, which had a diameter of about 20 nm. The length was less than the diameter of the GO and
graphene sheet, as demonstrated by the cross lap network of interweaved nanofibrils among the sheets
after ultrasonic mixing with GO and graphene (Figure 3d,e). Furthermore, a continuous large-area
membrane was observed, which was embedded with skeletal NFC both among and joining the sheets
(Figure 3e), indicating that a network constructed with NFC had formed in the system.
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SEM analysis on the resultant composite membranes exhibited a dense surface with a folded
morphology, as demonstrated in Figure 4a–c, compared with the smoother surfaces of the pure GO
and NFC membranes (Figure 4d,e). This further indicated the embedded structure in the membrane;
i.e., that the graphene nanoparticles were dispersed uniformly in the 3D NFC matrix [26]. As the
graphene content increased from 20 to 50 wt.%, the roughness noticeably increased. It could be
attributed to the self-assembly of the graphene with a high aspect ratio of radius to thickness [26,27].
The NFC incorporated in the membrane could not be distinguished in Figure 4a–c due to the 2D
graphene flakes on a large surface, while bacterial cellulose in published work [26,28] dispersed with
the graphite nanoplatelets can been distinguished. Hence, the surface was not smooth, but showed
a dense structure under high magnification (see the insets in Figure 4a–c). AFM analysis (Figures 5
and S4, Supplementary Materials) confirmed that the surface was smoother when less graphene was
added. Moreover, no distinct or agglomerated NFC was visible on the surface, which further suggested
that the fibrillar NFC was uniformly dispersed, and had good compatibility with graphene and GO.
In general, the membrane exhibited better surface quality as the amount of NFC and GO increased.
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Figure 4. Scanning electron microscope (SEM) images of the surface morphology of composite
membranes with (a) 20 wt.% graphene, GO:NFC = 1:1; (b) 50 wt.% graphene, GO:NFC = 1:9; (c) 50 wt.%
graphene, GO:NFC = 1:1; (d) Pure GO membrane (16 g·m−2) formed by vacuum filtration; and (e) pure
NFC membrane (16 g·m−2), also by vacuum filtration. A cross-section of the NFC membrane is inset in
(e). Photographs of the membranes after drying: (f) 1 g·m−2 and (g) 8 g·m−2 grammage; (h) 30 and
(i) 50 wt.% graphene.
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Figure 5. Atomic force microscopy (AFM) analysis on 16 g·m−2 membranes with (a) 30 or (b) 50 wt.%
graphene; (c) 8 g·m−2 membrane with 50 wt.% graphene, all GO:NFC = 1:1; and (d) 16 g·m−2 membrane
with 50 wt.% graphene, GO:NFC = 1:9.

Figure 6 showed a layered structure laminated by graphene sheets in the cross-section of
the membranes, and similarly observed morphology have been also demonstrated in previous
study [15,26,29]. This was attributed to the binding action of GO and NFC, which embedded among
the graphene flakes, gluing them together. The fractured cross-sections were coarse, with a fibrillous
torn morphology, indicating that there was strong adhesion among NFC, graphene, and GO in the
membrane [15]. Consequently, it can be concluded that the NFC binder facilitated the construction
of a 3D framework, and GO and graphene sheets were laminated in a disordered manner within the
framework, which endowed the membrane with mechanical support.
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As shown in Figure 7, a broad and strong absorption peak centered around 3442 cm−1 is present,
which corresponds to the stretching vibration of the –OH group in the GO and NFC samples [30,31].
The strength of this peak, as well as those of the C–O–C group located at 1191 and 1112 cm−1,
was reduced in the presented composite membranes, which indicated that more intermolecular
hydrogen bonds formed in the membrane with the –OH groups in GO and NFC [32]. Otherwise,
the peaks at 2923 and 2852 cm−1, which correspond to the C–H group, were stronger for GO and the
composite membrane than for NFC, whereas the peak at 1455 cm−1, which corresponds to the C–H
deformation mode [31], exhibited more obviously for the graphene and composite membrane than for
GO and NFC in Figure 7. Finally, C=C stretching vibration at 1627 cm−1 was present for GO, NFC,
the composite membrane, and graphene.
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3.2. Conductivity of the Electric Heating Membrane

A heater that utilizes the Joule heating effect should have appropriate conductivity, which is
desirable for controlling the working power. As shown in Figure 8, as the amount of graphene
increased, the sheet resistivity of the NFC–graphene–GO electric heating membrane exhibited a
downtrend with a significant exponential function. The stabilized sheet resistivities of membranes
with 40, 50, and 55 wt.% graphene were 5.13, 1.98, and 1.49 kΩ/sq, respectively. Furthermore, the
standard deviation was less than that of membranes with ≤35 wt.% graphene.
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The electrical properties can be controlled by changing the parameters of thickness, weight per
unit area, or the composition. Much lower sheet resistivities of 1.75 to 9 Ω/sq have been demonstrated
previously for membranes with the adjusted parameters [17,20,33]. Furtherly, the conductivity of
membranes with various grammages (50 wt.% graphene) were investigated in this presented study.
To the best of our knowledge, the relationship between grammage and conductivity has not been
examined in existing reports, thus we aimed to consider saving material by producing a thinner
membrane with suitable efficiency. A high linear relation between sheet resistivity and grammage was
observed (Figure 9), with conductivity reducing significantly as the grammage decreased. The sheet
resistivity of the lower grammage membranes of 1 and 4 g·m−2 reached 18.38 and 15.30 kΩ/sq,
respectively; however, they also proved effective in the electric heating tests, as discussed below.
In addition, Figure 10 shows that low change rate of resistance between two electrodes of the membrane
after 100–600 times bending, in the range of 0.1 to 0.7%, which indicated its good stability and flexibility.
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As shown in Figure S5 (Supplementary Materials), the graphene had an intact carbon structure
even in the composite electric heating membrane. The ratios between the area of the D and G peaks
(ID/IG) in the spectra were almost the same for graphene and the membrane (2.13 vs. 2.26), whereas
both values were greater than that for GO (1.59) [34], indicating that NFC and GO disturbed the
stacking behavior of graphene sheets to form the integrated structure. These findings were different



Materials 2018, 11, 1727 10 of 19

from the results of Chen et al. [12], who demonstrated higher ID/IG values with a RGO membrane,
as pure GO sheets with abundant active groups stack more regularly and combine more compactly
when cast and annealed by Joule heating. The position of the G peak of graphene and the membrane
were located around 1587 and 1586 cm−1, respectively, while the D peak shifted from 1357 to 1361 cm−1.
The full width at half maximum (FWHM) of the D peak increased from 207 to 221 cm−1, and that
of the G peak increased slightly from 81 to 87 cm−1, meaning that integrity of the lamellar structure
of graphene sheets embedded with NFC and GO had been slightly deteriorated. Slight variation
of the phase structure of membranes with different amounts of graphene and GO were also found,
as shown in Figure S6 (Supplementary Materials) and Table 1. Besides, both the 2D peak was weaker
compared with the published RGO membrane [12], presenting a defective crystallized carbon structure,
on account of the disturbance by NFC and GO embedded among the graphene sheets in the system.
These findings indicate that the orientated structure in the membrane mainly depends on the stacking
behavior of graphene and GO sheets under vacuum filtration, as well as crosslinking by the embedded
NFC and GO binder.

Table 1. Raman peak positions and FWHM, and intensity ratios of ID/IG and I2D/IG.

Samples *
D Peak 2D Peak G Peak

ID/IG I2D/IGPeak Positions
(cm−1)

FWHM of
Peak (cm−1)

Peak Positions
(cm−1)

FWHM of
Peak (cm−1)

Peak Positions
(cm−1)

FWHM of
Peak (cm−1)

(a) 1360.21 204.64 3861.65 387.20 1587.76 87.28 2.03 0.66
(b) 1360.54 195.18 2854.45 409.73 1586.30 89.14 1.88 0.70
(c) 1360.86 221.32 2821.22 437.79 1588.42 86.81 2.26 0.78
(d) 1361.41 223.24 2826.91 430.56 1588.27 85.91 2.27 0.77
(e) 1362.30 219.49 2835.86 434.15 1589.08 86.15 2.19 0.83
(f) 1361.75 224.48 2807.36 473.43 1589.96 85.85 2.27 0.88

FWHM: full width at half maximum; * Samples with GO:NFC = 1:1 and (a) 20, (b) 30, and (c) 50 wt.% graphene, and
with 50 wt.% graphene and (d) 5, (e) 15, and (f) 30 wt.% GO.

The XRD pattern of the graphene sheet (Figure 11f) shows a gentle and wide reflection at
around 2θ = 25.8◦, indicating the well exfoliated state of the graphene layers compared with that in
graphite [15,34–36]. This peak was noticeably narrower and stronger in the composite membranes
(Figure 11a,b,d), implying a more compact stacked structure with laminated graphene layers cemented
by GO and the NFC binder network. Furthermore, the peak was enhanced by decreasing the proportion
of GO as well as by adding graphene. The diffraction peak near 2θ = 40.5◦ was strengthened as the
amount of graphene was increased, and was prominent in the membrane with 50 wt.% graphene
(Figure 11c), indicating that a much more regular structure formed among the stacked graphene
layers [35]. This stacked structure is in accordance with the results of SEM and Raman analysis.
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Figure 11. X-ray diffraction (XRD) patterns recorded for (a) 5 wt.% GO membrane (50 wt.% graphene);
(b) NFC membrane; (c) 50 wt.% graphene membrane (GO:NFC = 1:1); (d) 30 wt.% graphene membrane
(GO:NFC = 1:1); (e) GO membrane; and (f) graphene sheet.
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The characteristic reflections (2θ = 10.8◦) of the GO membrane (Figure 11e) shows the
lamellar spacing d as 0.819 nm according to Bragg’s diffraction formula [34,37]. In the composite
membrane, after GO was crosslinked with NFC and graphene, the peak downshifted to 10.62◦

(d spacing = 0.832 nm) and became gentle, and was indistinguishable as the amount of GO decreased
to 5 wt.%, due to the disruption caused by the added NFC and graphene. Hence the ordered layers of
GO, which include oxygen-containing groups, are expected to be partly diverged [15,34].

3.3. Electric Heating Property

Figure 12a exhibits a smooth temperature rising process in the second test, while fluctuate process
in the first test is shown in Figure S7 (Supplementary Materials), and the electrical parameters are
shown in Table S1 (Supplementary Materials). As the graphene content increased, the balanced
temperature rise in second test was greater under same power density of 1500 W·m−2, as shown in
Figure 12a. The balanced temperature rise of the 55 wt.% graphene membrane exceeded that of the
others. Moreover, the temperature rise increased by 15 ◦C more than in membranes with 30–35 wt.%
graphene. The conductive network constructed by graphene sheets became more sophisticated with
increased graphene content, and many overlaps and joints, which have higher contact resistance
than graphene itself, formed among the graphene sheets. Thus, the main electric heating element
was increased. This thermal resistance effect has been observed in many other graphene-based
conductive composites [38–40]. For example, the resistance of a wooden electric heating composite
was demonstrated to reduce after a current was applied, as well as the heat effect induced from Joule
heating [41,42]. Figure 12b shows that, with increased graphene content, brittle holdback among the
conductive network would multiply, which would open to a greater extent after power was applied,
resulting in significantly enhanced conductivity. Consequently, the true power density in the heating
process was higher under the same voltage, which was responsible for the observed differences in
the balanced temperature rise. Moreover, the change rate of resistance (CRR) at the second outage
moment presented minor variation among all the membranes, while a significant ascending trend
was observed in the membranes with 30–45 wt.% graphene at the first outage moment. The CRR was
stable in membranes with ≥45 wt.% graphene.
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Figure 12. Electric heating performance (second heating test) of the 16 g·m−2 membranes with
different amounts of graphene. (a) Temperature rise and (b) change rate of resistance (CRR) at the
outage moment.

The grammage difference between the 16 and 1 g·m−2 membranes was sizeable, with a
large reduction in thickness, but their heating properties did not show any remarkable differences
(Figure 13a), and a higher voltage can be applied to the thinner membrane. This phenomenon means
that the membrane can be suitably made thinner and lighter, which is beneficial for the preparation
of large surfaces. Generally, research into graphene-based membranes has been carried out with
higher grammages, ranging from 25 to 250 g·m−2 [17,33], because thicker membranes show better
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conductivity. In which, the electrical parameters are shown in Table S2 (Supplementary Materials),
and a fluctuant process in the first test is shown in Figure S8 (Supplementary Materials).

It has previously been indicated that the temperature rise in a plane electric heater will have
an exponential trend with high correlation [42], and the membranes in the current study were no
exception, as shown by the nonlinear curve fitting of the results in Figure 13b.
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Figure 13. (a) Temperature rise of membranes with various grammages; (b) Exponential fitting of the 4
and 16 g·m−2 membranes.

As shown in Figure 14, the temperature of the membrane rose quickly for the first 300 s, and then
tended to stabilize. As the power density increased, the temperature rise of the membrane increased
linearly, which can be illustrated from the fitting analysis results (y = −2.76 + 0.03716x; R2 = 0.98863;
in which y is the temperature rise, and x is power density). Thus, a temperature rise of 90 ◦C can be
achieved by applying 2500 W·m−2 power density (the electrical parameters are shown in Table S3,
Supplementary Materials).
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The resistance stability in the power on process can be seen in Figure 15. For the 1 g·m−2

membrane, the CRR values at the moment the power was lost and after cooling to room temperature
were 15.19% and 5.40% in first heating test, and 8.38% and 1.62% in the second test, respectively. As the
grammage of the membrane increased to 16 g·m−2, the CRR values were 26.4% and 13.53% in the first
test, and 17.34% and 1.83% in the second test, respectively. A larger CRR value was observed at the
moment the power was lost, which decreased distinctly between the first and second tests. The CRR at
the moment power was lost showed a linear relation with grammage, which contributes to the ability
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to control the real power when a current is applied. After cooling to room temperature, the CRR value
declined more obviously, but there were only minor differences among the membranes with different
grammages. This indicates that the stability of the conductive structure in the membrane increased
after the first annealing test.
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Distinct linear relations were observed among the power density, CRR, and temperature at outage
moment, as shown in Figure 16. The conductivity of the membrane increased linearly as temperature
was increased by applying greater powers, which was supposed to be the negative temperature
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3.4. Thermal Stability

For application of the composite membrane as a heater, stable electric heating ability is essential,
which requires thermal stability when only considering the heat effect. The excellent thermal
stability of graphene has been studied in detail previously, leading to materials such as conductive
nanographite-filled bacterial cellulose composites [26]. Figure 17 shows that the thermal property of
the graphene in the current study was considerably stable, presenting a total mass loss of about 6%
at 600 ◦C, whereas NFC and GO showed mass loss of 69% and 59%, respectively. It follows that an
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electric heating membrane with 20 wt.% graphene showed 57% mass loss, whereas those with 50 wt.%
graphene showed only 31% mass loss. The mass loss would be decreased by increasing the amount of
graphene, as found in nanographite-filled bacterial cellulose composites [26].
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composite membranes.

After the electric heating test, the surface stacking density of the membrane increased, as shown
in Figure 18, because the irregularities of the total structure were reduced [12]. This was substantiated
by the results of Raman analysis shown in Figure 19. Moreover, the skeletal structure became more
distinct after the irregularities were reduced, with a more compact arrangement among the graphene
and GO sheets in the 3D system.

Under the function of Joule heating induced by an applied electric current, the phase structure
of graphene-based composites has previously been shown to be improved to some degree [4,12].
As shown from the results of Raman analysis in Figure 19, the structural regularity of the membrane
was enhanced after two electric heating tests, according to the ratio between the area of the D and G
peaks (ID/IG) in the spectrum, which decreased from 2.21 to 1.84. Likewise, the I2D/IG ratio declined
slightly from 0.67 to 0.59, and the peak position shifted to a higher wavenumber. The FWHM of the D,
G, and 2D peaks all decreased, from 216 to 188 cm−1, 86 to 81 cm−1, and 398 to 336 cm−1, respectively.
The change in ID/IG values differed from those in published works; however, while previous studies
focused on neat RGO reduced by Joule heat with high power [4,12], we used medium and low power
Joule heat in this research for its heating application. Furthermore, the NFC used as a binder for
endowing the membrane with better adhesion and mechanical performance in this work influenced
the lamination of the graphene and GO sheets during vacuum filtration. The diffraction peak near
2θ = 10.7◦ in the XRD pattern (Figure 20) became stronger and sharper after the electric heating test,
which also indicated the formation of a more regular structure stacked with graphene sheets.
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4. Conclusions

1. NFC, graphene, and GO were dispersed uniformly and adequately in the aqueous system.
The negative charge on the surface of NFC and GO, as well as their high length–diameter and
radius–thickness ratio, meant that they formed a crosslinked structure, facilitating the dispersion
of graphene and stability of the system. NFC and GO act as a binder, and form bonds between
two sheets. Furthermore, the skeletal NFC was lapped across the membrane. The cross-section
of the membrane revealed a layered and rough structure, while the surface was smooth and
compact. These results indicate that a 3D network had formed in the membrane, generating a
certain mechanical and conductive property.

2. Graphene sheets with a high aspect ratio contributed toward the enhanced conductivity of the
membrane. The sheet resistivity of the electric heating membrane exhibited a downtrend with a
significant exponential function as the amount of graphene increased, while there was a high
linear relation between the sheet resistivity and grammage. This implies that the conductivity
can be controlled for a specific target power and supply voltage, and that NFC and GO disturbed
the stacking behavior of the graphene sheet to form the integrated structure.

3. The temperature rise on the membrane surface was elevated when higher amounts of graphene
were added, and increased linearly with the applied power density. Both Joule heating and the
electric current led to the decline of membrane resistance. The temperature rose quickly for the
initial 300 s and then stabilized, presenting an exponential function trend with high correlation.
The heating properties of the membranes did not show significant differences: even when the
grammage was decreased from 16 to 1 g·m−2, the membranes showed a stabilized temperature
rise of about 52 and 45 ◦C, respectively, under the same power density of 1500 W·m−2.

4. The thermogravimetric analysis (TGA) results indicated that thermal stability of the membrane
was improved due to the crosslinking of NFC and GO. The regularity of the membrane structure
was elevated after two heating tests, with regard to the CRR at the moment power was lost
and after cooling. The CRR showed suitable relationships with the grammage and graphene
content, which will contribute to the control over the actual power in use. However, before further
application, additional mechanisms and technologies must be investigated, such as the variation
of phase structure induced by Joule heating with a wider range of power and longer working
time, the relation between phase structure and thermal radiation, and key technologies for large
scale printing or coating.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/9/1727/
s1, Equation (S1) and (S2): calculation for voltage (U) applied on two electrodes, Figure S1: specific position for
the test of sheet resistance on the membranes, Figure S2: installation of electrodes and temperature senor on the
membrane, Figure S3: zeta potential distribution of (a) NFC, (b) GO, and (c) NFC–GO dispersions, Figure S4:
two-dimension AFM analysis on the membranes, Figure S5: Raman spectra of graphene, GO, and the membrane,
Figure S6: Raman spectra of membranes with GO:NFC = 1:1 and (a) 20, (b) 30, and (c) 50 wt.% graphene, and with
50 wt.% graphene and (d) 5, (e) 15, and (f) 30 wt.% GO, Table S1: electrical parameters in the heating test for the
membrane with various amount of graphene with grammage of 16 g·m−2 and the ratio between GO and NFC as
1:1 (under the power density of 1500 W·m−2), Figure S7: temperature rise on the membrane with different amount
of graphene in the first heating test under the power density of 1500 W·m−2, Table S2: electrical parameters in
the heating test for the membrane with various grammage under the power density of 1500 W·m−2, Figure S8:
temperature rise on the membrane with various grammage in the first heating test under the power density of
1500 W·m−2, Table S3: electrical parameters in the heating test of the membrane (grammage of 8 g·m−2) inputted
with different power density.
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