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It is estimated that 10 to 20% of all genes in the human genome encode cell surface proteins and due to their subcellular
localization these proteins represent excellent targets for cancer diagnosis and therapeutics. Therefore, a precise characterization
of the surfaceome set in different types of tumor is needed. Using TCGA data from 15 different tumor types and a new method
to identify cancer genes, the 𝑆-score, we identified several potential therapeutic targets within the surfaceome set. This allowed
us to expand a previous analysis from us and provided a clear characterization of the human surfaceome in the tumor landscape.
Moreover, we present evidence that a three-gene set—WNT5A, CNGA2, and IGSF9B—can be used as a signature associated with
shorter survival in breast cancer patients.The datamade available here will help the community to developmore efficient diagnostic
and therapeutic tools for a variety of tumor types.

In memoriam of Raimundo Furtado

1. Introduction

Cancer genomics has gone through a dramatic period of
progress due to the availability of genome-wide technologies.
Large-scale projects, such as “The Cancer Genome Atlas”
(TCGA, https://cancergenome.nih.gov/) and the “Interna-
tional CancerGenomeConsortium” (ICGC, http://icgc.org/),
involve thousands of patients and have generated petabytes of
data. One of the major assets of such projects is the public
availability of the data allowing their integration with data

from other initiatives. In that way, data from these initiatives
can push a more focused and deeper analysis either in a
specific gene set or in a specific cohort of patients/samples.

The human surfaceome, the collection of cell surface
proteins in human cells, has been defined and studied
by us previously. By using bioinformatics pipeline and an
experimental approach based either on real-time PCR or on
other gene expression technologies, we were able to identify
potential new biomarkers for few tumor types and have
characterized new cell surface putative cancer-testis (CT)
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antigens [1, 2]. Relevant roles of surface proteins include
nutrient and ion transport, adhesion to substrates, signal-
ing, and intercellular interaction. Due to these roles and
their subcellular localization, easily accessible to therapeutic
agents, surface proteins are important targets for cancer
intervention. Since our original publication few reports have
further explored the human surfaceome [2–6], mostly in the
context of amass-spectrometry-based characterization of the
cell surface of tumor cells.

Data from TCGA/ICGC allow the development of new
metrics that evaluate the frequency of gene alterations in
different cancer types. Recently, we developed a new scoring
system for the identification and prioritization of cancer
genes [7].The 𝑆-scoremethod integrates information derived
from different “omics” technologies to generate a gene-
specific score that indicates whether that specific gene is a
tumor suppressor (negative 𝑆-score) or an oncogene (positive
𝑆-score). The numerical value indicates the frequency in
which that gene is altered in the cohort of samples used
in the calculation. We have used the 𝑆-score metric to
identify cancer genes in a set of human homologs of yeast
genes characterized as suppressors of genome instability in
yeast [8]. The availability of the 𝑆-score system provides a
quantitative way to identify and prioritize cancer genes in a
particular set of samples.

Here, we capitalize on the availability of data from the
TCGA project to further and deeper investigate the status
of the human surfaceome in 15 tumor types, including GBM
and colorectal and breast tumors, all analyzed in our previous
publications [1, 2]. This generated a pan-cancer landscape of
the human surfaceome with the identification of shared and
tumor-specific markers. Furthermore, the use of the 𝑆-score
system allowed us to identify gene signatures associated with
overall survival in breast cancer patients. These signatures
can be ultimately used in the development of new and more
efficient diagnostic and therapeutic protocols.

2. Material and Methods

2.1. Public Data. The protein-coding sequences of all human
genes were obtained from the NCBI RefSeq (release 64)
[9]. Gene ontology was retrieved from gene ontology
initiative web site (http://geneontology.org/). The Illumina
Human BodyMap 2.0 dataset was obtained from EMBL-
EBI Expression Atlas (https://www.ebi.ac.uk/gxa/experi-
ments/E-MTAB-513). TCGA data was retrieved from both,
the TCGA web site (https://cancergenome.nih.gov/) and the
cBio Cancer Genomics Portal (http://www.cbioportal.org/).

2.2. Identification of Transmembrane (TM) Domains in
Protein-Coding Genes. To predict plasma membrane sub-
cellular localization, the NCBI Reference Sequence dataset
was submitted to TMHMM [10] version 2.0 (http://
www.cbs.dtu.dk/services/TMHMM/). All sequences con-
taining at least one TM domain were selected. To avoid false
positives, sequences containing only one TM domain in
the first 50 residues, which could be a signal peptide, were
excluded and classified as secreted protein. Furthermore,

sequences were also filtered based on the identification
of signal peptide cleavage sites by SignalP, release 4.1
(http://www.cbs.dtu.dk/services/SignalP/) [11].

Since TM domains are not exclusive to cell surface
proteins, the sequences were grouped according to subcel-
lular localization as defined by gene ontology. We excluded
sequences that were exclusively located at the following
cellular compartments: lysosome, endoplasmic reticulum,
mitochondria, cytoskeleton, endosome, liposome, nucleolus,
nucleus, and ribosome. This step was conducted using in-
house Perl scripts.

2.3. Classification of Surfaceome in GPCR, SLC, and CD.
To validate the obtained list of surfaceome genes, we clas-
sified these genes as belonging to the following classes:
G-protein-coupled receptors (GPCRs), solute carrier (SLC)
proteins, and cluster of differentiation (CD) antigens. This
was done using in-house Perl scripts. The GPCR genes were
obtained from GPCRDB (http://gpcrdb.org), while CD and
SLC genes were collected from HGNC (http://www.genen-
ames.org/genefamilies/a-z#R).

2.4. S-Score Calculation for the Human Surfaceome. 𝑆-scores
were calculated for the human surfaceome and for the 15
tumor types as previously defined [7]. The distribution of 𝑆-
scores was used to calculate 𝑧-scores for all genes using R
statistical package.

2.5. GO Enrichment Analyses. The GO enrichment analyses
of the surfaceome gene cluster were conducted using clus-
terProfiler [12], implemented in R, with 𝑝 values < 0.01 as a
cutoff.

2.6. Survival. Genes with extreme 𝑆-score (𝑆-score <−2 and
>2 for breast tumors) were selected to test any putative asso-
ciation with overall survival in breast cancer samples derived
from TCGA (without subtype distinction). Each gene was
used to classify the samples into two sets, named “normal”
and “altered.” The “altered” set comprised samples within
which the respective genes were differentially expressed (𝑧-
score > 2 or 𝑧-score <−2, as reported by TCGA), amplified
or deleted, or presenting deleterious mutations (nonsense,
frameshift, and splice-site). After that, for each gene, the
survival analysis was performed using the Kaplan-Meier
method [13] and the difference in survival curves was tested
for statistical significance using the log rank test 𝑝 value. We
then selected a nonredundant set of 20 genes with the lowest
𝑝 value (cutoff of 0.05) and tested all possible groups of three
genes.

3. Results and Discussion

3.1. A New Gene Catalog for the Human Surfaceome. First of
all, we decided to reannotate the set of human genes coding
for putative cell surface proteins. This was required due to
(i) an improvement in the annotation of gene and protein
databases regarding a protein’s subcellular localization and
(ii) the inclusion of new human genes in the Reference
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Figure 1: Methodology workflow. (a)TheNCBI RefSeq dataset was submitted to TMHMMand selected for the presence of a transmembrane
domain. Proteins containing only a signal peptide (classified as secreted) or belonging exclusively to other membranes were excluded, giving
a final set of 3.758 genes coding for cell surface proteins. (b) TCGA data as used to calculate the 𝑆-score for the surfaceome set allowing the
identification of putative surfaceome cancer genes.

Sequence collection.The same approach used by da Cunha et
al. (2009) [1] generated now a set of 3,758 human genes, com-
posing the human surfaceome (Figure 1).The complete list of
human genes coding for cell surface proteins is provided as
Supplementary Table S1, in SupplementaryMaterial available
online at http://dx.doi.org/10.1155/2016/8346198.As expected,
the great majority (85%) of surfaceome genes present in our
dataset in 2009 remained classified as such in 2016. New
genes were added (585), mostly due to their inclusion in
the Reference Sequence collection and some other genes
(529) were excluded duemainly to new functional annotation
that classified their protein products as belonging to other
subcellular compartments.

To assess the robustness of our approach, we performed
the same analysis reported by us in our original 2009 paper
[1] checking the representation of three known families of
cell surface proteins (G-protein-coupled receptors (GPCRs),
solute carrier (SLC) proteins and cluster of differentiation
(CD) antigens). Since these are large andwell-studied families
of cell surface proteins, we envisaged that they would be
appropriate for a benchmark analysis. For GPCRs, 98% of
their known members were represented in our dataset. For
SLC proteins and CD antigens we found 77% and 88%
represented in the surfaceome set, respectively. Overall, 90%
of members of these three families were represented in our
present surfaceome set, compared to 83% in our previous
analysis [1]. This improvement is expected due to a better
annotation of the sequences in public databases.

Capitalizing on the availability of surfaceome sets derived
from mass-spectrometry analysis, we decided to compare

our dataset to the dataset from Bausch-Fluck et al. [3]. For
that purpose, we have only used the proteins classified as
“highly confident” in [3]. Although this type of compari-
son is problematic for different reasons, including (i) the
nonexhaustive nature of the wet-based approach (due to
the method itself and the samples screened) and (ii) the
different premises of both methods (the requirement of at
least one TM domain per protein in our pipeline and the
lack of such requirement in [3] which allowed the authors to
characterize GPI-anchored proteins, e.g.), the analysis may
be illuminating in the sense that it can highlight important
differences in bothmethodologies.We found that 66.6% (664
out of 996) of the proteins classified by Bausch-Fluck et al.
[3] were present in our dataset while only 17.6% (664 out
of 3758) of our proteins were present in their dataset. This
was expected due to the issues raised above. To illustrate the
complex nature of this comparison, 23.8% of all cell surface
proteins found in [3] have no TM domain, as identified by
TMHMM.

3.2. Identification of Potential Therapeutic Targets in the
Human Surfaceome. Next, the 𝑆-score method was used to
identify cancer genes within the surfaceome set. 𝑆-score
threshold was defined for each tumor type as the 𝑆-score
representing the average 𝑆-score plus/minus three standard
deviations (𝑧-score ≥ 3 or ≤−3) [7]. The list of all cancer
genes coding for cell surface proteins in all 15 tumors types
is shown in Supplementary Table S1. Using the above 𝑧-score
threshold, we found 248 surfaceome genes classified as a
cancer gene in at least one tumor type.

http://dx.doi.org/10.1155/2016/8346198
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In the heatmap representation of the surfaceome cancer
genes (Figure 2(a)) we can clearly identify three distinct
clusters based on the 𝑆-score values for all 15 tumor types.
Although all three groups have a variety of oncogenes and
suppressors, some features deserve further comments. For
example, the first group is mainly composed of suppressors,
especially in melanoma and colorectal and lung adenocarci-
noma and uterine corpus endometrial carcinoma. Genes in
this group include several members of the cadherin super-
family (PCDHGB3, PCDHA2, PCDHA7, PCDH15, PCD-
HGB5, PCDH11X, PCDHAC1, FAT1, FAT2, and FAT4).There
is a set of oncogenes in group 2 shared by almost all tumors
and involving 30 genes, including EPHB1 and EPHB3. There
is no clear pattern in group 3 and oncogenes and suppressors
seem to be distributed evenly across all tumors.

To better understand the pattern presented in Figure 2(a),
we performed a gene ontology (GO) enrichment analysis
(using the “biological process” ontology) for the three dif-
ferent clusters. As expected, all three groups shared GO
categories associated with the cell surface such as transmem-
brane transport and cell surface receptor signaling pathway.
More interestingly, however, is the fact that specific GO
categories were enriched in individual groups (Figure 2(b)).
GO categories exclusively found in group 1 were clearly
associated with nervous system including “neuromuscular
process”; “memory”; and “neuronal action potential.” The
same pattern was observed for group 2 although the GO
categories represented different aspects of nervous system
including the following: “sensory perception of pain” and
other categories related to axonogenesis. Regarding group 3,
GO analysis lent further support for the current concept of
ion transport associated with cancer [14], including “man-
ganese ion transport.” Additionally, this group presented
genes related to antigen processing and presentation, high-
lighting that the interplay between immune and tumor cells
is complex.

Several of the identified surfaceome cancer genes are
known for their involvement in different aspects of cancer
biology, especially the ones classified in group 2. ABCC5,
a cell surface transporter, was involved in resistance to
anticancer drugs [15] and overexpression of ATP11B has been
linked to drug resistance in ovarian cancer [16]. Both genes
were regarded as oncogenic by our work especially in lung
squamous cell carcinoma and ovarian cancer. On the other
hand, EPHB3 has already been suggested as a candidate target
gene for both lung small cell carcinoma [17] and colorectal
cancer [18]. Finally, a transferrin receptor (TFRC) has shown
an increased expression in many malignant tumors [19] and
was also found to be highly oncogenic in this work.

3.3. A Three-Gene Signature as Potential Predictor of Survival
in Breast Cancer. As previously discussed by us, the 𝑆-score
method allows the prioritization of cancer genes based on
clinical parameters [7]. For example, we have identified
genes associated with both short- and long-term survival in
ovarian cancer [7]. To test whether we could identify genes
in the surfaceome set associated with clinical parameters, we
decided to look at overall survival in breast tumors, since this
type of tumor is the one with the largest cohort in TCGA. For

this specific analysis a more relaxed threshold (𝑧-score <−2
or >2) was used to classify a gene as a cancer gene in breast
tumor to increase the number of genes under test without
compromising the quality of the classification (a heatmap,
similar to Figure 2(a) and generated using the dataset with
a more relaxed threshold, is presented in Supplementary
Figure 1). For each surfaceome gene classified as oncogene
or suppressor in breast tumor, we split the breast cancer
samples into two groups: altered (genes with differential
expression, genes amplified/deleted, or genes mutated) and
unaltered. For each gene, the two groups were then compared
by a Kaplan-Meier analysis to evaluate whether they had
significantly different overall survival. Twenty-three genes,
seven oncogenes and 16 suppressors, were significantly (𝑝-
value < 0.05) associated with differences in overall survival
in breast cancer patients (Supplementary Table 2). These
genes are involved in cell adhesion and ion transport, two of
the main categories enriched in our gene ontology analysis.
Next, all possible combinations of these genes were similarly
tested for differences in overall survival. Although we found
several combinations with statistically significant differences
in overall survival, we have focused onWNT5A,CNGA2, and
IGSF9B due to statistical significance (it is the most signif-
icant three-gene set in Supplementary Table 2) and novelty.
Patients in which one of the three genes was altered had a
significantly shorter survival (𝑝 value = 1.82e−7)compared to
patients where these three genes were unaltered (Figure 3).

The WNT5A, CNGA2, and IGSF9B genes have neg-
ative 𝑆-scores in breast cancer (−2.59, −3.39, and −2.56,
resp.), demonstrating a tumor suppressor profile. WNT5A
belongs to the large WNT family of cysteine-rich secreted
glycoproteins. The role of WNT5 in cancer is controversial.
In breast cancer, the loss of WNT5A has been associated
with poor prognosis [20], in agreement with the suppres-
sor status defined by the respective 𝑆-score. On the other
hand, WNT5A was recently reported to promote cancer
cell lines invasion and proliferation [21], a feature typical
of oncogenes. WNT5A is present in pathways where Wnt
signaling is involved through interaction with Frizzleds
(FZD10, e.g.) and Dishevelled. WNT5A tumor suppressor
profile change Wnt signaling characteristic leading to cancer
[22]. CNGA2, a homotetrameric channel in olfactory sensory
neurons [23], has not been reported in association with
cancer. However, CNGA2 represents the alpha subunit of a
cyclic nucleotide-gated olfactory channel possessing a role in
calcium signaling pathway acting through calmodulin-like 6
and calcium/calmodulin-dependent protein kinase IV [24]
directly involved with protein kinase A (PKA), a biological
target in cancer therapy. IGSF9B was only recently identified
as an inhibitory synaptic adhesion molecule [25] and no link
with cancer was found in the literature.

4. Conclusion

We have updated the set of human genes coding for cell sur-
face proteins, the human surfaceome.UsingTCGAdata for 15
tumor types and a new method of cancer genes classification
that integrates information from different “omics” tech-
nologies and allows a ranking based on clinical parameters
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Figure 2: Surfaceome cancer genes identified by the 𝑆-score method. (a) Heatmap representation of all 248 surfaceome cancer genes for all
15 tumor types.The 𝑆-score distribution is represented as a range of colors (red as negative 𝑆-score, blue as positive 𝑆-scores). Tumor types are
SKCM (Skin Cutaneous Melanoma), COADREAD (Colorectal Adenocarcinoma), LUAD (Lung Adenocarcinoma), UCEC (Uterine Corpus
Endometrial Carcinoma), LGG (LowGrade Glioma), LAML (AcuteMieloid Leukemia), SARC (Sarcoma), OV (Ovarian Serous Carcinoma),
PRAD (Prostate Adenocarcinoma), GBM (Glioblastoma), KIRC (Kidney Renal Clear Cell Carcinoma), BRCA (Breast Invasive Carcinoma),
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(𝑆-score), we identified several potential therapeutic targets
within the surfaceome set. Furthermore, we present evidence
that a three-gene set—WNT5A, CNGA2 and IGSF9B—was
associatedwith shorter survival in breast cancer patients. Our
results clearly show the importance of large-scale genomics
datasets from cancer patient cohorts, like the one provided
by TCGA. We envisage that the data we provide here will be
extremely useful to researchers who aim to characterize cell
surface targets for a variety of tumor types.
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sson, “Wnt-5a protein expression in primary Dukes B colon
cancers identifies a subgroup of patients with good prognosis,”
Cancer Research, vol. 65, no. 20, pp. 9142–9146, 2005.

[21] K. Shojima, A. Sato, H. Hanaki et al., “Wnt5a promotes
cancer cell invasion and proliferation by receptor-mediated
endocytosis-dependent and -independentmechanisms, respec-
tively,” Scientific Reports, vol. 5, article 8042, 2015.

[22] A. Klaus and W. Birchmeier, “Wnt signalling and its impact on
development and cancer,” Nature Reviews Cancer, vol. 8, no. 5,
pp. 387–398, 2008.

[23] V. Nache, T. Eick, E. Schulz, R. Schmauder, and K. Benndorf,
“Hysteresis of ligand binding in CNGA2 ion channels,” Nature
Communications, vol. 4, article 2864, 2013.

[24] M. C. Trudeau and W. N. Zagotta, “Calcium/calmodulin
modulation of olfactory and rod cyclic nucleotide-gated ion
channels,” Journal of Biological Chemistry, vol. 278, no. 21, pp.
18705–18708, 2003.

[25] J. Woo, S.-K. Kwon, J. Nam et al., “The adhesion protein IgSF9b
is coupled to neuroligin 2 via S-SCAM to promote inhibitory
synapse development,” Journal of Cell Biology, vol. 201, no. 6,
pp. 929–944, 2013.


