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Climate change is a public health crisis predominantly due to fossil fuel combustion, that challenges planetary
and human health. Considerable evidence exists to demonstrate the impact climate change has on cardiovascular
disease primarily through air pollution, and non-optimal temperature. Conversely, healthcare systems them-
selves contribute substantially to climate change. Many clinicians personally report a sense of responsibility to
reduce the detrimental impact of parts of our healthcare system on the environment. Roadmaps exist to guide
decarbonization and reduce pollution in the healthcare sector. The first step in minimizing the climate impact of
the provision of cardiovascular care is to determine the carbon footprint of highly resource dependent sectors
such as critical care cardiology as well as the cardiac catheterization and electrophysiology laboratories. This
should be followed by sustainable changes to address healthcare waste and energy use. Engagement from
healthcare leadership, governmental organizations and major cardiac societies will be necessary to impact

meaningful change.

1. Introduction

Anthropomorphic fossil fuel combustion, and the production of
greenhouse gases (GHG) has warmed the Earth by 1.1 °C, compared with
pre-industrial temperatures over a century ago. This has resulted in
rising sea levels, frequent droughts, heatwaves and other weather haz-
ards, biodiversity loss, ocean warming and acidification, among many
other climate risks. Climate change impacts global health through a
number of pathways including weather and heat exposure, food and
water insecurity, and transmission of infectious disease as outlined in
the Lancet Countdown [1-3]. Specific to the cardiovascular system,
climate change effects pathological processes predominately through air
pollution and extremes in temperature [4].

Furthermore, the relationship between climate change and human
health is bidirectional. Specifically, healthcare systems can contribute
substantially to climate change. For example, if the US healthcare sys-
tem were a country it would rank 13th in the world for GHG emissions
[5]. The Intergovernmental Panel on Climate Change (IPCC) is a United
Nations group that assesses the science of climate change and outlines
“mitigation” actions that limit the GHG in the atmosphere, and

“adaptation” strategies to adjust to the effects of climate change [6-8].
To tackle the climate impact of healthcare, accurate quantification of
GHG production by each sector of healthcare must be followed by
intensive mitigation strategies.

This paper reviews some recent updates on studies involving climate
change and cardiovascular disease, and discusses the impact of the
healthcare system on climate change. We also summarize the limited
literature that exists to describe the climate impact of components of the
healthcare system pertinent to the management of cardiovascular dis-
ease. We conclude with suggestions for necessary next steps to address
the climate impact of contemporary cardiovascular disease management
(Fig. 1).

2. Climate change and cardiovascular disease - recent updates

Over recent years, there has been increased research on the health
impacts of climate change, including cardiovascular disease [9]. A
pubmed search for “climate change AND cardiovascular disease”
returned 162 results in 2023 as compared with 131 and 107 in the two
prior years respectively. However, these studies are predominantly
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impact studies, outlining the health effect of non-optimal temperature
and air pollution, with few evaluating mitigation and adaptation stra-
tegies. In this section, we discuss pertinent recent publications as they
relate to the cardiovascular system; with an emphasis on new findings,
or those evaluating mitigation or adaptation strategies.

2.1. Acute coronary syndrome

A team from Italy studied the mechanism of acute coronary syn-
drome in 139 participants exposed to short term air pollution who
subsequently had an acute coronary syndrome [10]. Particulate matter
(PM) 2.5 levels on the day of event and 6 days prior was determined
based on the patient's home address and the lesion was classified as
plaque rupture (i.e. type 1 MI) or intact fibrous cap (type 2 MI), through
intracoronary optical coherence tomography (OCT). Patients with pla-
que rupture had an average of 3.7 ug/m°> higher PM2.5 levels on the day
of ACS, without difference in the immediate 6 days before index ACS. It
is well known that air pollution contributes to atherosclerosis and that
demand ischemia can result from high temperatures [7] however, this
study adds to the literature by demonstrating that acute short-term
exposure to PM2.5 is associated with coronary plaque instability.

A time-stratified case-crossover study in China investigated the as-
sociation of exposure to both extreme temperature events and PM2.5
levels with MI mortality [11]. Using multiple definitions of extreme
temperature events, both hot and cold spells were associated with
increased odds of MI mortality. Furthermore, heat waves and PM2.5
levels act synergistically to trigger MI deaths; with women and older
adults appearing to be more vulnerable to these events and elevated
PM2.5 levels. It is well recognized that older adults are more vulnerable
to non-optimal temperature and pollution; however, the finding that
women are more prone to extreme weather events is less well accepted-
with conflicting results in the literature. One theory for this finding is
that women may tend to have poorer thermoregulation, lower sweating
capacity, and greater airway reactivity than men [12].

2.2. Atherosclerosis and carotid plaque

Plastics manufacturing has increased exponentially, and single use
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plastics comprise about 35-40% of all plastics. They are responsible for
approximately 3.7% of global GHG and are projected to increase to 4.5%
by 2060. To date, the effect of plastics on human health has not been
well defined; however, plastics recycling workers have higher rates of
CVD [13].

Building on the concept that plastics exposure may be a cardiovas-
cular risk factor, a widely publicized Italian observational study found
microplastics and nanoplastics in atheromatous plaque from 58.4% of
304 individuals undergoing asymptomatic carotid endarterectomy [14].
Furthermore, those with evidence of plastics in carotid plaque were
found to have a higher risk of the primary composite endpoint of MI,
stroke, or death from any cause (hazard ratio 4.53; 95% confidence
interval 2.00-10.27; P < 0.001), when compared with individuals who
had no evidence of plastics in the excised plaque. The implications of
this powerful study are not yet clear and further study of plastics is
essential.

2.3. Hypertension

A multitude of systematic reviews and meta-analyses have reinforced
the association between blood pressure (BP) and various pollutants,
including levels of PM1, PM2.5, PM10 and SO [15,16,17]. Non-optimal
temperature has also been associated with hypertensive disorders of
pregnancy [18]. In a large cohort of 129,009 pregnancies from Israel,
exposure to high temperatures during gestation was associated with an
increased risk of preeclampsia during pregnancy, with a hazard ratio
(HR) of 1.12 when comparing 37 °C to the reference temperature of
22.4°C[19].

The relationship between traffic-related air pollution and cardio-
vascular disease was explored in a US-based randomized blinded
crossover trial of 16 normotensive middle-aged persons over 2 days. On
2 days chosen at random, road air was entrained into the vehicle used by
study participants over a 2-h drive. On other days the vehicle was
equipped with a high-efficiency particular air (HEPA) filter. Mean DBP
and SBP was 4.7 mmHg and 4.5 mmHg higher for the unfiltered drives
compared with the filtered drives, and the changes in DBP was sustained
for at least 24 h [20]. This study provides much needed randomized data
to support the use of air filters. In areas with high air pollution or
wildfire events, high efficiency air cleaners and N95 masks when going
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outdoors may help patients at high risk of cardiopulmonary disease
[21].

2.4. Dyslipidemia, diabetes mellitus, cardiometabolic health and preg-
nancy. A number of studies reaffirmed the deleterious association be-
tween air pollution and dyslipidemia [22,23]. Similarly, extreme high
temperatures were associated with elevated fasting glucose, insulin
resistance, diabetes, and metabolic syndrome. [24,25] In pregnancy,
exposure to air pollution is associated with gestational diabetes; how-
ever, whether critical windows of exposure exist and whether other
environmental factors modify the associations remains unclear. In-
vestigators from Ontario, Canada showed that exposure to PM2.5 in
early pregnancy and ozone exposure during the late first trimester and
over the second trimester of pregnancy were associated with gestational
diabetes, but exposure to green space may confer a protective rela-
tionship. [26]

3. Climate and healthcare
3.1. Contribution of healthcare to climate change

Fossil fuel combustion to support facility operations such as elec-
tricity in hospitals and clinics, the production of pharmaceuticals and
medical devices, transport, and food production for health systems
generates approximately 8.5% of all GHGs in the US, and 4.6% of all
global GHG emissions [7]. These emissions stem from direct operations
of health care facilities (scope 1), indirectly from purchased sources of
energy, heating and cooling (scope 2), and supply chain of health care
services and goods (scope 3) [27]. Each year the United Nations
Framework Convention on Climate Change meet at the Conference of
the Parties (COP) to discuss and implement national communications,
goals, and emission inventories. The 28th of these meetings (COP28),
held in Dubai in 2023, included an official Health Day where 123
countries committed to curb emissions in the healthcare sector and
develop decarbonization targets for healthcare [28]. This was the first
COP to address the impact of healthcare driven climate change on public
health.

Most healthcare workers appear to be aware of this issue. Four in five
clinicians in the US believe that it is important for their hospital to
address climate change, and three out of four felt personal responsibility
to pursue this mission [29]. As health is a major motivator for climate
action, health professionals are well positioned to advance decarbon-
ization policies. Medical organizations from the US, Europe, and
Australia have developed roadmaps for a sustainable low-emission
health sector [30,31].

The first step in decarbonizing the healthcare system is determining
the carbon footprint of each healthcare facility, which provides targets
for decarbonization [32]. The National Academy of Medicine (NAM) has
launched the Action Collaborative on Decarbonizing the U.S. Health
Sector to intervene upon these targets [33]. The NAM Action Collabo-
rative recommends that healthcare systems should establish an execu-
tive level sustainability team with broad representation from both
operational and clinical lines. The sustainability team should then
conduct a GHG inventory and specific decarbonization goals should be
established. To achieve these decarbonization goals, an implementation
plan should be developed to document milestones and track progress.
This implementation plan should include high impact decarbonization
interventions, such as reducing building emissions, emissions from
anesthetic gases, physical waste and single use plastics, and emissions
from food and transport.

Roadmaps similar to the NAM Action Collaborative have been pre-
sented at the 2023 European Healthcare summit and in The Medical
Journal of Australia-Lancet Countdown 2023 report [13,30]. These
initiatives provide neutral platforms for their participants to align
around collective goals and actions for decarbonization, based on
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evidence, shared solutions, and a commitment to improve health equity
[34].

Particularly in developed countries, the use of digital infrastructure
and telemedicine services may reduce healthcare emissions. During the
COVID-19 pandemic, telemedicine services were widely employed. A
retrospective observational study found that the use of telemedicine
during the years 2021-2022 resulted in an estimated saving of
1,443,800 metric tons of CO2, when accounting for patient travel as well
as the emissions of telemedicine electricity [35]. This equates to the
energy saved by having 380 wind turbines running for 1 year [36]. A
Stanford Healthcare study similarly found GHG emission reduction from
the use of telemedicine [37]. Though all appointments are not appro-
priate for telemedicine, shifting feasible patient encounters to tele-
medicine clearly improves GHG emissions.

However, global energy consumption due to digital health is
increasing, driven in part by precision medicine and Internet of things
devices e.g., smartwatches which contribute increased data traffic and
storage [38]. Global information and technology accounts for about
3.5% of global carbon emissions, while healthcare data accounts for
30% of the world's total data [39]. The sourcing of important metals
involved in the production of digital hardware results in substantial
environmental and ethical issues [40]. Furthermore, both the training
and inference phases of artificial intelligence models are highly energy
intensive [41]. Therefore, guiding principles and recommendations for a
more sustainable digital health system, directed towards researchers and
clinicians have been proposed and include [38]:

1) Digital temperance instead of overconsumption and overpromotion —
refers to restraint in production, use and promotion.

2) As with all medical devices, digital healthcare products and infra-
structure should sustainable throughout their lifecycle.

3) Use of a complex systems approach, for example, to estimate the
direct and indirect effects of digitalization of the health sector.

The third of these points is crucial for predicting potential rebound
effects such as “Jevons paradox”, wherein technological progress in-
creases the efficiency of resource use, but the falling cost of use induces
an increase in resource consumption, rather than a decrease [42]. For
example, the use of artificial intelligence is theorized to improve
healthcare efficiency and reduce GHGs associated with existing
healthcare facilities, however, this technology may be implemented in
ways that do not lead to the expected reductions [43].

Storing data requires significant amounts of electricity, as does
copying and sending data to the cloud [43]. Such requirements can be
reduced by eliminating data storage and flows that are no longer
required [44]. Less frequently visited data may be migrated to less so-
phisticated tape storage systems [45]. Global cloud infrastructure can be
migrated to more temperate climates that rely on natural cooling to
reduce heat rather than using high-powered cooling equipment. Per-
sonal actions that an individual can implement in their daily life to
reduce the carbon footprint of data storage includes the use of cloud file
sharing solutions, using links rather than attachments in emails, setting
up automatic deletions and unsubscribing from unwanted newsletters
[39,40].

Healthcare organizations in some countries have been able to
generate their own energy via rooftop solar and solar microgrids,
resulting in decreased reliance on fossil fuels and greater energy secu-
rity. For example, in Puerto Rico, Federally Qualified Health Centers
that were solarized after Hurricane Maria remained operational during
an island-wide power outage in April 2022. Similarly, in Uganda, a
randomized controlled trial among hospitals with limited or unreliable
access to oxygen demonstrated a pediatric mortality benefit following
the installation of solar-powered O2 systems [46]. Such approaches may
be of greater benefit in low- or middle-income countries located in
particularly sunny climates and may provide increased energy security
in these areas [34].
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3.2. The carbon footprint of cardiovascular disease management

The limited literature that exists to evaluate the environmental
impact of cardiovascular healthcare was recently summarized by Barratt
et al. [47] Measurement of the environmental impact of products
involved in healthcare is an emerging research field, but the assessment
of these products is best quantified by an internationally standardized
life cycle assessment (LCA). [48] An LCA measures the diverse range of
environmental emission and their impacts, including water, land and air
pollution, along with the carbon emissions over the full life of the
product from raw material acquisition through manufacturing, pack-
aging, distribution, use, and disposal.

Examples of strategies to reduce the carbon footprint of cardiovas-
cular disease management that are currently supported by data include:

1) Use of echocardiography over other imaging modalities as a first line
imaging modality, as clinically appropriate. Indeed, echocardiogra-
phy has favorable environmental impacts on human health, ecosys-
tems, and resource usage, which were 1%-20% of that of cardiac
magnetic resonance (CMR) or single photon emission tomography
(SPECT) based on LCA. [49]

2) Remote monitoring of pacemakers and telephone consultations over
in-person evaluation. [50]

3) Use of stretchable cardiac monitoring devices rather than rigid
electronic devices, as less printed circuit boards are used. [51]

4) Use of virtual cardiology conference webinars over traditional in
person conferences. [52]

In contrast to outpatient settings like in Preventive Cardiology,
inpatient aspects of the management of cardiovascular disease such as
cardiac operating rooms, cardiac catheterization and electrophysiology
laboratories and cardiovascular critical care units can be highly resource
dependent. [53] Energy use data for inpatient medical devices such as a
cardiac monitors or ventilators is scarce, and no data exists to describe
the likely substantial carbon foot print of implantable cardiac devices or
mechanical circulatory support devices [54].

Investigators from France performed an eco-audit LCA for an atrial
fibrillation ablation procedure, which was found to involve a mean of
76.9 kg of CO2 equivalents [55]. Given the 600,000 annual worldwide
procedures, the environmental impact of atrial fibrillation activity
equates to 700,000 km of car rides each day. Notably, the electrophys-
iology procedure itself accounted for 75% of the CO2 equivalents,
whereas anesthesia (predominantly anesthetic gases) contributed the
remaining 25%. The production of single use electrophysiology cathe-
ters and patches were the main contributors to the carbon footprint,
particularly the use of precious metals like platinum and gold. This
builds on prior surveys, which identified single use mapping and abla-
tion catheters as the most commonly cited potential sustainable solution
including reusing and re-sterilizing catheters or external re-processing of
catheters to make them multi-use. Frameworks to reduce, reuse and
recycle these items have been proposed [56] A position paper from the
Working Group of Cardiac Pacing and Electrophysiology of the French
Society of Cardiology described how the reprocessing of single-use de-
vices could mitigate the environmental impact of these procedures but
noted that it remained unauthorized (primarily due to the theoretical
concern of prion disease) in certain countries [57].

Some cardiac catheterization labs have also taken the first steps to
address energy use and reduce waste but more widespread traction has
been limited [53,58]. Therefore, significant work in quantifying the
energy use of a cardiac catheterization lab, with, for example, the
Greenhouse Gas Protocol tool is a necessary first step [59]. As outlined
in more detail above, subsequent steps will require the establishment of
a sustainability team and sustainability plan with engagement from
scientific society leadership, industry and federal regulation [53,60].

On an individual level, a simple step that healthcare team members
can easily implement is to not leave cardiac monitors or ventilators in
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standby mode as this uses almost as much electricity as when they are in
clinical use. As with all components of climate change mitigation and
adaptation, personal actions are useful for short term reductions in the
climate impact of healthcare; however, no individual action will be
sufficient without larger policy change [61].

4. Conclusions

Climate change related CVD is an important consideration for all
clinicians and patients as the earth continues to warm. CVD remains the
leading cause of death globally and literature documenting the impact of
climate change on cardiovascular health with substantial social inequity
continues to grow. The effect of climate change on cardiovascular health
must be addressed at many levels including through the lens of health-
care systems, which contribute substantially to climate change, partic-
ularly in the US. Advocacy for policy and system-level changes, in
addition to personal actions, are essential to mitigate and adapt to
climate change. Healthcare systems have the potential and the roadmap
to lead these decarbonization efforts. Further work, particularly in the
cardiac critical care, cardiac catheterization, and electrophysiology
laboratories is clearly warranted. Individual clinicians should ensure
that addressing climate change is aligned with their healthcare organi-
zation's mission.
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