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Abstract: The present study was designed to evaluate the chemical extraction, chemical composition,
and antioxidant and antibacterial properties of the total flavonoids in Willow Buds (TFW). We
investigated the optimal extraction of TFW using response surface methodology (RSM). Chemical
compounds were analyzed using Q-Orbitrap LC–MS/MS. The DPPH radical scavenging capacity,
hydroxy radical inhibitory ability, and superoxide anion radical inhibitory ability were explored to
determine the antioxidant properties of flavonoid extractions. The antibacterial effect was assessed
via minimal inhibitory concentration. The results demonstrated that the optimal extraction conditions
were an ethanol concentration of 50%, a time of 35 min, and a liquid/material ratio of 70:1 mL/g.
Under these conditions, the yield of TFW was 7.57%. Eight flavonoids, a phenolic glycoside, and an
alkaloid were enriched in the Willow Buds. The TFW exhibited significant antioxidant activity, with
IC50 values of 0.18-0.24 mg/mL and antimicrobial activity against Escherichia coli, Salmonella enterica,
Staphylococcus aureus, and Streptococcus pneumoniae. TFW may be explored as potential and natural
compounds in food and pharmacological applications.

Keywords: Willow Buds; total flavonoids; extraction technology; antibacterial; antioxidation;
chemical component

1. Introduction

Flavonoids are an important class of secondary plant metabolites and a class of natural
beneficial chemicals [1]. Flavonoids have attracted extensive attention due to their anti-
inflammatory, antioxidant, antibacterial and antitumor properties [2–4]. For instance,
flavonoids such as quercetin, kaempferol, and rutin [5–7] have various pharmacological
activities and are applied in the treatment of various diseases. Therefore, it is necessary to
explore optimized methods for the extraction of flavonoids.

Modern extraction technology has the advantages of a high extraction efficiency, purity,
and product quality, as well as simple operation and less solvent residue than traditional
extraction processes. In recent years, supercritical fluid extraction, ultra-micro-grinding
technology, and ultrasonic extraction have been commonly used—especially ultrasonic
extraction, which is easy to operate and has a short cycle. Therefore, in this study, we aimed
to use ultrasound-assisted extraction to enrich flavonoids and optimize their extraction
process conditions using response surface methodology (RSM).

Salix babylonica L. is widely distributed all over the world, and its leaves are rich in
various compounds such as flavonoids, terpenes and phenols [8]. Studies have shown
that Salix babylonica L. has a variety of pharmacological activities, including antioxidant,
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anti-tumor, anti-inflammatory, and antibacterial activities [9,10]. Researchers have ex-
tracted the components of Salix babylonica L. with hydroalcoholic maceration and found
that these pharmacological effects are related to rutin, luteolin glycosides, 3-dioxane-4-
(hexadecyloxy)-2-pentadecyl, and kaempferol [8,11,12]. The new buds of Salix babylonica L.
(Willow Buds) are an edible wild vegetable with high nutritional and medicinal value. In
folk medicine, it is commonly used to fight microbial infection, reduce inflammation and
improve immunity. However, its extraction conditions, chemical composition, and phar-
macological activities are poorly understood. Therefore, in this study, the total flavonoids
from Salix babylonica L. buds were extracted via an ultrasound-assisted extraction method
(UAE), their chemical constituents were identified, and their antioxidant and antibacterial
activities were evaluated.

2. Materials and Methods
2.1. Instruments and Reagents

An UltiMate 3000 RS Ultra Performance Liquid Chromatograph (UPLC) and Q Exac-
tive liquid chromatograph-mass spectrometer (LC-MS) were obtained from Thermo Fisher
Scientific (Waltham, MA, USA). A 7230G ultraviolet spectrophotometer was purchased from
YOKE Instrument (Shanghai, China). An ultrasonic cleaner (KQ3200DE) was purchased
from Kunshan Ultrasonic Instrument (Jiangsu, China). Rutin (purity > 97.0%, MB5118) and
vitamin C (VC, purity > 99.0%, MB4168) standard substances were obtained from Meilun
(Dalian, China). Doxycycline (K0131507, HPLC purity > 98.0%, CLSI) and levofloxacin
(130455-20116, HPLC purity > 98.0%, CLSI) were purchased from the China Institute of
Veterinary Drug Control Co., Ltd (Beijing, China) and China National Institutes for Drug
Control Co., Ltd (Beijing, China), respectively. DPPH (A153-1-1), a hydroxyl free radical
assay kit (A018-1-1), and an inhibition and produce superoxide anion assay kit (A052-1-1)
were purchased from Jiancheng Bioengineering Institute Co., Ltd (Nanjing, China).

Standard strains of Escherichia coli (ATCC 25922), Salmonella enterica (ATCC 51812),
Staphylococcus aureus (ATCC 25923) and Streptococcus pneumoniae (ATCC 49619) obtained
from the American Type Culture Collection (Rockville, MD, USA) were used in this study.

2.2. Samples and Processing

The Willow Buds of Salix babylonica L. (~1 cm) were collected in the Shenyang Institute
of Technology from March 2020 to April 2020, and they were authenticated by Professor
Junfan Fu of the College of Life Engineering, Shenyang Institute of Technology. After
washing, the collected Willow Buds were naturally dried and ground into fine powders for
further experiments.

2.3. Experimental Design
2.3.1. Single-Factor Experiments

The ambient temperature-dried Willow Buds were extracted via UAE. Three indepen-
dent factors–ethanol concentration (X1), ultrasonic extraction time (X2), and solvent-to-
material ratio (X3)–were used to analyze and compare the extraction efficiency of the total
flavonoids in Willow Buds (TFW). The range of all variables were as follows: X1 of 30%,
40%, 50%, 60%, and 70%; X2 of 15, 20, 25, 30, and 35 min; and X3 of 30:1, 40:1, 50:1, 60:1,
and 70:1 mL/g.

2.3.2. Optimization of Extraction Conditions by Box–Behnken Design (BBD)

Based on the abovementioned results, the BBD was selected to guide the experimental
design with three variables at three levels (Table 1) for 17 randomized experiments (Table 2),
and the experimental data were obtained with response surface methodology (RSM).
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Table 1. Independent variables and their levels in BBD for TFW.

Levels Ethanol Concentration
(X1)/(%)

Extraction Time
(X2)/(min)

Ratio of Solvent to Material
(X3)/(mL/g)

–1 30 25 50
0 40 30 60
1 50 35 70

Table 2. Box–Behnken experimental design and the results for the extraction yield of TFW (n = 3).

No.

Independent Variable Levels
ResponseEthanol Concentration

(X1)/(%)
Extraction Time

(X2)/(min)
Ratio of Solvent to

Material (X3)/(mL/g)

1 30 25 60 5.8
2 50 35 60 5.7
3 40 30 60 5.8
4 50 25 60 5.7
5 40 25 70 6.8
6 40 35 70 7.0
7 30 30 50 3.4
8 30 35 60 4.1
9 50 30 50 4.4
10 40 30 60 6.4
11 40 25 50 4.2
12 30 30 70 5.4
13 40 30 60 5.5
14 50 30 70 7.5
15 40 30 60 5.7
16 40 35 50 4
17 40 30 60 5.8

2.3.3. Determination of TFW Content

The content of TFW was measured with the aluminum nitrate–sodium nitrite–sodium
hydroxide colorimetric method, as previously described [13]. Rutin was used as a standard
chemical. In brief, rutin (0.01 g) was weighed with an analytical balance and dissolved
in 30% ethanol. NaNO2 (5%, 0.8 mL) was then added into the rutin solution (10 mL,
0.1 mg/mL). After 6 min, Al(NO3)3 (10%, 0.8 mL) was added into the mixture. Another
6 min later, NaOH (1 mol/L, 10 mL) was added. The mixture was set to a final volume of
25 mL using 30% ethanol. Following incubation for 15 min, the absorbance was measured
at 510 nm. The content of rutin was 0−0.04 mg/mL. The TFW solutions (1.0 mL) extracted
under different conditions were diluted 50 times, distilled water was used as a blank control,
and the absorbance was measured at 510 nm. The content of TFW was calculated according
to the following regression equation: y = 9.6607x − 0.002 (R2 = 0.9995), y: absorbance, x:
content. The yield of TFW was calculated with the equation given below:

Extraction yield (mg/g) =
C × V × N

m
× 100% (1)

where C represents the concentration of TFW (mg/mL), V represents the total volume
of the TFW filtrate (mL), N represents the dilution ratio, and m represents the weight of
Willow Buds (g).

2.4. Component Analysis and Detection Condition

The extracts (200 mg) obtained with UAE using the abovementioned optimal extraction
conditions were dissolved in 1 mL of a methanol: water solution (80:20, v/v). After being
ground with zirconium dioxide for 3 min, samples were centrifuged with 2 × 104× g for
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10 min at 4 ◦C. The supernatants were filtered with a 0.22 µm membrane and collected for
UPLC and LC-MS analyses.

Our UPLC and LC-MS methods used were similar to those previously described [14,15].
In brief, UPLC analysis was performed using an RP-C18 column (150 × 2.1 mm, 1.8 µm;
Welch, Palo Alto, CA, USA). The column was maintained at 35 ◦C and evaporated at a flow
rate of 0.30 mL/min. The mobile phase consisted of water with 0.1% formic acid (A) and
acetonitrile with 0.1% formic acid (B). The elution details are shown in Table 3. The needle
wash was methanol, the autosampler temperature was 10 ◦C, the autosampler syringe
height was 2.00 mm, and the automatic injection volume was 5.00 µL.

Table 3. Chromatographic gradient elution.

Time (min) A (%) B (%)

0 98 2
1 98 2
5 80 20
10 50 50
15 20 80
20 5 95
25 5 95
26 98 2
30 98 2

LC-MS analysis was carried out under a positive/negative electrospray ionization
source (ESI) switching pattern. The condition parameters were as follows: detection
method, full mass/dd-MS2; resolution, 70000 (full mass), 17500 (dd-MS2); scan range,
150.0–2000.0 m/z; spray voltage, 3.8 kV (positive); data acquisition time, 30 min; collision
gas, high-purity argon (≥99.999%); sheath gas, nitrogen (≥99.999%); and auxiliary gas,
nitrogen (≥99.999%) held at 350 ◦C. The capillary temperature was kept at 300 ◦C.

2.5. Antioxidant Capacity Assay

The determination of DPPH, hydroxyl free radical (·OH), and superoxide anion (O2–·)
was carried out according to the manufacturer’s instructions. We dissolved 1 g of the
extract in distilled water and then adjusted the volume to 1.0 mL to obtain a concentration
of 1 g/mL. Different final concentrations of samples (62.5, 125, 250, 500, and 1000 µg/mL;
400 µL) were mixed with the DPPH solution (600 µL) and incubated for 30 min at 25 ◦C in
the dark. VC was used as a positive control. The absorbance for DPPH radical scavenging
activity was recorded at 517 nm. The DPPH radical scavenging activity was calculated as
follows:

DPPH radical scavenging activity (%) = 1 − (As − Ar)
Ao

× 100 (2)

where As represents the absorbance of sample after reacting with DPPH, Ar represents the
absorbance of the sample solution after reacting with absolute ethanol, and Ao represents
the absorbance of the ultrapure water with DPPH. IC50 was defined as the concentration of
the TFW extraction, which reached a 50% scavenging effect of the DPPH free radicals.

Similarly, different final concentrations of samples (62.5, 125, 250, 500, and 1000 µg/mL;
200 µL) were incubated for 20 min at room temperature. VC was used as a positive control.
The absorbance for ·OH inhibition was measured at 550 nm. The ·OH inhibition ration was
calculated using the below equation:

·OH inhibition ratio(%) =
(Ar − As)

Ar
× 100 (3)

where As represents the absorbance of the sample solution after reacting with the ·OH
solution and Ar represents the absorbance of the sample solution after reacting with
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absolute ethanol. IC50 was defined as the concentration of the TFW extraction, which
reached a 50% inhibition effect of ·OH.

We dissolved 1 g of the extract in distilled water and then adjusted the volume to
1.0 mL to obtain a concentration of 1 g/mL. Different final concentrations of samples (31.25,
62.5, 125, 250, and 500 µg/mL; 0.05 mL) were shaken and stood for 10 min. VC was used as
a positive control. The absorbance for O2−· inhibition was measured at 550 nm. The O2−·
inhibition ration was calculated using the below equation:

o−2 · inhibition ratio(%) =
(Ar − As)

Ar
× 100 (4)

where As represents the sample solution after reacting with the O2−· solution and Ar
represents the sample solution after reacting with absolute ethanol. IC50 was defined as the
concentration of the TFW extraction, which reached a 50% inhibition effect of the O2−· free
radicals.

2.6. Antibacterial Capacity Assay

The antibacterial capacity was measured using the double dilution method following a
previous report [16]. In brief, the sample solution (500 µL) in 1% DMSO and the bacterium
solution (500 µL) were mixed at 37 ◦C for 24 h. Then, a doxycycline and levofloxacin
solution were used as a positive control, and a 1% DMSO solution was used as a negative
control. The experiments were repeated 3 times. The lowest concentration that was not
visually cloudy was identified as the minimal inhibitory concentration (MIC).

2.7. Statistical Analysis

Data are represented as mean ± standard deviation (SD). The statistics in the RSM
experiment were analyzed using Design Expert 8.0.6 software (Trial Version 8.0.6, State,
Inc., Minneapolis, USA). The other data were analyzed using the SPSS 17.0 software (SPSS
Inc., Chicago, IL, USA). A p-value < 0.05 was regarded as statistically significant. Each
experiment was carried out in triplicate.

3. Results and Discussion
3.1. Effects of Ethanol Volume Fraction on the Yield of TFW

It has been reported that the polarity of the solvent is an important factor affecting the
extraction rate of flavonoids, and similar polarities lead to higher extraction rates. Ethanol
and flavonoids have similar polarities [17], so ethanol was selected as a suitable extraction
solvent. Additionally, Krongrawa et al. reported that the optimal extraction conditions of
flavonoids from Kaempferia parviflora Rhizomes were an ethanol concentration of 54.24%, a
time of 25.25 min, and a liquid/material ratio of 49.63 mL/g [18]. According to references
and the results of a pre-experiment, a series of parameters were selected in this study. First,
different volume fractions of the ethanol solution (30%, 40%, 50%, 60% and 70%) were
prepared to evaluate the extraction efficiency of TFW. The solvent-to-material ratio was
set as 50 mL/g, and the extraction time was set as 25 min. As shown in Figure 1, the
yield of TFW was increased along with the increase in ethanol concentration (X1, %) until
the volume fraction of the ethanol solution reached 40%. Furthermore, the TFW yield
decreased when the concentration of ethanol was higher than 40%. Considering the rule
of like dissolving like, the polarity of the ethanol solution was associated with its volume
fraction and flavonoid compounds possessed a better polarity. The results shown in the X1
line in Figure 1 chart demonstrate that an ethanol solution volume fraction of 40% could be
an optimal condition for TFW extraction.
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3.2. Effects of Ultrasonic Extraction Time on the Yield of TFW

The effect of extraction time on TFW yield is illustrated in the X2 line chart of Figure 1.
The other single factors were a 50% ethanol concentration and a 50 mL/g solvent-to-material
ratio. The results showed that the yield of TFW reached its highest level when the extracting
time peaked at 30 min, and then it gradually declined with increasing time. A main
explanation could be that shorter extracting times resulted in the incomplete extraction of
TFW and the longer extracting times might have increased energy consumption, worsened
flavonoid stability, and accelerated solvent evaporation or decomposition. These results
indicate that an extraction time of 30 min might be the best of the studied conditions.

3.3. Effects of Solvent-to-Material Ratio on the Yield of TFW

Finally, we tested the optimal ratio of the solvent to material for TFW extraction when
the concentration of the ethanol solution was 50% and the extracting time was 25 min.
As shown in the X3 line chart of Figure 1, the TFW yield gradually increased along with
the increasing solvent-to-material ratio, which reached its peak at 6.5% with a 70:1 mL/g
relative solvent-to-material ratio. Considering concentration limitations and experiment
costs, a relative solvent-to-material ratio of 70: 1 mL/g could be the most appropriate of
studied conditions.

Thus, following the results of the single-factor TFW experiments, three levels of the
three variables—ethanol concentration (30%, 40% and 50%), ultrasonic extraction time (25,
30 and 35 min), and solvent-to-material ratio (50:1, 60:1, and 70:1 mL/g)—were prepared
for further RSM analysis.

3.4. Optimization of Extraction Conditions by BBD

The RSM results are shown in Table 2. The final equation was as follows: Y = 5.84
+ 0.58X1−0.21X2 + 1.34X3 + 0.42X1X2 + 0.28X1X3 + 0.10X2X3 − 0.42X12 − 0.095X22 −
0.24X32. The determined coefficient R2 = 0.9436 of the final equation indicated that the
model fitted well with the experiments, and it could be used to replace the real point of the
test to analyze experimental results.

The BBD experimental results for TFW extractives were utilized for variance analysis,
as shown in Table 4. Considering that p-values were defined to evaluate the statistical
difference of the regression coefficients, the determined results (F = 13.02, p = 0.0014) of
regression models using ANOVA indicated a significant statistical difference when using
this model. The X1 and X3 parameters exhibited very significant effects on the response
values. In total, the effect of three variables on the extraction rate of TFW was as follows:
X3 > X1 > X2.
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Table 4. Analysis of variance for the BBD experimental results for TFW.

Variables Sum of
Squares DF Mean

Square F Value p-Value

Mode 19.5 9 2.17 13.02 0.0014
X1 2.65 1 2.65 15.90 0.0053
X2 0.36 1 0.36 2.17 0.1841
X3 14.31 1 14.31 86.03 <0.0001

X1*X2 0.72 1 0.72 4.34 0.0756
X1*X3 0.30 1 0.30 1.82 0.2195
X2*X3 0.040 1 0.040 0.24 0.6389

X12 0.74 1 0.74 4.46 0.0725
X22 0.038 1 0.038 0.23 0.6473
X32 0.25 1 0.25 1.52 0.2575

Residual 1.16 7 0.17
Lack of Fit 0.71 3 0.24 2.10 0.2428
Pure Error 0.45 4 0.11
Cor total 20.66 16

R2 0.9436
RAdj2 0.8712
RPred2 0.4142

Adeq Precision 12.227
C.V.% 7.44

The parameters (F = 2.10, p = 0.2428) found when using the lack-of-fit analysis indicated
that the accidental factors, including experimental errors, had no significant effects on
experimental results. In addition, the 12.88% of variations could not be explained by this
model, as evidenced by RAdj2 = 0.8712. Taken together, this model could be considered to
analyze and predict the optimal extraction conditions of TFW.

The effects of three independent variables—ethanol concentration (X1), ultrasonic
extraction time (X2) and the solvent-to-material ratio (X3)–on the yield of TFW extracts
were analyzed with Design-Expert 8.0.6 software. The response surface plots are shown
in Figure 2a–c. The yield of TFW increased along with increased levels of each of the
three independent factors in a certain range. The optimal conditions for TFW extractives
were as follows: 50% ethanol concentration, 35 min of ultrasonic extraction time, and a
solvent-to-material ratio of 70: 1 mL/g. The maximum yield of TFW at 7.57% was predicted
by this model. In addition, the interaction between ethanol concentration (X1) and the
solvent-to-material ratio (X3) had the most significant effect on the yield of TFW.
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BBD can be used to optimize the extraction of flavonoids by considering the interaction
between different factors and shortening the time for screening extraction conditions.
Traditional single-factor experiments only involve one variable factor, and the obtained
screening data are not reliable enough. On the basis of single-factor experiments, the
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application of RSM can not only show the influence of interaction terms on the extraction
rate of flavonoids but also analyze the accuracy and reliability of data [19,20]. We performed
experiments with the optimal parameters, and the yield at 7.55% was identified to be an
approximate value in comparison to the predicted results. This result supported the idea
that this model could be used to reliably predict experimental values.

3.5. Chemical Component Analysis of TFW Extractives

The chemical components of TFW were acquired with LC–MS and aligned to differ-
ent databases, including mzCloud, mzVault, and ChemSpider, for characterization. In
addition, to screen out the most abundant constituents for more investigations in the fu-
ture, compounds with a spectral peak area of more than 1 × 108 were analyzed. The Rt,
[M–H]−, MS/MS [M–H]−, [M+H]−, MS/MS [M+H]−, calculated mass, and formula of
each component are listed in Table 5. The primary and secondary mass spectral profiles
of each component are illustrated in Figure 3. The fragment ions of compound 1 and 2
were compared with previously reported data [21,22], and the diagnostic ions at m/z 138.1
and 463.1 could be assigned to trigonelline and isoquercitrin, respectively. Similarly, the
fragments appearing at m/z 609.1 and 303.0 could be attributed to rutin (compound 3) [23]
and quercetin (compound 4) [22], respectively. The peaks at m/z 289.1 and 287.1 matched
those of catechin and kaempferol (compound 5 and 6), respectively [22,23]. Additionally,
the fragments at m/z 447.1 and 317.1 were considered to be characteristic fragments of astra-
galin and isorhamnetin (compound 7 and 8), respectively [22,23]. The observed fragments
at m/z 304.1 and 271.1 belong to salicin (compound 9) [24] and naringenin (compound
10), respectively [23]. Among the top ten compounds, there was one alkaloid and one
phenolic glycoside; the remaining eight were flavonoids. They all have antioxidant and
antimicrobial effects, among which rutin [25] and quercetin have the most relative strong
activities [26].

Table 5. Identification of the chemical components of TFW extractives.

No. Rt
(min) [M–H]– MS/MS

[M–H]– [M+H]– MS/MS
[M+H]–

Calculated
Mass Formula Proposed

Molecule Reference

1c 2.61 _ _ 138.1 110.1, 139.1 137.0 C7H7NO2 trigonelline [21]

2a 5.22 463.1 299.0, 301.0,
300.0 _ _ 464.1 C21H20O12 isoquercitrin [22]

3a 5.66 609.1 300.0, 301.0,
271.0 _ _ 610.2 C27H30O16 rutin [23]

4a 5.67 _ _ 303.0 257.0, 229.1,
247.1 302.0 C15H10O7 quercetin [22]

5a 5.79 289.1 203.1, 245.1_ _ _ 290.1 C15H14O6 catechin [22]
6a 5.91 _ _ 287.1 121.0, 153.0 286.0 C15H10O6 kaempferol [23]

7a 6.35 447.1 284.0, 255.0,
227.0 _ _ 448.1 C21H20O11 astragalin [22]

8a 6.73 _ _ 317.1 302.0, 153.0,
285.0 316.1 C16H12O7 isorhamnetin [23]

9b 7.25 _ _ 304.1 107.1 286.1 C13H18O7 salicin [24]

10a 7.58 271.1 93.0, 107.0,
119.0, 151.0 _ _ 272.1 C15H12O5 naringenin [23]

a, flavonoid; b, phenolic glycoside; c, alkaloid.
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3.6. Antioxidant Capacity

Researchers have developed several methods to determine in vitro antioxidant capac-
ity (with an increased focus on natural antioxidants), such as by using total oxygen radical
scavenging capacity, reducibility methods, ABTS radical scavenging capacity, DPPH radical
scavenging capacity, ·OH free radical scavenging capacity, O2–· free radical scavenging
capacity, and a lipid peroxidation method. The present work was aimed to determine the
potential antioxidant activity of TFW through the measurement of DPPH, O2–·, and ·OH.
The linear fitting equations for the relationships between DPPH, O2–· or ·OH with TFW
concentration are as follows: Y (DPPH) = –77.383x2+133.81x+22.652; Y (O2–·) = –203.3x2

+ 189.86x + 21.264; Y (·OH) = –144.08x2 + 227.86x + 1.3191. As shown in Figure 4, TFW
significantly increased the DPPH free radical scavenging capacity and O2–· and ·OH inhibi-
tion capacity in a concentration-dependent manner. The IC50 value (mg/mL) was used to
represent the antioxidant capacity. According to the equations shown above, the IC50 values
for DPPH, O2–· and ·OH were 0.20, 0.18, and 0.23 mg/mL, respectively, as shown in Table 6.
Thus, the results demonstrated that the TFW extracts displayed the radical scavenging
capacity of DPPH and the inhibitory properties for O2–· and ·OH. The antioxidant activities
of the TFW extractives were consistent with those of previous studies regarding flavonoid
extractions from Saussurea involucrate and Semen Oroxyli [27,28]. Importantly, our data
showed that TFW exhibited a more significant inhibitory effect on O2–· than DPPH radical
scavenging and ·OH inhibition, which was similarly to the antioxidant properties of VC.
This difference may have been due to the great difference in the DPPH radical scavenging
ability and O2–· and ·OH inhibition abilities of the different components. Consistent with
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our results, the antioxidant capacity of flavonoids from tartary buckwheat bran was shown
to have a stronger ability for DPPH radical scavenging than ·OH and O2–· [29]. Altogether,
our work has demonstrated the in vitro antioxidant capacity of TFW to a certain extent.
Although previous studies have illustrated the antioxidant effects of willow bark and salix
leaf extracts [30,31], our results regarding Willow Buds provide further evidence for the
medical value of salix.
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Table 6. The results of the antioxidant activities of TFW extractives.

Indicators Antioxidants R2 of Linear Fit IC50 (mg/mL)

DPPH
TFW 0.9941 0.20
VC 0.9921 0.08

O2–· TFW 0.9911 0.18
VC 0.9931 0.03

·OH
TFW 0.9951 0.24
VC 0.9982 0.08

3.7. Antibacterial Capacity

To evaluate the antibacterial effect of TFW extractives, the Salmonella enterica, Strep-
tococcus pneumoniae, Escherichia coli and Staphylococcus aureus strain were used as they are
ubiquitous in the natural environment and can cause infections under certain conditions.
For instance, a Streptococcus pneumoniae infection can cause pneumonia, lower respira-
tory tract infection, and other diseases [32,33]. Salmonella endangers food hygiene and
safety [34]. These problems seriously threaten global public health security. Therefore, they
were chosen as test microorganisms. Doxycycline and levofloxacin were utilized as the
positive control to confirm the accuracy and reliability of experimental measurements. As
shown in Table 7, the TFW extracts showed antibacterial effects against the four strains, in
which the MIC of Staphylococcus aureus was 2.5 mg/mL and that of Salmonella enterica was
10 mg/mL. Recently, accumulating traditional Chinese medicines were found to possess
antibacterial pharmacological activities, and these were gradually used to replace the usage
of antibiotics due to the bacterial resistance. González-Alamilla et al. demonstrated that
the chemical compounds of Salix Babylonica L. exhibited antibacterial capacities against
Escherichia coli, Staphylococcus aureus and Listeria monocytogenes. The best antibacterial prop-
erty was obtained with luteolin against Staphylococcus aureus [11]. The salicin components
from the stem bark of Salix tetrasperma ROXB. were also found to show evident antibac-
terial capacity [35]. In 2020, González-Alamilla et al. evaluated a methanolic extract of S.
babylonica against Escherichia coli, Salmonella typhi, Salmonella choleraesuis, and P. aeruginosa
and determined an MIC of 100 mg/mL, 25 mg/mL for S. aureus and L. monocytogenes,
and 12.5 mg/mL for Bacillus subtilis [36]. Our results suggested that the abundant TFW
have antimicrobial effects against Gram-positive and Gram-negative bacteria. They accord-
ingly could be an ideal agent in food processing, beauty care and the clinical antibiotic
replacement.
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Table 7. The results of the antibacterial activities of TFW extractives.

Bacterial Strain Doxycycline
(µg/mL)

Levofloxacin
(µg/mL)

TFW
(mg/mL)

Escherichia coli (ATCC25922) 0.5 0.0625 5
Streptococcus pneumoniae (ATCC49619) 0.0625 2 5

Staphylococcus aureus (ATCC29213) 0.25 0.25 2.5
Salmonella enterica (ATCC 51812) 8 4 10

4. Conclusions

In summary, the authors of the present study extracted flavonoids from Willow Buds
using an ultrasonic-assisted extraction method for the first time. The optimized conditions
for flavonoid extraction were a 50% ethanol concentration, 35 min of ultrasonic extraction
time, and a 70:1 mL/g solvent-to-material ratio. The TFW extracts were determined to
exhibit in vitro antioxidant and antibacterial activities. We also described the active compo-
nents (eight flavonoids, a phenolic glycoside, and an alkaloid) present in Willow Buds.
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